//===- BitstreamWriter.h - Low-level bitstream writer interface -*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This header defines the BitstreamWriter class. This class can be used to // write an arbitrary bitstream, regardless of its contents. // //===----------------------------------------------------------------------===// #ifndef BITSTREAM_WRITER_H #define BITSTREAM_WRITER_H #include "llvm/ADT/StringRef.h" #include "llvm/Bitcode/BitCodes.h" #include <vector> namespace llvm { class BitstreamWriter { std::vector<unsigned char> &Out; /// CurBit - Always between 0 and 31 inclusive, specifies the next bit to use. unsigned CurBit; /// CurValue - The current value. Only bits < CurBit are valid. uint32_t CurValue; /// CurCodeSize - This is the declared size of code values used for the /// current block, in bits. unsigned CurCodeSize; /// BlockInfoCurBID - When emitting a BLOCKINFO_BLOCK, this is the currently /// selected BLOCK ID. unsigned BlockInfoCurBID; /// CurAbbrevs - Abbrevs installed at in this block. std::vector<BitCodeAbbrev*> CurAbbrevs; struct Block { unsigned PrevCodeSize; unsigned StartSizeWord; std::vector<BitCodeAbbrev*> PrevAbbrevs; Block(unsigned PCS, unsigned SSW) : PrevCodeSize(PCS), StartSizeWord(SSW) {} }; /// BlockScope - This tracks the current blocks that we have entered. std::vector<Block> BlockScope; /// BlockInfo - This contains information emitted to BLOCKINFO_BLOCK blocks. /// These describe abbreviations that all blocks of the specified ID inherit. struct BlockInfo { unsigned BlockID; std::vector<BitCodeAbbrev*> Abbrevs; }; std::vector<BlockInfo> BlockInfoRecords; public: explicit BitstreamWriter(std::vector<unsigned char> &O) : Out(O), CurBit(0), CurValue(0), CurCodeSize(2) {} ~BitstreamWriter() { assert(CurBit == 0 && "Unflused data remaining"); assert(BlockScope.empty() && CurAbbrevs.empty() && "Block imbalance"); // Free the BlockInfoRecords. while (!BlockInfoRecords.empty()) { BlockInfo &Info = BlockInfoRecords.back(); // Free blockinfo abbrev info. for (unsigned i = 0, e = static_cast<unsigned>(Info.Abbrevs.size()); i != e; ++i) Info.Abbrevs[i]->dropRef(); BlockInfoRecords.pop_back(); } } std::vector<unsigned char> &getBuffer() { return Out; } /// \brief Retrieve the current position in the stream, in bits. uint64_t GetCurrentBitNo() const { return Out.size() * 8 + CurBit; } //===--------------------------------------------------------------------===// // Basic Primitives for emitting bits to the stream. //===--------------------------------------------------------------------===// void Emit(uint32_t Val, unsigned NumBits) { assert(NumBits && NumBits <= 32 && "Invalid value size!"); assert((Val & ~(~0U >> (32-NumBits))) == 0 && "High bits set!"); CurValue |= Val << CurBit; if (CurBit + NumBits < 32) { CurBit += NumBits; return; } // Add the current word. unsigned V = CurValue; Out.push_back((unsigned char)(V >> 0)); Out.push_back((unsigned char)(V >> 8)); Out.push_back((unsigned char)(V >> 16)); Out.push_back((unsigned char)(V >> 24)); if (CurBit) CurValue = Val >> (32-CurBit); else CurValue = 0; CurBit = (CurBit+NumBits) & 31; } void Emit64(uint64_t Val, unsigned NumBits) { if (NumBits <= 32) Emit((uint32_t)Val, NumBits); else { Emit((uint32_t)Val, 