//===- llvm/ADT/PostOrderIterator.h - PostOrder iterator --------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file builds on the ADT/GraphTraits.h file to build a generic graph // post order iterator. This should work over any graph type that has a // GraphTraits specialization. // //===----------------------------------------------------------------------===// #ifndef LLVM_ADT_POSTORDERITERATOR_H #define LLVM_ADT_POSTORDERITERATOR_H #include "llvm/ADT/GraphTraits.h" #include "llvm/ADT/SmallPtrSet.h" #include <set> #include <vector> namespace llvm { template<class SetType, bool External> // Non-external set class po_iterator_storage { public: SetType Visited; }; /// DFSetTraits - Allow the SetType used to record depth-first search results to /// optionally record node postorder. template<class SetType> struct DFSetTraits { static void finishPostorder( typename SetType::iterator::value_type, SetType &) {} }; template<class SetType> class po_iterator_storage<SetType, true> { public: po_iterator_storage(SetType &VSet) : Visited(VSet) {} po_iterator_storage(const po_iterator_storage &S) : Visited(S.Visited) {} SetType &Visited; }; template<class GraphT, class SetType = llvm::SmallPtrSet<typename GraphTraits<GraphT>::NodeType*, 8>, bool ExtStorage = false, class GT = GraphTraits<GraphT> > class po_iterator : public std::iterator<std::forward_iterator_tag, typename GT::NodeType, ptrdiff_t>, public po_iterator_storage<SetType, ExtStorage> { typedef std::iterator<std::forward_iterator_tag, typename GT::NodeType, ptrdiff_t> super; typedef typename GT::NodeType NodeType; typedef typename GT::ChildIteratorType ChildItTy; // VisitStack - Used to maintain the ordering. Top = current block // First element is basic block pointer, second is the 'next child' to visit std::vector<std::pair<NodeType *, ChildItTy> > VisitStack; void traverseChild() { while (VisitStack.back().second != GT::child_end(VisitStack.back().first)) { NodeType *BB = *VisitStack.back().second++; if (this->Visited.insert(BB)) { // If the block is not visited... VisitStack.push_back(std::make_pair(BB, GT::child_begin(BB))); } } } inline po_iterator(NodeType *BB) { this->Visited.insert(BB); VisitStack.push_back(std::make_pair(BB, GT::child_begin(BB))); traverseChild(); } inline po_iterator() {} // End is when stack is empty. inline po_iterator(NodeType *BB, SetType &S) : po_iterator_storage<SetType, ExtStorage>(S) { if (this->Visited.insert(BB)) { VisitStack.push_back(std::make_pair(BB, GT::child_begin(BB))); traverseChild(); } } inline po_iterator(SetType &S) : po_iterator_storage<SetType, ExtStorage>(S) { } // End is when stack is empty. public: typedef typename super::pointer pointer; typedef po_iterator<GraphT, SetType, ExtStorage, GT> _Self; // Provide static "constructors"... static inline _Self begin(GraphT G) { return _Self(GT::getEntryNode(G)); } static inline _Self end (GraphT G) { return _Self(); } static inline _Self begin(GraphT G, SetType &S) { return _Self(GT::getEntryNode(G), S); } static inline _Self end (GraphT G, SetType &S) { return _Self(S); } inline bool operator==(const _Self& x) const { return VisitStack == x.VisitStack; } inline bool operator!=(const _Self& x) const { return !operator==(x); } inline pointer operator*() const { return VisitStack.back().first; } // This is a nonstandard operator-> that dereferences the pointer an extra // time... so that you can actually call methods ON the BasicBlock, because // the contained type is a pointer. This allows BBIt->getTerminator() f.e. // inline NodeType *operator->() const { return operator*(); } inline _Self& operator++() { // Preincrement DFSetTraits<SetType>::finishPostorder(VisitStack.back().first, this->Visited); VisitStack.pop_back(); if (!VisitStack.empty()) traverseChild(); return *this; } inline _Self