/* * Copyright 2015 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "GrVkGpu.h" #include "GrBackendSemaphore.h" #include "GrBackendSurface.h" #include "GrContextOptions.h" #include "GrGeometryProcessor.h" #include "GrGpuResourceCacheAccess.h" #include "GrMesh.h" #include "GrPipeline.h" #include "GrRenderTargetPriv.h" #include "GrTexturePriv.h" #include "GrVkCommandBuffer.h" #include "GrVkGpuCommandBuffer.h" #include "GrVkImage.h" #include "GrVkIndexBuffer.h" #include "GrVkMemory.h" #include "GrVkPipeline.h" #include "GrVkPipelineState.h" #include "GrVkRenderPass.h" #include "GrVkResourceProvider.h" #include "GrVkSemaphore.h" #include "GrVkTexelBuffer.h" #include "GrVkTexture.h" #include "GrVkTextureRenderTarget.h" #include "GrVkTransferBuffer.h" #include "GrVkVertexBuffer.h" #include "SkConvertPixels.h" #include "SkMipMap.h" #include "vk/GrVkInterface.h" #include "vk/GrVkTypes.h" #include "SkSLCompiler.h" #if !defined(SK_BUILD_FOR_WIN) #include <unistd.h> #endif // !defined(SK_BUILD_FOR_WIN) #define VK_CALL(X) GR_VK_CALL(this->vkInterface(), X) #define VK_CALL_RET(RET, X) GR_VK_CALL_RET(this->vkInterface(), RET, X) #define VK_CALL_ERRCHECK(X) GR_VK_CALL_ERRCHECK(this->vkInterface(), X) #ifdef SK_ENABLE_VK_LAYERS VKAPI_ATTR VkBool32 VKAPI_CALL DebugReportCallback( VkDebugReportFlagsEXT flags, VkDebugReportObjectTypeEXT objectType, uint64_t object, size_t location, int32_t messageCode, const char* pLayerPrefix, const char* pMessage, void* pUserData) { if (flags & VK_DEBUG_REPORT_ERROR_BIT_EXT) { SkDebugf("Vulkan error [%s]: code: %d: %s\n", pLayerPrefix, messageCode, pMessage); return VK_TRUE; // skip further layers } else if (flags & VK_DEBUG_REPORT_WARNING_BIT_EXT) { SkDebugf("Vulkan warning [%s]: code: %d: %s\n", pLayerPrefix, messageCode, pMessage); } else if (flags & VK_DEBUG_REPORT_PERFORMANCE_WARNING_BIT_EXT) { SkDebugf("Vulkan perf warning [%s]: code: %d: %s\n", pLayerPrefix, messageCode, pMessage); } else { SkDebugf("Vulkan info/debug [%s]: code: %d: %s\n", pLayerPrefix, messageCode, pMessage); } return VK_FALSE; } #endif sk_sp<GrGpu> GrVkGpu::Make(GrBackendContext backendContext, const GrContextOptions& options, GrContext* context) { const auto* backend = reinterpret_cast<const GrVkBackendContext*>(backendContext); return Make(sk_ref_sp(backend), options, context); } sk_sp<GrGpu> GrVkGpu::Make(sk_sp<const GrVkBackendContext> backendContext, const GrContextOptions& options, GrContext* context) { if (!backendContext) { return nullptr; } if (!backendContext->fInterface->validate(backendContext->fExtensions)) { return nullptr; } return sk_sp<GrGpu>(new GrVkGpu(context, options, std::move(backendContext))); } //////////////////////////////////////////////////////////////////////////////// GrVkGpu::GrVkGpu(GrContext* context, const GrContextOptions& options, sk_sp<const GrVkBackendContext> backendCtx) : INHERITED(context) , fBackendContext(std::move(backendCtx)) , fDevice(fBackendContext->fDevice) , fQueue(fBackendContext->fQueue) , fResourceProvider(this) , fDisconnected(false) { #ifdef SK_ENABLE_VK_LAYERS fCallback = VK_NULL_HANDLE; if (fBackendContext->fExtensions & kEXT_debug_report_GrVkExtensionFlag) { // Setup callback creation information VkDebugReportCallbackCreateInfoEXT callbackCreateInfo; callbackCreateInfo.sType = VK_STRUCTURE_TYPE_DEBUG_REPORT_CREATE_INFO_EXT; callbackCreateInfo.pNext = nullptr; callbackCreateInfo.flags = VK_DEBUG_REPORT_ERROR_BIT_EXT | VK_DEBUG_REPORT_WARNING_BIT_EXT | //VK_DEBUG_REPORT_INFORMATION_BIT_EXT | //VK_DEBUG_REPORT_DEBUG_BIT_EXT | VK_DEBUG_REPORT_PERFORMANCE_WARNING_BIT_EXT; callbackCreateInfo.pfnCallback = &DebugReportCallback; callbackCreateInfo.pUserData = nullptr; // Register the callback GR_VK_CALL_ERRCHECK(this->vkInterface(), CreateDebugReportCallbackEXT(fBackendContext->fInstance, &callbackCreateInfo, nullptr, &fCallback)); } #endif fCompiler = new SkSL::Compiler(); fVkCaps.reset(new GrVkCaps(options, this->vkInterface(), fBackendContext->fPhysicalDevice, fBackendContext->fFeatures, fBackendContext->fExtensions)); fCaps.reset(SkRef(fVkCaps.get())); VK_CALL(GetPhysicalDeviceProperties(fBackendContext->fPhysicalDevice, &fPhysDevProps)); VK_CALL(GetPhysicalDeviceMemoryProperties(fBackendContext->fPhysicalDevice, &fPhysDevMemProps)); const VkCommandPoolCreateInfo cmdPoolInfo = { VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO, // sType nullptr, // pNext VK_COMMAND_POOL_CREATE_TRANSIENT_BIT | VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT, // CmdPoolCreateFlags fBackendContext->fGraphicsQueueIndex, // queueFamilyIndex }; GR_VK_CALL_ERRCHECK(this->vkInterface(), CreateCommandPool(fDevice, &cmdPoolInfo, nullptr, &fCmdPool)); // must call this after creating the CommandPool fResourceProvider.init(); fCurrentCmdBuffer = fResourceProvider.findOrCreatePrimaryCommandBuffer(); SkASSERT(fCurrentCmdBuffer); fCurrentCmdBuffer->begin(this); // set up our heaps fHeaps[kLinearImage_Heap].reset(new GrVkHeap(this, GrVkHeap::kSubAlloc_Strategy, 16*1024*1024)); fHeaps[kOptimalImage_Heap].reset(new GrVkHeap(this, GrVkHeap::kSubAlloc_Strategy, 