32); Emit((uint32_t)(Val >> 32), NumBits-32); } } void FlushToWord() { if (CurBit) { unsigned V = CurValue; Out.push_back((unsigned char)(V >> 0)); Out.push_back((unsigned char)(V >> 8)); Out.push_back((unsigned char)(V >> 16)); Out.push_back((unsigned char)(V >> 24)); CurBit = 0; CurValue = 0; } } void EmitVBR(uint32_t Val, unsigned NumBits) { uint32_t Threshold = 1U << (NumBits-1); // Emit the bits with VBR encoding, NumBits-1 bits at a time. while (Val >= Threshold) { Emit((Val & ((1 << (NumBits-1))-1)) | (1 << (NumBits-1)), NumBits); Val >>= NumBits-1; } Emit(Val, NumBits); } void EmitVBR64(uint64_t Val, unsigned NumBits) { if ((uint32_t)Val == Val) return EmitVBR((uint32_t)Val, NumBits); uint64_t Threshold = 1U << (NumBits-1); // Emit the bits with VBR encoding, NumBits-1 bits at a time. while (Val >= Threshold) { Emit(((uint32_t)Val & ((1 << (NumBits-1))-1)) | (1 << (NumBits-1)), NumBits); Val >>= NumBits-1; } Emit((uint32_t)Val, NumBits); } /// EmitCode - Emit the specified code. void EmitCode(unsigned Val) { Emit(Val, CurCodeSize); } // BackpatchWord - Backpatch a 32-bit word in the output with the specified // value. void BackpatchWord(unsigned ByteNo, unsigned NewWord) { Out[ByteNo++] = (unsigned char)(NewWord >> 0); Out[ByteNo++] = (unsigned char)(NewWord >> 8); Out[ByteNo++] = (unsigned char)(NewWord >> 16); Out[ByteNo ] = (unsigned char)(NewWord >> 24); } //===--------------------------------------------------------------------===// // Block Manipulation //===--------------------------------------------------------------------===// /// getBlockInfo - If there is block info for the specified ID, return it, /// otherwise return null. BlockInfo *getBlockInfo(unsigned BlockID) { // Common case, the most recent entry matches BlockID. if (!BlockInfoRecords.empty() && BlockInfoRecords.back().BlockID == BlockID) return &BlockInfoRecords.back(); for (unsigned i = 0, e = static_cast<unsigned>(BlockInfoRecords.size()); i != e; ++i) if (BlockInfoRecords[i].BlockID == BlockID) return &BlockInfoRecords[i]; return 0; } void EnterSubblock(unsigned BlockID, unsigned CodeLen) { // Block header: // [ENTER_SUBBLOCK, blockid, newcodelen, <align4bytes>, blocklen] EmitCode(bitc::ENTER_SUBBLOCK); EmitVBR(BlockID, bitc::BlockIDWidth); EmitVBR(CodeLen, bitc::CodeLenWidth); FlushToWord(); unsigned BlockSizeWordLoc = static_cast<unsigned>(Out.size()); unsigned OldCodeSize = CurCodeSize; // Emit a placeholder, which will be replaced when the block is popped. Emit(0, bitc::BlockSizeWidth); CurCodeSize = CodeLen; // Push the outer block's abbrev set onto the stack, start out with an // empty abbrev set. BlockScope.push_back(Block(OldCodeSize, BlockSizeWordLoc/4)); BlockScope.back().PrevAbbrevs.swap(CurAbbrevs); // If there is a blockinfo for this BlockID, add all the predefined abbrevs // to the abbrev list. if (BlockInfo *Info = getBlockInfo(BlockID)) { for (unsigned i = 0, e = static_cast<unsigned>(Info->Abbrevs.size()); i != e; ++i) { CurAbbrevs.push_back(Info->Abbrevs[i]); Info->Abbrevs[i]->addRef(); } } } void ExitBlock() { assert(!BlockScope.empty() && "Block scope imbalance!"); // Delete all abbrevs. for (unsigned i = 0, e = static_cast<unsigned>(CurAbbrevs.size()); i != e; ++i) CurAbbrevs[i]->dropRef(); const Block &B = BlockScope.back(); // Block tail: // [END_BLOCK, <align4bytes>] EmitCode(bitc::END_BLOCK); FlushToWord(); // Compute the size of the block, in words, not counting the size field. unsigned SizeInWords= static_cast<unsigned>(Out.size())/4-B.StartSizeWord-1; unsigned ByteNo = B.StartSizeWord*4; // Update the block size field in the header of this sub-block. BackpatchWord(ByteNo, SizeInWords); // Restore the inner block's code size and abbrev table. CurCodeSize = B.PrevCodeSize; BlockScope.back().PrevAbbrevs.swap(CurAbbrevs); BlockScope.pop_back(); } //===--------------------------------------------------------------------===// // Record Emission //===--------------------------------------------------------------------===// private: /// EmitAbbreviatedLiteral - Emit a literal value according to its abbrev /// record. This is a no-op, since the abbrev specifies the literal to use. template<typename uintty> void EmitAbbreviatedLiteral(const BitCodeAbbrevOp &Op, uintty V) { assert(Op.isLiteral() && "Not a literal"); // If the abbrev specifies the literal value to use, don't emit // anything. assert(V == Op.getLiteralValue() && "Invalid abbrev for record!"); } /// EmitAbbreviatedField - Emit a single scalar field value with the specified /// encoding. template<typename uintty> void EmitAbbreviatedField(const BitCodeAbbrevOp &Op, uintty V) { assert(!Op.isLiteral() && "Literals should use EmitAbbreviatedLiteral!"); // Encode the value as we are commanded. switch (Op.getEncoding()) { default: assert(0 && "Unknown encoding!"); case BitCodeAbbrevOp::Fixed: if (Op.getEncodingData()) Emit((unsigned)V, (unsigned)Op.getEncodingData()); break; case BitCodeAbbrevOp::VBR: if (Op.getEncodingData()) EmitVBR64(V, (unsigned)Op.getEncodingData()); break; case BitCodeAbbrevOp::Char6: Emit(BitCodeAbbrevOp::EncodeChar6((char)V), 6); break; } } /// EmitRecordWithAbbrevImpl - This is the core implementation of the record /// emission code. If BlobData is non-null, then it specifies an array of /// data that should be emitted as part of the Blob or Array operand that is /// known to exist at the end of the record. template<typename uintty> void EmitRecordWithAbbrevImpl(unsigned Abbrev, SmallVectorImpl<uintty> &Vals, StringRef Blob) { const char *BlobData = Blob.data(); unsigned BlobLen = (unsigned) Blob.size(); unsigned AbbrevNo = Abbrev-bitc::FIRST_APPLICATION_ABBREV; assert(AbbrevNo < CurAbbrevs.size() && "Invalid abbrev #!"); BitCodeAbbrev *Abbv = CurAbbrevs[AbbrevNo]; EmitCode(Abbrev); unsigned RecordIdx = 0; for (unsigned i = 0, e = static_cast<unsigned>(Abbv->getNumOperandInfos()); i != e; ++i) { const BitCodeAbbrevOp &Op = Abbv->getOperandInfo(i); if (Op.isLiteral()) { assert(RecordIdx < Vals.size() && "Invalid abbrev/record"); EmitAbbreviatedLiteral(Op, Vals[RecordIdx]); ++RecordIdx; } else if (Op.getEncoding() == BitCodeAbbrevOp::Array) { // Array case. assert(i+2 == e && "array op not second to last?"); const BitCodeAbbrevOp &EltEnc = Abbv->getOperandInfo(++i); // If this record has blob data, emit it, otherwise we must have record // entries to encode this way. if (BlobData) { assert(RecordIdx == Vals.size() && "Blob data and record entries specified for array!"); // Emit