operator++(int) { // Postincrement _Self tmp = *this; ++*this; return tmp; } }; // Provide global constructors that automatically figure out correct types... // template <class T> po_iterator<T> po_begin(T G) { return po_iterator<T>::begin(G); } template <class T> po_iterator<T> po_end (T G) { return po_iterator<T>::end(G); } // Provide global definitions of external postorder iterators... template<class T, class SetType=std::set<typename GraphTraits<T>::NodeType*> > struct po_ext_iterator : public po_iterator<T, SetType, true> { po_ext_iterator(const po_iterator<T, SetType, true> &V) : po_iterator<T, SetType, true>(V) {} }; template<class T, class SetType> po_ext_iterator<T, SetType> po_ext_begin(T G, SetType &S) { return po_ext_iterator<T, SetType>::begin(G, S); } template<class T, class SetType> po_ext_iterator<T, SetType> po_ext_end(T G, SetType &S) { return po_ext_iterator<T, SetType>::end(G, S); } // Provide global definitions of inverse post order iterators... template <class T, class SetType = std::set<typename GraphTraits<T>::NodeType*>, bool External = false> struct ipo_iterator : public po_iterator<Inverse<T>, SetType, External > { ipo_iterator(const po_iterator<Inverse<T>, SetType, External> &V) : po_iterator<Inverse<T>, SetType, External> (V) {} }; template <class T> ipo_iterator<T> ipo_begin(T G, bool Reverse = false) { return ipo_iterator<T>::begin(G, Reverse); } template <class T> ipo_iterator<T> ipo_end(T G){ return ipo_iterator<T>::end(G); } //Provide global definitions of external inverse postorder iterators... template <class T, class SetType = std::set<typename GraphTraits<T>::NodeType*> > struct ipo_ext_iterator : public ipo_iterator<T, SetType, true> { ipo_ext_iterator(const ipo_iterator<T, SetType, true> &V) : ipo_iterator<T, SetType, true>(&V) {} ipo_ext_iterator(const po_iterator<Inverse<T>, SetType, true> &V) : ipo_iterator<T, SetType, true>(&V) {} }; template <class T, class SetType> ipo_ext_iterator<T, SetType> ipo_ext_begin(T G, SetType &S) { return ipo_ext_iterator<T, SetType>::begin(G, S); } template <class T, class SetType> ipo_ext_iterator<T, SetType> ipo_ext_end(T G, SetType &S) { return ipo_ext_iterator<T, SetType>::end(G, S); } //===--------------------------------------------------------------------===// // Reverse Post Order CFG iterator code //===--------------------------------------------------------------------===// // // This is used to visit basic blocks in a method in reverse post order. This // class is awkward to use because I don't know a good incremental algorithm to // computer RPO from a graph. Because of this, the construction of the // ReversePostOrderTraversal object is expensive (it must walk the entire graph // with a postorder iterator to build the data structures). The moral of this // story is: Don't create more ReversePostOrderTraversal classes than necessary. // // This class should be used like this: // { // ReversePostOrderTraversal<Function*> RPOT(FuncPtr); // Expensive to create // for (rpo_iterator I = RPOT.begin(); I != RPOT.end(); ++I) { // ... // } // for (rpo_iterator I = RPOT.begin(); I != RPOT.end(); ++I) { // ... // } // } // template<class GraphT, class GT = GraphTraits<GraphT> > class ReversePostOrderTraversal { typedef typename GT::NodeType NodeType; std::vector<NodeType*> Blocks; // Block list in normal PO order inline void Initialize(NodeType *BB) { copy(po_begin(BB), po_end(BB), back_inserter(Blocks)); } public: typedef typename std::vector<NodeType*>::reverse_iterator rpo_iterator; inline ReversePostOrderTraversal(GraphT G) { Initialize(GT::getEntryNode(G)); } // Because we want a reverse post order, use reverse iterators from the vector inline rpo_iterator begin() { return Blocks.rbegin(); } inline rpo_iterator end() { return Blocks.rend(); } }; } // End llvm namespace #endif