/* * Copyright 2015 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #ifndef SkBlitRow_opts_DEFINED #define SkBlitRow_opts_DEFINED #include "Sk4px.h" #include "SkColorData.h" #include "SkMSAN.h" #if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE2 #include "SkColor_opts_SSE2.h" #include <immintrin.h> #endif namespace SK_OPTS_NS { // Color32 uses the blend_256_round_alt algorithm from tests/BlendTest.cpp. // It's not quite perfect, but it's never wrong in the interesting edge cases, // and it's quite a bit faster than blend_perfect. // // blend_256_round_alt is our currently blessed algorithm. Please use it or an analogous one. static inline void blit_row_color32(SkPMColor* dst, const SkPMColor* src, int count, SkPMColor color) { unsigned invA = 255 - SkGetPackedA32(color); invA += invA >> 7; SkASSERT(invA < 256); // We've should have already handled alpha == 0 externally. Sk16h colorHighAndRound = Sk4px::DupPMColor(color).widenHi() + Sk16h(128); Sk16b invA_16x(invA); Sk4px::MapSrc(count, dst, src, [&](const Sk4px& src4) -> Sk4px { return (src4 * invA_16x).addNarrowHi(colorHighAndRound); }); } #if defined(SK_ARM_HAS_NEON) // Return a uint8x8_t value, r, computed as r[i] = SkMulDiv255Round(x[i], y[i]), where r[i], x[i], // y[i] are the i-th lanes of the corresponding NEON vectors. static inline uint8x8_t SkMulDiv255Round_neon8(uint8x8_t x, uint8x8_t y) { uint16x8_t prod = vmull_u8(x, y); return vraddhn_u16(prod, vrshrq_n_u16(prod, 8)); } // The implementations of SkPMSrcOver below perform alpha blending consistently with // SkMulDiv255Round. They compute the color components (numbers in the interval [0, 255]) as: // // result_i = src_i + rint(g(src_alpha, dst_i)) // // where g(x, y) = ((255.0 - x) * y) / 255.0 and rint rounds to the nearest integer. // In this variant of SkPMSrcOver each NEON register, dst.val[i], src.val[i], contains the value // of the same color component for 8 consecutive pixels. The result of this function follows the // same convention. static inline uint8x8x4_t SkPMSrcOver_neon8(uint8x8x4_t dst, uint8x8x4_t src) { uint8x8_t nalphas = vmvn_u8(src.val[3]); uint8x8x4_t result; result.val[0] = vadd_u8(src.val[0], SkMulDiv255Round_neon8(nalphas, dst.val[0])); result.val[1] = vadd_u8(src.val[1], SkMulDiv255Round_neon8(nalphas, dst.val[1])); result.val[2] = vadd_u8(src.val[2], SkMulDiv255Round_neon8(nalphas, dst.val[2])); result.val[3] = vadd_u8(src.val[3], SkMulDiv255Round_neon8(nalphas, dst.val[3])); return result; } // In this variant of SkPMSrcOver dst and src contain the color components of two consecutive // pixels. The return value follows the same convention. static inline uint8x8_t SkPMSrcOver_neon2(uint8x8_t dst, uint8x8_t src) { const uint8x8_t alpha_indices = vcreate_u8(0x0707070703030303); uint8x8_t nalphas = vmvn_u8(vtbl1_u8(src, alpha_indices)); return vadd_u8(src, SkMulDiv255Round_neon8(nalphas, dst)); } #endif /*not static*/ inline void blit_row_s32a_opaque(SkPMColor* dst, const SkPMColor* src, int len, U8CPU alpha) { SkASSERT(alpha == 0xFF); sk_msan_assert_initialized(src, src+len); #if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE41 while (len >= 16) { // Load 16 source pixels. auto s0 = _mm_loadu_si128((const __m128i*)(src) + 0), s1 = _mm_loadu_si128((const __m128i*)(src) + 1), s2 = _mm_loadu_si128((const __m128i*)(src) + 2), s3 = _mm_loadu_si128((const __m128i*)(src) + 3); const auto alphaMask = _mm_set1_epi32(0xFF000000); auto ORed = _mm_or_si128(s3, _mm_or_si128(s2, _mm_or_si128(s1, s0))); if (_mm_testz_si128(ORed, alphaMask)) { // All 16 source pixels are transparent. Nothing to do. src += 16; dst += 16; len -= 16; continue; } auto d0 = (__m128i*)(dst) + 0, d1 = (__m128i*)(dst) + 1, d2 = (__m128i*)(dst) + 2, d3 = (__m128i*)(dst) + 3; auto ANDed = _mm_and_si128(s3, _mm_and_si128(s2, _mm_and_si128(s1, s0))); if (_mm_testc_si128(ANDed, alphaMask)) { // All 16 source pixels are opaque. SrcOver becomes Src. _mm_storeu_si128(d0, s0); _mm_storeu_si128(d1, s1); _mm_storeu_si128(d2, s2); _mm_storeu_si128(d3, s3); src += 16; dst += 16; len -= 16; continue; } // TODO: This math is wrong. // Do SrcOver. _mm_storeu_si128(d0, SkPMSrcOver_SSE2(s0, _mm_loadu_si128(d0))); _mm_storeu_si128(d1, SkPMSrcOver_SSE2(s1, _mm_loadu_si128(d1))); _mm_storeu_si128(d2, SkPMSrcOver_SSE2(s2, _mm_loadu_si128(d2))); _mm_storeu_si128(d3, SkPMSrcOver_SSE2(s3, _mm_loadu_si128(d3))); src += 16; dst += 16; len -= 16; } #elif SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE2 while (len >= 16) { // Load 16 source pixels. auto s0 = _mm_loadu_si128((const __m128i*)(src) + 0), s1 = _mm_loadu_si128((const __m128i*)(src) + 1), s2 = _mm_loadu_si128((const __m128i*)(src) + 2), s3 = _mm_loadu_si128((const __m128i*)(src) + 3); const auto alphaMask = _mm_set1_epi32(0xFF000000); auto ORed = _mm_or_si128(s3, _mm_or_si128(s2, _mm_or_si128(s1, s0))); if (0xffff == _mm_movemask_epi8(_mm_cmpeq_epi8(_mm_and_si128(ORed, alphaMask), _mm_setzero_si128()))) { // All 16 source pixels are transparent. Nothing to do. src += 16; dst += 16; len -= 16; continue; } auto d0 = (__m128i*)(dst) + 0, d1 = (__m128i*)(dst) + 1, d2 = (__m128i*)(dst) + 2, d3 = (__m128i*)(dst) + 3; auto ANDed = _mm_and_si128(s3, _mm_and_si128(s2, _mm_and_si128(s1, s0))); if (0xffff == _mm_movemask_epi8(_mm_cmpeq_epi8(_mm_and_si128(ANDed, alphaMask), alphaMask))) { // All 16 source pixels are opaque. SrcOver becomes Src. _mm_storeu_si128(d0, s0); _mm_storeu_si128(d1, s1); _mm_storeu_si128(d2, s2); _mm_storeu_si128(d3, s3); src += 16; dst += 16; len -= 16; continue; } // TODO: This math is wrong. // Do SrcOver. _mm_storeu_si128(d0, SkPMSrcOver_SSE2(s0, _mm_loadu_si128(d0))); _mm_storeu_si128(d1, SkPMSrcOver_SSE2(s1, _mm_loadu_si128(d1))); _mm_storeu_si128(d2, SkPMSrcOver_SSE2(s2, _mm_loadu_si128(d2))); _mm_storeu_si128(d3, SkPMSrcOver_SSE2(s3, _mm_loadu_si128(d3))); src += 16; dst += 16; len -= 16; } #elif defined(SK_ARM_HAS_NEON) // Do 8-pixels at a time. A 16-pixels at a time version of this code was also tested, but it // underperformed on some of the platforms under test for inputs with frequent transitions of // alpha (corresponding to changes of the conditions [~]alpha_u64 == 0 below). It may be worth // revisiting the situation in the future. while (len >= 8) { // Load 8 pixels in 4 NEON registers. src_col.val[i] will contain the same color component // for 8 consecutive pixels (e.g. src_col.val[3] will contain all alpha components of 8 // pixels). uint8x8x4_t src_col = vld4_u8(reinterpret_cast<const uint8_t*>(src)); src += 8; len -= 8; // We now detect 2 special cases: the first occurs when all alphas are zero (the 8 pixels // are all transparent), the second when all alphas are fully set (they are all opaque). uint8x8_t alphas = src_col.val[3]; uint64_t alphas_u64 = vget_lane_u64(vreinterpret_u64_u8(alphas), 0); if (alphas_u64 == 0) { // All pixels transparent. dst += 8; continue; } if (~alphas_u64 == 0) { // All pixels opaque. vst4_u8(reinterpret_cast<uint8_t*>(dst), src_col); dst += 8; continue; } uint8x8x4_t dst_col = vld4_u8(reinterpret_cast<uint8_t*>(dst)); vst4_u8(reinterpret_cast<uint8_t*>(dst), SkPMSrcOver_neon8(dst_col, src_col)); dst += 8; } // Deal with leftover pixels. for (; len >= 2; len -= 2, src += 2, dst += 2) { uint8x8_t src2 = vld1_u8(reinterpret_cast<const uint8_t*>(src)); uint8x8_t dst2 = vld1_u8(reinterpret_cast<const uint8_t*>(dst)); vst1_u8(reinterpret_cast<uint8_t*>(dst), SkPMSrcOver_neon2(dst2, src2)); } if (len != 0) { uint8x8_t result = SkPMSrcOver_neon2(vcreate_u8(*dst), vcreate_u8(*src)); vst1_lane_u32(dst, vreinterpret_u32_u8(result), 0); } return; #endif while (len-- > 0) { // This 0xFF000000 is not semantically necessary, but for compatibility // with chromium:611002 we need to keep it until we figure out where // the non-premultiplied src values (like 0x00FFFFFF) are coming from. // TODO(mtklein): sort this out and assert *src is premul here. if (*src & 0xFF000000) { *dst = (*src >= 0xFF000000) ? *src : SkPMSrcOver(*src, *dst); } src++; dst++; } } } // SK_OPTS_NS #endif//SkBlitRow_opts_DEFINED