/*
 * Copyright 2012 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

#ifndef SkTwoPointConicalGradient_DEFINED
#define SkTwoPointConicalGradient_DEFINED

#include "SkColorSpaceXformer.h"
#include "SkGradientShaderPriv.h"

class SkTwoPointConicalGradient final : public SkGradientShaderBase {
public:
    // See https://skia.org/dev/design/conical for what focal data means and how our shader works.
    // We make it public so the GPU shader can also use it.
    struct FocalData {
        SkScalar    fR1;        // r1 after mapping focal point to (0, 0)
        SkScalar    fFocalX;    // f
        bool        fIsSwapped; // whether we swapped r0, r1

        // The input r0, r1 are the radii when we map centers to {(0, 0), (1, 0)}.
        // We'll post concat matrix with our transformation matrix that maps focal point to (0, 0).
        void set(SkScalar r0, SkScalar r1, SkMatrix& matrix);

        // Whether the focal point (0, 0) is on the end circle with center (1, 0) and radius r1. If
        // this is true, it's as if an aircraft is flying at Mach 1 and all circles (soundwaves)
        // will go through the focal point (aircraft). In our previous implementations, this was
        // known as the edge case where the inside circle touches the outside circle (on the focal
        // point). If we were to solve for t bruteforcely using a quadratic equation, this case
        // implies that the quadratic equation degenerates to a linear equation.
        bool isFocalOnCircle() const { return SkScalarNearlyZero(1 - fR1); }

        bool isSwapped() const { return fIsSwapped; }
        bool isWellBehaved() const { return !this->isFocalOnCircle() && fR1 > 1; }
        bool isNativelyFocal() const { return SkScalarNearlyZero(fFocalX); }
    };

    enum class Type {
        kRadial,
        kStrip,
        kFocal
    };

    static sk_sp<SkShader> Create(const SkPoint& start, SkScalar startRadius,
                                  const SkPoint& end, SkScalar endRadius,
                                  const Descriptor&);

    SkShader::GradientType asAGradient(GradientInfo* info) const  override;
#if SK_SUPPORT_GPU
    std::unique_ptr<GrFragmentProcessor> asFragmentProcessor(const GrFPArgs&) const override;
#endif
    bool isOpaque() const override;

    SkScalar getCenterX1() const { return SkPoint::Distance(fCenter1, fCenter2); }
    SkScalar getStartRadius() const { return fRadius1; }
    SkScalar getDiffRadius() const { return fRadius2 - fRadius1; }
    const SkPoint& getStartCenter() const { return fCenter1; }
    const SkPoint& getEndCenter() const { return fCenter2; }
    SkScalar getEndRadius() const { return fRadius2; }

    Type getType() const { return fType; }
    const SkMatrix& getGradientMatrix() const { return fPtsToUnit; }
    const FocalData& getFocalData() const { return fFocalData; }

    SK_TO_STRING_OVERRIDE()
    SK_DECLARE_PUBLIC_FLATTENABLE_DESERIALIZATION_PROCS(SkTwoPointConicalGradient)

protected:
    void flatten(SkWriteBuffer& buffer) const override;
    sk_sp<SkShader> onMakeColorSpace(SkColorSpaceXformer* xformer) const override;

    void appendGradientStages(SkArenaAlloc* alloc, SkRasterPipeline* tPipeline,
                              SkRasterPipeline* postPipeline) const override;

    bool onIsRasterPipelineOnly(const SkMatrix&) const override { return true; }

private:
    SkTwoPointConicalGradient(const SkPoint& c0, SkScalar r0,
                              const SkPoint& c1, SkScalar r1,
                              const Descriptor&, Type, const SkMatrix&, const FocalData&);

    SkPoint  fCenter1;
    SkPoint  fCenter2;
    SkScalar fRadius1;
    SkScalar fRadius2;
    Type     fType;

    FocalData fFocalData;

    friend class SkGradientShader;
    typedef SkGradientShaderBase INHERITED;
};

#endif