64*1024*1024)); fHeaps[kSmallOptimalImage_Heap].reset(new GrVkHeap(this, GrVkHeap::kSubAlloc_Strategy, 2*1024*1024)); fHeaps[kVertexBuffer_Heap].reset(new GrVkHeap(this, GrVkHeap::kSingleAlloc_Strategy, 0)); fHeaps[kIndexBuffer_Heap].reset(new GrVkHeap(this, GrVkHeap::kSingleAlloc_Strategy, 0)); fHeaps[kUniformBuffer_Heap].reset(new GrVkHeap(this, GrVkHeap::kSubAlloc_Strategy, 256*1024)); fHeaps[kTexelBuffer_Heap].reset(new GrVkHeap(this, GrVkHeap::kSingleAlloc_Strategy, 0)); fHeaps[kCopyReadBuffer_Heap].reset(new GrVkHeap(this, GrVkHeap::kSingleAlloc_Strategy, 0)); fHeaps[kCopyWriteBuffer_Heap].reset(new GrVkHeap(this, GrVkHeap::kSubAlloc_Strategy, 16*1024*1024)); } void GrVkGpu::destroyResources() { if (fCurrentCmdBuffer) { fCurrentCmdBuffer->end(this); fCurrentCmdBuffer->unref(this); } // wait for all commands to finish fResourceProvider.checkCommandBuffers(); VkResult res = VK_CALL(QueueWaitIdle(fQueue)); // On windows, sometimes calls to QueueWaitIdle return before actually signalling the fences // on the command buffers even though they have completed. This causes an assert to fire when // destroying the command buffers. Currently this ony seems to happen on windows, so we add a // sleep to make sure the fence signals. #ifdef SK_DEBUG if (this->vkCaps().mustSleepOnTearDown()) { #if defined(SK_BUILD_FOR_WIN) Sleep(10); // In milliseconds #else sleep(1); // In seconds #endif } #endif #ifdef SK_DEBUG SkASSERT(VK_SUCCESS == res || VK_ERROR_DEVICE_LOST == res); #endif for (int i = 0; i < fSemaphoresToWaitOn.count(); ++i) { fSemaphoresToWaitOn[i]->unref(this); } fSemaphoresToWaitOn.reset(); for (int i = 0; i < fSemaphoresToSignal.count(); ++i) { fSemaphoresToSignal[i]->unref(this); } fSemaphoresToSignal.reset(); fCopyManager.destroyResources(this); // must call this just before we destroy the command pool and VkDevice fResourceProvider.destroyResources(VK_ERROR_DEVICE_LOST == res); if (fCmdPool != VK_NULL_HANDLE) { VK_CALL(DestroyCommandPool(fDevice, fCmdPool, nullptr)); } #ifdef SK_ENABLE_VK_LAYERS if (fCallback) { VK_CALL(DestroyDebugReportCallbackEXT(fBackendContext->fInstance, fCallback, nullptr)); } #endif } GrVkGpu::~GrVkGpu() { if (!fDisconnected) { this->destroyResources(); } delete fCompiler; } void GrVkGpu::disconnect(DisconnectType type) { INHERITED::disconnect(type); if (!fDisconnected) { if (DisconnectType::kCleanup == type) { this->destroyResources(); } else { fCurrentCmdBuffer->unrefAndAbandon(); for (int i = 0; i < fSemaphoresToWaitOn.count(); ++i) { fSemaphoresToWaitOn[i]->unrefAndAbandon(); } for (int i = 0; i < fSemaphoresToSignal.count(); ++i) { fSemaphoresToSignal[i]->unrefAndAbandon(); } fCopyManager.abandonResources(); // must call this just before we destroy the command pool and VkDevice fResourceProvider.abandonResources(); } fSemaphoresToWaitOn.reset(); fSemaphoresToSignal.reset(); #ifdef SK_ENABLE_VK_LAYERS fCallback = VK_NULL_HANDLE; #endif fCurrentCmdBuffer = nullptr; fCmdPool = VK_NULL_HANDLE; fDisconnected = true; } } /////////////////////////////////////////////////////////////////////////////// GrGpuRTCommandBuffer* GrVkGpu::createCommandBuffer( GrRenderTarget* rt, GrSurfaceOrigin origin, const GrGpuRTCommandBuffer::LoadAndStoreInfo& colorInfo, const GrGpuRTCommandBuffer::StencilLoadAndStoreInfo& stencilInfo) { return new GrVkGpuRTCommandBuffer(this, rt, origin, colorInfo, stencilInfo); } GrGpuTextureCommandBuffer* GrVkGpu::createCommandBuffer(GrTexture* texture, GrSurfaceOrigin origin) { return new GrVkGpuTextureCommandBuffer(this, texture, origin); } void GrVkGpu::submitCommandBuffer(SyncQueue sync) { SkASSERT(fCurrentCmdBuffer); fCurrentCmdBuffer->end(this); fCurrentCmdBuffer->submitToQueue(this, fQueue, sync, fSemaphoresToSignal, fSemaphoresToWaitOn); for (int i = 0; i < fSemaphoresToWaitOn.count(); ++i) { fSemaphoresToWaitOn[i]->unref(this); } fSemaphoresToWaitOn.reset(); for (int i = 0; i < fSemaphoresToSignal.count(); ++i) { fSemaphoresToSignal[i]->unref(this); } fSemaphoresToSignal.reset(); fResourceProvider.checkCommandBuffers(); // Release old command buffer and create a new one fCurrentCmdBuffer->unref(this); fCurrentCmdBuffer = fResourceProvider.findOrCreatePrimaryCommandBuffer(); SkASSERT(fCurrentCmdBuffer); fCurrentCmdBuffer->begin(this); } /////////////////////////////////////////////////////////////////////////////// GrBuffer* GrVkGpu::onCreateBuffer(size_t size, GrBufferType type, GrAccessPattern accessPattern, const void* data) { GrBuffer* buff; switch (type) { case kVertex_GrBufferType: SkASSERT(kDynamic_GrAccessPattern == accessPattern || kStatic_GrAccessPattern == accessPattern); buff = GrVkVertexBuffer::Create(this, size, kDynamic_GrAccessPattern == accessPattern); break; case kIndex_GrBufferType: SkASSERT(kDynamic_GrAccessPattern == accessPattern || kStatic_GrAccessPattern == accessPattern); buff = GrVkIndexBuffer::Create(this, size, kDynamic_GrAccessPattern == accessPattern); break; case kXferCpuToGpu_GrBufferType: SkASSERT(kDynamic_GrAccessPattern == accessPattern || kStream_GrAccessPattern == accessPattern); buff = GrVkTransferBuffer::Create(this, size, GrVkBuffer::kCopyRead_Type); break; case kXferGpuToCpu_GrBufferType: SkASSERT(kDynamic_GrAccessPattern == accessPattern || kStream_GrAccessPattern == accessPattern); buff = GrVkTransferBuffer::Create(this, size, GrVkBuffer::kCopyWrite_Type); break; case kTexel_GrBufferType: SkASSERT(kDynamic_GrAccessPattern == accessPattern || kStatic_GrAccessPattern == accessPattern); buff = GrVkTexelBuffer::Create(this, size, kDynamic_GrAccessPattern == accessPattern); break; case kDrawIndirect_GrBufferType: SK_ABORT("DrawIndirect Buffers not supported in vulkan backend."); return nullptr; default: SK_ABORT("Unknown buffer type."); return nullptr; } if (data && buff) { buff->updateData(data, size); } return buff; } //////////////////////////////////////////////////////////////////////////////// bool GrVkGpu::onGetWritePixelsInfo(GrSurface* dstSurface, GrSurfaceOrigin dstOrigin, int width, int height, GrPixelConfig srcConfig, DrawPreference* drawPreference, WritePixelTempDrawInfo* tempDrawInfo) { GrRenderTarget* renderTarget = dstSurface->asRenderTarget(); // Start off assuming no swizzling tempDrawInfo->fSwizzle = GrSwizzle::RGBA(); tempDrawInfo->fWriteConfig = srcConfig; // These settings we will always want if a temp draw is performed. Initially set the config // to srcConfig, though that may be modified if we decide to do a R/B swap tempDrawInfo->fTempSurfaceDesc.fFlags = kNone_GrSurfaceFlags; tempDrawInfo->fTempSurfaceDesc.fConfig = srcConfig; tempDrawInfo->fTempSurfaceDesc.fWidth = width; tempDrawInfo->fTempSurfaceDesc.fHeight = height; tempDrawInfo->fTempSurfaceDesc.fSampleCnt = 1; tempDrawInfo->fTempSurfaceDesc.fOrigin = kTopLeft_GrSurfaceOrigin; if (dstSurface->config() == srcConfig) { // We only support writing pixels to textures. Forcing a draw lets us write to pure RTs. if (!dstSurface->asTexture()) { ElevateDrawPreference(drawPreference, kRequireDraw_DrawPreference); } // If the dst is MSAA, we have to draw, or we'll just be writing to the resolve target. if (renderTarget && renderTarget->numColorSamples() > 1) { ElevateDrawPreference(drawPreference, kRequireDraw_DrawPreference); } return true; } // Any config change requires a draw ElevateDrawPreference(drawPreference, kRequireDraw_DrawPreference); bool configsAreRBSwaps = GrPixelConfigSwapRAndB(srcConfig) == dstSurface->config(); if (!this->vkCaps().isConfigTexturable(srcConfig) && configsAreRBSwaps) { tempDrawInfo->fTempSurfaceDesc.fConfig = dstSurface->config(); tempDrawInfo->fSwizzle = GrSwizzle::BGRA(); tempDrawInfo->fWriteConfig = dstSurface->config(); } return true; } bool GrVkGpu::onWritePixels(GrSurface* surface, GrSurfaceOrigin origin, int left, int top, int width, int height, GrPixelConfig config, const GrMipLevel texels[], int mipLevelCount) { GrVkTexture* vkTex = static_cast<GrVkTexture*>(surface->asTexture()); if (!vkTex) { return false; } // Make sure we have at least the base level if (!mipLevelCount || !texels[0].fPixels) { return false; } // We assume Vulkan doesn't do sRGB <-> linear conversions when reading and writing pixels. if (GrPixelConfigIsSRGB(surface->config()) != GrPixelConfigIsSRGB(config)) { return false; } bool success = false; bool linearTiling = vkTex->isLinearTiled(); if (linearTiling) { if (mipLevelCount > 1) { SkDebugf("Can't upload mipmap data to linear tiled texture"); return false; } if (VK_IMAGE_LAYOUT_PREINITIALIZED != vkTex->currentLayout()) { // Need to change the layout to general in order to perform a host write vkTex->setImageLayout(this, VK_IMAGE_LAYOUT_GENERAL, VK_ACCESS_HOST_WRITE_BIT, VK_PIPELINE_STAGE_HOST_BIT, false); this->submitCommandBuffer(kForce_SyncQueue); } success = this->uploadTexDataLinear(vkTex, origin, left, top, width, height, config, texels[0].fPixels, texels[0].fRowBytes); } else { int currentMipLevels = vkTex->texturePriv().maxMipMapLevel() + 1; if (mipLevelCount > currentMipLevels) { if (!vkTex->reallocForMipmap(this, mipLevelCount)) { return false; } } success = this->uploadTexDataOptimal(vkTex, origin, left, top, width, height, config, texels, mipLevelCount); } return success; } bool GrVkGpu::onTransferPixels(GrTexture* texture, int left, int top, int width, int height, GrPixelConfig config, GrBuffer* transferBuffer, size_t bufferOffset, size_t rowBytes) { // Vulkan only supports 4-byte aligned offsets if (SkToBool(bufferOffset & 0x2)) { return false; } GrVkTexture* vkTex = static_cast<GrVkTexture*>(texture); if (!vkTex) { return false; } GrVkTransferBuffer* vkBuffer = static_cast<GrVkTransferBuffer*>(transferBuffer); if (!vkBuffer) { return false; } // We assume Vulkan doesn't do sRGB <-> linear conversions when reading and writing pixels. if (GrPixelConfigIsSRGB(texture->config()) != GrPixelConfigIsSRGB(config)) { return false; } SkDEBUGCODE( SkIRect subRect = SkIRect::MakeXYWH(left, top, width, height); SkIRect bounds = SkIRect::MakeWH(texture->width(), texture->height()); SkASSERT(bounds.contains(subRect)); ) size_t bpp = GrBytesPerPixel(config); if (rowBytes == 0) { rowBytes = bpp*width; } // Set up copy region VkBufferImageCopy region; memset(®ion, 0, sizeof(VkBufferImageCopy)); region.bufferOffset = bufferOffset; region.bufferRowLength = (uint32_t)(rowBytes/bpp); region.bufferImageHeight = 0; region.imageSubresource = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1 }; region.imageOffset = { left, top, 0 }; region.imageExtent = { (uint32_t)width, (uint32_t)height, 1 }; // Change layout of our target so it can be copied to vkTex->setImageLayout(this, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, VK_ACCESS_TRANSFER_WRITE_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, false); // Copy the buffer to the image fCurrentCmdBuffer->copyBufferToImage(this, vkBuffer, vkTex, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, ®ion); vkTex->texturePriv().markMipMapsDirty(); return true; } void GrVkGpu::resolveImage(GrSurface* dst, GrSurfaceOrigin dstOrigin, GrVkRenderTarget* src, GrSurfaceOrigin srcOrigin, const SkIRect& srcRect, const SkIPoint& dstPoint) { SkASSERT(dst); SkASSERT(src && src->numColorSamples() > 1 && src->msaaImage()); if (this->vkCaps().mustSubmitCommandsBeforeCopyOp()) { this->submitCommandBuffer(GrVkGpu::kSkip_SyncQueue); } // Flip rect if necessary SkIRect srcVkRect = srcRect; int32_t dstY = dstPoint.fY; if (kBottomLeft_GrSurfaceOrigin == srcOrigin) { SkASSERT(kBottomLeft_GrSurfaceOrigin == dstOrigin); srcVkRect.fTop = src->height() - srcRect.fBottom; srcVkRect.fBottom = src->height() - srcRect.fTop; dstY = dst->height() - dstPoint.fY - srcVkRect.height(); } VkImageResolve resolveInfo; resolveInfo.srcSubresource = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1 }; resolveInfo.srcOffset = { srcVkRect.fLeft, srcVkRect.fTop, 0 }; resolveInfo.dstSubresource = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1 }; resolveInfo.dstOffset = { dstPoint.fX, dstY, 0 }; resolveInfo.extent = { (uint32_t)srcVkRect.width(), (uint32_t)srcVkRect.height(), 1 }; GrVkImage* dstImage; GrRenderTarget* dstRT = dst->asRenderTarget(); if (dstRT) { GrVkRenderTarget* vkRT = static_cast<GrVkRenderTarget*>(dstRT); dstImage = vkRT; } else { SkASSERT(dst->asTexture()); dstImage = static_cast<GrVkTexture*>(dst->asTexture()); } dstImage->setImageLayout(this, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, VK_ACCESS_TRANSFER_WRITE_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, false); src->msaaImage()->setImageLayout(this, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, VK_ACCESS_TRANSFER_READ_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, false); fCurrentCmdBuffer->resolveImage(this, *src->msaaImage(), *dstImage, 1, &resolveInfo); } void GrVkGpu::internalResolveRenderTarget(GrRenderTarget* target, GrSurfaceOrigin origin, bool requiresSubmit) { if (target->needsResolve()) { SkASSERT(target->numColorSamples() > 1); GrVkRenderTarget* rt = static_cast<GrVkRenderTarget*>(target); SkASSERT(rt->msaaImage()); const SkIRect& srcRect = rt->getResolveRect(); this->resolveImage(target, origin, rt, origin, srcRect, SkIPoint::Make(srcRect.fLeft, srcRect.fTop)); rt->flagAsResolved(); if (requiresSubmit) { this->submitCommandBuffer(kSkip_SyncQueue); } } } bool GrVkGpu::uploadTexDataLinear(GrVkTexture* tex, GrSurfaceOrigin texOrigin, int left, int top, int width, int height, GrPixelConfig dataConfig, const void* data, size_t rowBytes) { SkASSERT(data); SkASSERT(tex->isLinearTiled()); SkDEBUGCODE( SkIRect subRect = SkIRect::MakeXYWH(left, top, width, height); SkIRect bounds = SkIRect::MakeWH(tex->width(), tex->height()); SkASSERT(bounds.contains(subRect)); ) size_t bpp = GrBytesPerPixel(dataConfig); size_t trimRowBytes = width * bpp; if (!rowBytes) { rowBytes = trimRowBytes; } SkASSERT(VK_IMAGE_LAYOUT_PREINITIALIZED == tex->currentLayout() || VK_IMAGE_LAYOUT_GENERAL == tex->currentLayout()); const VkImageSubresource subres = { VK_IMAGE_ASPECT_COLOR_BIT, 0, // mipLevel 0, // arraySlice }; VkSubresourceLayout layout; VkResult err; const GrVkInterface* interface = this->vkInterface(); GR_VK_CALL(interface, GetImageSubresourceLayout(fDevice, tex->image(), &subres, &layout)); int texTop = kBottomLeft_GrSurfaceOrigin == texOrigin ? tex->height() - top - height : top; const GrVkAlloc& alloc = tex->alloc(); VkDeviceSize offset = alloc.fOffset + texTop*layout.rowPitch + left*bpp; VkDeviceSize offsetDiff = 0; VkDeviceSize size = height*layout.rowPitch; // For Noncoherent buffers we want to make sure the range that we map, both offset and size, // are aligned to the nonCoherentAtomSize limit. We may have to move the initial offset back to // meet the alignment requirements. So we track how far we move back and then adjust the mapped // ptr back up so that this is opaque to the caller. if (SkToBool(alloc.fFlags & GrVkAlloc::kNoncoherent_Flag)) { VkDeviceSize alignment = this->physicalDeviceProperties().limits.nonCoherentAtomSize; offsetDiff = offset & (alignment - 1); offset = offset - offsetDiff; // Make size of the map aligned to nonCoherentAtomSize size = (size + alignment - 1) & ~(alignment - 1); } SkASSERT(offset >= alloc.fOffset); SkASSERT(size <= alloc.fOffset + alloc.fSize); void* mapPtr; err = GR_VK_CALL(interface, MapMemory(fDevice, alloc.fMemory, offset, size, 