a vbr6 to indicate the number of elements present. EmitVBR(static_cast<uint32_t>(BlobLen), 6); // Emit each field. for (unsigned i = 0; i != BlobLen; ++i) EmitAbbreviatedField(EltEnc, (unsigned char)BlobData[i]); // Know that blob data is consumed for assertion below. BlobData = 0; } else { // Emit a vbr6 to indicate the number of elements present. EmitVBR(static_cast<uint32_t>(Vals.size()-RecordIdx), 6); // Emit each field. for (unsigned e = Vals.size(); RecordIdx != e; ++RecordIdx) EmitAbbreviatedField(EltEnc, Vals[RecordIdx]); } } else if (Op.getEncoding() == BitCodeAbbrevOp::Blob) { // If this record has blob data, emit it, otherwise we must have record // entries to encode this way. // Emit a vbr6 to indicate the number of elements present. if (BlobData) { EmitVBR(static_cast<uint32_t>(BlobLen), 6); assert(RecordIdx == Vals.size() && "Blob data and record entries specified for blob operand!"); } else { EmitVBR(static_cast<uint32_t>(Vals.size()-RecordIdx), 6); } // Flush to a 32-bit alignment boundary. FlushToWord(); assert((Out.size() & 3) == 0 && "Not 32-bit aligned"); // Emit each field as a literal byte. if (BlobData) { for (unsigned i = 0; i != BlobLen; ++i) Out.push_back((unsigned char)BlobData[i]); // Know that blob data is consumed for assertion below. BlobData = 0; } else { for (unsigned e = Vals.size(); RecordIdx != e; ++RecordIdx) { assert(Vals[RecordIdx] < 256 && "Value too large to emit as blob"); Out.push_back((unsigned char)Vals[RecordIdx]); } } // Align end to 32-bits. while (Out.size() & 3) Out.push_back(0); } else { // Single scalar field. assert(RecordIdx < Vals.size() && "Invalid abbrev/record"); EmitAbbreviatedField(Op, Vals[RecordIdx]); ++RecordIdx; } } assert(RecordIdx == Vals.size() && "Not all record operands emitted!"); assert(BlobData == 0 && "Blob data specified for record that doesn't use it!"); } public: /// EmitRecord - Emit the specified record to the stream, using an abbrev if /// we have one to compress the output. template<typename uintty> void EmitRecord(unsigned Code, SmallVectorImpl<uintty> &Vals, unsigned Abbrev = 0) { if (!Abbrev) { // If we don't have an abbrev to use, emit this in its fully unabbreviated // form. EmitCode(bitc::UNABBREV_RECORD); EmitVBR(Code, 6); EmitVBR(static_cast<uint32_t>(Vals.size()), 6); for (unsigned i = 0, e = static_cast<unsigned>(Vals.size()); i != e; ++i) EmitVBR64(Vals[i], 6); return; } // Insert the code into Vals to treat it uniformly. Vals.insert(Vals.begin(), Code); EmitRecordWithAbbrev(Abbrev, Vals); } /// EmitRecordWithAbbrev - Emit a record with the specified abbreviation. /// Unlike EmitRecord, the code for the record should be included in Vals as /// the first entry. template<typename uintty> void EmitRecordWithAbbrev(unsigned Abbrev, SmallVectorImpl<uintty> &Vals) { EmitRecordWithAbbrevImpl(Abbrev, Vals, StringRef()); } /// EmitRecordWithBlob - Emit the specified record to the stream, using an /// abbrev that includes a blob at the end. The blob data to emit is /// specified by the pointer and length specified at the end. In contrast to /// EmitRecord, this routine expects that the first entry in Vals is the code /// of the record. template<typename uintty> void EmitRecordWithBlob(unsigned