0, &mapPtr)); if (err) { return false; } mapPtr = reinterpret_cast<char*>(mapPtr) + offsetDiff; if (kBottomLeft_GrSurfaceOrigin == texOrigin) { // copy into buffer by rows const char* srcRow = reinterpret_cast<const char*>(data); char* dstRow = reinterpret_cast<char*>(mapPtr)+(height - 1)*layout.rowPitch; for (int y = 0; y < height; y++) { memcpy(dstRow, srcRow, trimRowBytes); srcRow += rowBytes; dstRow -= layout.rowPitch; } } else { SkRectMemcpy(mapPtr, static_cast<size_t>(layout.rowPitch), data, rowBytes, trimRowBytes, height); } GrVkMemory::FlushMappedAlloc(this, alloc, offset, size); GR_VK_CALL(interface, UnmapMemory(fDevice, alloc.fMemory)); return true; } bool GrVkGpu::uploadTexDataOptimal(GrVkTexture* tex, GrSurfaceOrigin texOrigin, int left, int top, int width, int height, GrPixelConfig dataConfig, const GrMipLevel texels[], int mipLevelCount) { SkASSERT(!tex->isLinearTiled()); // The assumption is either that we have no mipmaps, or that our rect is the entire texture SkASSERT(1 == mipLevelCount || (0 == left && 0 == top && width == tex->width() && height == tex->height())); // We assume that if the texture has mip levels, we either upload to all the levels or just the // first. SkASSERT(1 == mipLevelCount || mipLevelCount == (tex->texturePriv().maxMipMapLevel() + 1)); if (width == 0 || height == 0) { return false; } SkASSERT(this->caps()->isConfigTexturable(tex->config())); size_t bpp = GrBytesPerPixel(dataConfig); // texels is const. // But we may need to adjust the fPixels ptr based on the copyRect, or fRowBytes. // Because of this we need to make a non-const shallow copy of texels. SkAutoTMalloc<GrMipLevel> texelsShallowCopy; if (mipLevelCount) { texelsShallowCopy.reset(mipLevelCount); memcpy(texelsShallowCopy.get(), texels, mipLevelCount*sizeof(GrMipLevel)); } // Determine whether we need to flip when we copy into the buffer bool flipY = (kBottomLeft_GrSurfaceOrigin == texOrigin && mipLevelCount); SkTArray<size_t> individualMipOffsets(mipLevelCount); individualMipOffsets.push_back(0); size_t combinedBufferSize = width * bpp * height; int currentWidth = width; int currentHeight = height; if (mipLevelCount > 0 && !texelsShallowCopy[0].fPixels) { combinedBufferSize = 0; } // The alignment must be at least 4 bytes and a multiple of the bytes per pixel of the image // config. This works with the assumption that the bytes in pixel config is always a power of 2. SkASSERT((bpp & (bpp - 1)) == 0); const size_t alignmentMask = 0x3 | (bpp - 1); for (int currentMipLevel = 1; currentMipLevel < mipLevelCount; currentMipLevel++) { currentWidth = SkTMax(1, currentWidth/2); currentHeight = SkTMax(1, currentHeight/2); if (texelsShallowCopy[currentMipLevel].fPixels) { const size_t trimmedSize = currentWidth * bpp * currentHeight; const size_t alignmentDiff = combinedBufferSize & alignmentMask; if (alignmentDiff != 0) { combinedBufferSize += alignmentMask - alignmentDiff + 1; } individualMipOffsets.push_back(combinedBufferSize); combinedBufferSize += trimmedSize; } else { individualMipOffsets.push_back(0); } } if (0 == combinedBufferSize) { // We don't actually have any data to upload so just return success return true; } // allocate buffer to hold our mip data GrVkTransferBuffer* transferBuffer = GrVkTransferBuffer::Create(this, combinedBufferSize, GrVkBuffer::kCopyRead_Type); if(!transferBuffer) { return false; } char* buffer = (char*) transferBuffer->map(); SkTArray<VkBufferImageCopy> regions(mipLevelCount); currentWidth = width; currentHeight = height; int layerHeight = tex->height(); for (int currentMipLevel = 0; currentMipLevel < mipLevelCount; currentMipLevel++) { if (texelsShallowCopy[currentMipLevel].fPixels) { SkASSERT(1 == mipLevelCount || currentHeight == layerHeight); const size_t trimRowBytes = currentWidth * bpp; const size_t rowBytes = texelsShallowCopy[currentMipLevel].fRowBytes ? texelsShallowCopy[currentMipLevel].fRowBytes : trimRowBytes; // copy data into the buffer, skipping the trailing bytes char* dst = buffer + individualMipOffsets[currentMipLevel]; const char* src = (const char*)texelsShallowCopy[currentMipLevel].fPixels; if (flipY) { src += (currentHeight - 1) * rowBytes; for (int y = 0; y < currentHeight; y++) { memcpy(dst, src, trimRowBytes); src -= rowBytes; dst += trimRowBytes; } } else { SkRectMemcpy(dst, trimRowBytes, src, rowBytes, trimRowBytes, currentHeight); } VkBufferImageCopy& region = regions.push_back(); memset(®ion, 0, sizeof(VkBufferImageCopy)); region.bufferOffset = transferBuffer->offset() + individualMipOffsets[currentMipLevel]; region.bufferRowLength = currentWidth; region.bufferImageHeight = currentHeight; region.imageSubresource = { VK_IMAGE_ASPECT_COLOR_BIT, SkToU32(currentMipLevel), 0, 1 }; region.imageOffset = { left, flipY ? layerHeight - top - currentHeight : top, 0 }; region.imageExtent = { (uint32_t)currentWidth, (uint32_t)currentHeight, 1 }; } currentWidth = SkTMax(1, currentWidth/2); currentHeight = SkTMax(1, currentHeight/2); layerHeight = currentHeight; } // no need to flush non-coherent memory, unmap will do that for us transferBuffer->unmap(); // Change layout of our target so it can be copied to tex->setImageLayout(this, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, VK_ACCESS_TRANSFER_WRITE_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, false); // Copy the buffer to the image fCurrentCmdBuffer->copyBufferToImage(this, transferBuffer, tex, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, regions.count(), regions.begin()); transferBuffer->unref(); if (1 == mipLevelCount) { tex->texturePriv().markMipMapsDirty(); } return true; } //////////////////////////////////////////////////////////////////////////////// sk_sp<GrTexture> GrVkGpu::onCreateTexture(const GrSurfaceDesc& desc, SkBudgeted budgeted, const GrMipLevel texels[], int mipLevelCount) { bool renderTarget = SkToBool(desc.fFlags & kRenderTarget_GrSurfaceFlag); VkFormat pixelFormat; if (!GrPixelConfigToVkFormat(desc.fConfig, &pixelFormat)) { return nullptr; } if (!fVkCaps->isConfigTexturable(desc.fConfig)) { return nullptr; } if (renderTarget && !fVkCaps->isConfigRenderable(desc.fConfig, false)) { return nullptr; } VkImageUsageFlags usageFlags = VK_IMAGE_USAGE_SAMPLED_BIT; if (renderTarget) { usageFlags |= VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT; } // For now we will set the VK_IMAGE_USAGE_TRANSFER_DESTINATION_BIT and // VK_IMAGE_USAGE_TRANSFER_SOURCE_BIT on every texture since we do not know whether or not we // will be using this texture in some copy or not. Also this assumes, as is the current case, // that all render targets in vulkan are also textures. If we change this practice of setting // both bits, we must make sure to set the destination bit if we are uploading srcData to the // texture. usageFlags |= VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT; // This ImageDesc refers to the texture that will be read by the client. Thus even if msaa is // requested, this ImageDesc describes the resolved texture. Therefore we always have samples set // to 1. int mipLevels = !mipLevelCount ? 1 : mipLevelCount; GrVkImage::ImageDesc imageDesc; imageDesc.fImageType = VK_IMAGE_TYPE_2D; imageDesc.fFormat = pixelFormat; imageDesc.fWidth = desc.fWidth; imageDesc.fHeight = desc.fHeight; imageDesc.fLevels = mipLevels; imageDesc.fSamples = 1; imageDesc.fImageTiling = VK_IMAGE_TILING_OPTIMAL; imageDesc.fUsageFlags = usageFlags; imageDesc.fMemProps = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT; GrMipMapsStatus mipMapsStatus = GrMipMapsStatus::kNotAllocated; if (mipLevels > 1) { mipMapsStatus = GrMipMapsStatus::kValid; for (int i = 0; i < mipLevels; ++i) { if (!texels[i].fPixels) { mipMapsStatus = GrMipMapsStatus::kDirty; break; } } } sk_sp<GrVkTexture> tex; if (renderTarget) { tex = GrVkTextureRenderTarget::CreateNewTextureRenderTarget(this, budgeted, desc, imageDesc, mipMapsStatus); } else { tex = GrVkTexture::CreateNewTexture(this, budgeted, desc, imageDesc, mipMapsStatus); } if (!tex) { return nullptr; } if (mipLevelCount) { if (!this->uploadTexDataOptimal(tex.get(), desc.fOrigin, 0, 0, desc.fWidth, desc.fHeight, desc.fConfig, texels, mipLevelCount)) { tex->unref(); return nullptr; } } if (desc.fFlags & kPerformInitialClear_GrSurfaceFlag) { VkClearColorValue zeroClearColor; memset(&zeroClearColor, 0, sizeof(zeroClearColor)); VkImageSubresourceRange range; range.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; range.baseArrayLayer = 0; range.baseMipLevel = 0; range.layerCount = 1; range.levelCount = 1; tex->setImageLayout(this, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, VK_ACCESS_TRANSFER_WRITE_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, false); this->currentCommandBuffer()->clearColorImage(this, tex.get(), &zeroClearColor, 1, &range); } return tex; } //////////////////////////////////////////////////////////////////////////////// void GrVkGpu::copyBuffer(GrVkBuffer* srcBuffer, GrVkBuffer* dstBuffer, VkDeviceSize srcOffset, VkDeviceSize dstOffset, VkDeviceSize size) { VkBufferCopy copyRegion; copyRegion.srcOffset = srcOffset; copyRegion.dstOffset = dstOffset; copyRegion.size = size; fCurrentCmdBuffer->copyBuffer(this, srcBuffer, dstBuffer, 1, ©Region); } bool GrVkGpu::updateBuffer(GrVkBuffer* buffer, const void* src, VkDeviceSize offset, VkDeviceSize size) { // Update the buffer fCurrentCmdBuffer->updateBuffer(this, buffer, offset, size, src); return true; } //////////////////////////////////////////////////////////////////////////////// static bool check_backend_texture(const GrBackendTexture& backendTex, GrPixelConfig config) { const GrVkImageInfo* info = backendTex.getVkImageInfo(); if (!info) { return false; } if (VK_NULL_HANDLE == info->fImage || VK_NULL_HANDLE == info->fAlloc.fMemory) { return false; } SkASSERT(GrVkFormatPixelConfigPairIsValid(info->fFormat, config)); return true; } sk_sp<GrTexture> GrVkGpu::onWrapBackendTexture(const GrBackendTexture& backendTex, GrWrapOwnership ownership) { if (!check_backend_texture(backendTex, backendTex.config())) { return nullptr; } GrSurfaceDesc surfDesc; surfDesc.fFlags = kNone_GrSurfaceFlags; surfDesc.fOrigin = kTopLeft_GrSurfaceOrigin; // Not actually used in the following