Abbrev, SmallVectorImpl<uintty> &Vals, StringRef Blob) { EmitRecordWithAbbrevImpl(Abbrev, Vals, Blob); } template<typename uintty> void EmitRecordWithBlob(unsigned Abbrev, SmallVectorImpl<uintty> &Vals, const char *BlobData, unsigned BlobLen) { return EmitRecordWithAbbrevImpl(Abbrev, Vals, StringRef(BlobData, BlobLen)); } /// EmitRecordWithArray - Just like EmitRecordWithBlob, works with records /// that end with an array. template<typename uintty> void EmitRecordWithArray(unsigned Abbrev, SmallVectorImpl<uintty> &Vals, StringRef Array) { EmitRecordWithAbbrevImpl(Abbrev, Vals, Array); } template<typename uintty> void EmitRecordWithArray(unsigned Abbrev, SmallVectorImpl<uintty> &Vals, const char *ArrayData, unsigned ArrayLen) { return EmitRecordWithAbbrevImpl(Abbrev, Vals, StringRef(ArrayData, ArrayLen)); } //===--------------------------------------------------------------------===// // Abbrev Emission //===--------------------------------------------------------------------===// private: // Emit the abbreviation as a DEFINE_ABBREV record. void EncodeAbbrev(BitCodeAbbrev *Abbv) { EmitCode(bitc::DEFINE_ABBREV); EmitVBR(Abbv->getNumOperandInfos(), 5); for (unsigned i = 0, e = static_cast<unsigned>(Abbv->getNumOperandInfos()); i != e; ++i) { const BitCodeAbbrevOp &Op = Abbv->getOperandInfo(i); Emit(Op.isLiteral(), 1); if (Op.isLiteral()) { EmitVBR64(Op.getLiteralValue(), 8); } else { Emit(Op.getEncoding(), 3); if (Op.hasEncodingData()) EmitVBR64(Op.getEncodingData(), 5); } } } public: /// EmitAbbrev - This emits an abbreviation to the stream. Note that this /// method takes ownership of the specified abbrev. unsigned EmitAbbrev(BitCodeAbbrev *Abbv) { // Emit the abbreviation as a record. EncodeAbbrev(Abbv); CurAbbrevs.push_back(Abbv); return static_cast<unsigned>(CurAbbrevs.size())-1 + bitc::FIRST_APPLICATION_ABBREV; } //===--------------------------------------------------------------------===// // BlockInfo Block Emission //===--------------------------------------------------------------------===// /// EnterBlockInfoBlock - Start emitting the BLOCKINFO_BLOCK. void EnterBlockInfoBlock(unsigned CodeWidth) { EnterSubblock(bitc::BLOCKINFO_BLOCK_ID, CodeWidth); BlockInfoCurBID = -1U; } private: /// SwitchToBlockID - If we aren't already talking about the specified block /// ID, emit a BLOCKINFO_CODE_SETBID record. void SwitchToBlockID(unsigned BlockID) { if (BlockInfoCurBID == BlockID) return; SmallVector<unsigned, 2> V; V.push_back(BlockID); EmitRecord(bitc::BLOCKINFO_CODE_SETBID, V); BlockInfoCurBID = BlockID; } BlockInfo &getOrCreateBlockInfo(unsigned BlockID) { if (BlockInfo *BI = getBlockInfo(BlockID)) return *BI; // Otherwise, add a new record. BlockInfoRecords.push_back(BlockInfo()); BlockInfoRecords.back().BlockID = BlockID; return BlockInfoRecords.back(); } public: /// EmitBlockInfoAbbrev - Emit a DEFINE_ABBREV record for the specified /// BlockID. unsigned EmitBlockInfoAbbrev(unsigned BlockID, BitCodeAbbrev *Abbv) { SwitchToBlockID(BlockID); EncodeAbbrev(Abbv); // Add the abbrev to the specified block record. BlockInfo &Info = getOrCreateBlockInfo(BlockID); Info.Abbrevs.push_back(Abbv); return Info.Abbrevs.size()-1+bitc::FIRST_APPLICATION_ABBREV; } }; } // End llvm namespace #endif