surfDesc.fWidth = backendTex.width(); surfDesc.fHeight = backendTex.height(); surfDesc.fConfig = backendTex.config(); surfDesc.fSampleCnt = 1; return GrVkTexture::MakeWrappedTexture(this, surfDesc, ownership, backendTex.getVkImageInfo()); } sk_sp<GrTexture> GrVkGpu::onWrapRenderableBackendTexture(const GrBackendTexture& backendTex, int sampleCnt, GrWrapOwnership ownership) { if (!check_backend_texture(backendTex, backendTex.config())) { return nullptr; } GrSurfaceDesc surfDesc; surfDesc.fFlags = kRenderTarget_GrSurfaceFlag; surfDesc.fOrigin = kBottomLeft_GrSurfaceOrigin; // Not actually used in the following surfDesc.fWidth = backendTex.width(); surfDesc.fHeight = backendTex.height(); surfDesc.fConfig = backendTex.config(); surfDesc.fSampleCnt = this->caps()->getSampleCount(sampleCnt, backendTex.config()); return GrVkTextureRenderTarget::MakeWrappedTextureRenderTarget(this, surfDesc, ownership, backendTex.getVkImageInfo()); } sk_sp<GrRenderTarget> GrVkGpu::onWrapBackendRenderTarget(const GrBackendRenderTarget& backendRT){ // Currently the Vulkan backend does not support wrapping of msaa render targets directly. In // general this is not an issue since swapchain images in vulkan are never multisampled. Thus if // you want a multisampled RT it is best to wrap the swapchain images and then let Skia handle // creating and owning the MSAA images. if (backendRT.sampleCnt() > 1) { return nullptr; } const GrVkImageInfo* info = backendRT.getVkImageInfo(); if (!info) { return nullptr; } if (VK_NULL_HANDLE == info->fImage) { return nullptr; } GrSurfaceDesc desc; desc.fFlags = kRenderTarget_GrSurfaceFlag; desc.fOrigin = kBottomLeft_GrSurfaceOrigin; // Not actually used in the following desc.fWidth = backendRT.width(); desc.fHeight = backendRT.height(); desc.fConfig = backendRT.config(); desc.fSampleCnt = 1; sk_sp<GrVkRenderTarget> tgt = GrVkRenderTarget::MakeWrappedRenderTarget(this, desc, info); if (tgt && backendRT.stencilBits()) { if (!createStencilAttachmentForRenderTarget(tgt.get(), desc.fWidth, desc.fHeight)) { return nullptr; } } return tgt; } sk_sp<GrRenderTarget> GrVkGpu::onWrapBackendTextureAsRenderTarget(const GrBackendTexture& tex, int sampleCnt) { const GrVkImageInfo* info = tex.getVkImageInfo(); if (!info) { return nullptr; } if (VK_NULL_HANDLE == info->fImage) { return nullptr; } GrSurfaceDesc desc; desc.fFlags = kRenderTarget_GrSurfaceFlag; desc.fOrigin = kBottomLeft_GrSurfaceOrigin; // Not actually used in the following desc.fWidth = tex.width(); desc.fHeight = tex.height(); desc.fConfig = tex.config(); desc.fSampleCnt = this->caps()->getSampleCount(sampleCnt, tex.config()); if (!desc.fSampleCnt) { return nullptr; } sk_sp<GrVkRenderTarget> tgt = GrVkRenderTarget::MakeWrappedRenderTarget(this, desc, info); return tgt; } void GrVkGpu::generateMipmap(GrVkTexture* tex, GrSurfaceOrigin texOrigin) { // don't do anything for linearly tiled textures (can't have mipmaps) if (tex->isLinearTiled()) { SkDebugf("Trying to create mipmap for linear tiled texture"); return; } // determine if we can blit to and from this format const GrVkCaps& caps = this->vkCaps(); if (!caps.configCanBeDstofBlit(tex->config(), false) || !caps.configCanBeSrcofBlit(tex->config(), false) || !caps.mipMapSupport()) { return; } if (this->vkCaps().mustSubmitCommandsBeforeCopyOp()) { this->submitCommandBuffer(kSkip_SyncQueue); } // We may need to resolve the texture first if it is also a render target GrVkRenderTarget* texRT = static_cast<GrVkRenderTarget*>(tex->asRenderTarget()); if (texRT) { this->internalResolveRenderTarget(texRT, texOrigin, false); } int width = tex->width(); int height = tex->height(); VkImageBlit blitRegion; memset(&blitRegion, 0, sizeof(VkImageBlit)); // SkMipMap doesn't include the base level in the level count so we have to add 1 uint32_t levelCount = SkMipMap::ComputeLevelCount(tex->width(), tex->height()) + 1; if (levelCount != tex->mipLevels()) { const GrVkResource* oldResource = tex->resource(); oldResource->ref(); // grab handle to the original image resource VkImage oldImage = tex->image(); // change the original image's layout so we can copy from it tex->setImageLayout(this, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, VK_ACCESS_TRANSFER_READ_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, false); if (!tex->reallocForMipmap(this, levelCount)) { oldResource->unref(this); return; } // change the new image's layout so we can blit to it tex->setImageLayout(this, VK_IMAGE_LAYOUT_GENERAL, VK_ACCESS_TRANSFER_WRITE_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, false); // Blit original image to top level of new image blitRegion.srcSubresource = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1 }; blitRegion.srcOffsets[0] = { 0, 0, 0 }; blitRegion.srcOffsets[1] = { width, height, 1 }; blitRegion.dstSubresource = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1 }; blitRegion.dstOffsets[0] = { 0, 0, 0 }; blitRegion.dstOffsets[1] = { width, height, 1 }; fCurrentCmdBuffer->blitImage(this, oldResource, oldImage, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, tex->resource(), tex->image(), VK_IMAGE_LAYOUT_GENERAL, 1, &blitRegion, VK_FILTER_LINEAR); oldResource->unref(this); } else { // change layout of the layers so we can write to them. tex->setImageLayout(this, VK_IMAGE_LAYOUT_GENERAL, VK_ACCESS_TRANSFER_WRITE_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, false); } // setup memory barrier SkASSERT(GrVkFormatIsSupported(tex->imageFormat())); VkImageAspectFlags aspectFlags = VK_IMAGE_ASPECT_COLOR_BIT; VkImageMemoryBarrier imageMemoryBarrier = { VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER, // sType nullptr, // pNext VK_ACCESS_TRANSFER_WRITE_BIT, // srcAccessMask VK_ACCESS_TRANSFER_READ_BIT, // dstAccessMask VK_IMAGE_LAYOUT_GENERAL, // oldLayout VK_IMAGE_LAYOUT_GENERAL, // newLayout VK_QUEUE_FAMILY_IGNORED, // srcQueueFamilyIndex VK_QUEUE_FAMILY_IGNORED, // dstQueueFamilyIndex tex->image(), // image { aspectFlags, 0, 1, 0, 1 } // subresourceRange }; // Blit the miplevels uint32_t mipLevel = 1; while (mipLevel < levelCount) { int prevWidth = width; int prevHeight = height; width = SkTMax(1, width / 2); height = SkTMax(1, height / 2); imageMemoryBarrier.subresourceRange.baseMipLevel = mipLevel - 1; this->addImageMemoryBarrier(VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, false, &imageMemoryBarrier); blitRegion.srcSubresource = { VK_IMAGE_ASPECT_COLOR_BIT, mipLevel - 1, 0, 1 }; blitRegion.srcOffsets[0] = { 0, 0, 0 }; blitRegion.srcOffsets[1] = { prevWidth, prevHeight, 1 }; blitRegion.dstSubresource = { VK_IMAGE_ASPECT_COLOR_BIT, mipLevel, 0, 1 }; blitRegion.dstOffsets[0] = { 0, 0, 0 }; blitRegion.dstOffsets[1] = { width, height, 1 }; fCurrentCmdBuffer->blitImage(this, *tex, *tex, 1, &blitRegion, VK_FILTER_LINEAR); ++mipLevel; } } //////////////////////////////////////////////////////////////////////////////// GrStencilAttachment* GrVkGpu::createStencilAttachmentForRenderTarget(const GrRenderTarget* rt, int width, int height) { SkASSERT(width >= rt->width()); SkASSERT(height >= rt->height()); int samples = rt->numStencilSamples(); const GrVkCaps::StencilFormat& sFmt = this->vkCaps().preferedStencilFormat(); GrVkStencilAttachment* stencil(GrVkStencilAttachment::Create(this, width, height, samples, sFmt)); fStats.incStencilAttachmentCreates(); return stencil; } //////////////////////////////////////////////////////////////////////////////// bool copy_testing_data(GrVkGpu* gpu, void* srcData, const GrVkAlloc& alloc, size_t bufferOffset, size_t srcRowBytes, size_t dstRowBytes, int h) { // For Noncoherent buffers we want to make sure the range that we map, both offset and size, // are aligned to the nonCoherentAtomSize limit. We may have to move the initial offset back to // meet the alignment requirements. So we track how far we move back and then adjust the mapped // ptr back up so that this is opaque to the caller. VkDeviceSize mapSize = dstRowBytes * h; VkDeviceSize mapOffset = alloc.fOffset + bufferOffset; VkDeviceSize offsetDiff = 0; if (SkToBool(alloc.fFlags & GrVkAlloc::kNoncoherent_Flag)) { VkDeviceSize alignment = gpu->physicalDeviceProperties().limits.nonCoherentAtomSize; offsetDiff = mapOffset & (alignment - 1); mapOffset = mapOffset - offsetDiff; // Make size of the map aligned to nonCoherentAtomSize mapSize = (mapSize + alignment - 1) & ~(alignment - 1); } SkASSERT(mapOffset >= alloc.fOffset); SkASSERT(mapSize + mapOffset <= alloc.fOffset + alloc.fSize); void* mapPtr; VkResult err = GR_VK_CALL(gpu->vkInterface(), MapMemory(gpu->device(), alloc.fMemory, mapOffset, mapSize, 0, &mapPtr)); mapPtr = reinterpret_cast<char*>(mapPtr) + offsetDiff; if (err) { return false; } if (srcData) { // If there is no padding on dst we can do a single memcopy. // This assumes the srcData comes in with no padding. SkRectMemcpy(mapPtr, static_cast<size_t>(dstRowBytes), srcData, srcRowBytes, srcRowBytes, h); } else { // If there is no srcdata we always copy 0's into the textures so that it is initialized // with some data. if (srcRowBytes == static_cast<size_t>(dstRowBytes)) { memset(mapPtr, 0, srcRowBytes * h); } else { for (int i = 0; i < h; ++i) { memset(mapPtr, 0, srcRowBytes); mapPtr = SkTAddOffset<void>(mapPtr, static_cast<size_t>(dstRowBytes)); } } } GrVkMemory::FlushMappedAlloc(gpu, alloc, mapOffset, mapSize); GR_VK_CALL(gpu->vkInterface(), UnmapMemory(gpu->device(), alloc.fMemory)); return true; } GrBackendTexture GrVkGpu::createTestingOnlyBackendTexture(void* srcData, int w, int h, GrPixelConfig config, bool isRenderTarget, GrMipMapped mipMapped) { VkFormat pixelFormat; if (!GrPixelConfigToVkFormat(config, &pixelFormat)) { return GrBackendTexture(); // invalid } bool linearTiling = false; if (!fVkCaps->isConfigTexturable(config)) { return GrBackendTexture(); // invalid } if (isRenderTarget && !fVkCaps->isConfigRenderable(config, false)) { return GrBackendTexture(); // invalid } // Currently we don't support uploading pixel data when mipped. if (srcData && GrMipMapped::kYes == mipMapped) { return GrBackendTexture(); // invalid } if (fVkCaps->isConfigTexturableLinearly(config) && (!isRenderTarget || fVkCaps->isConfigRenderableLinearly(config, false)) && GrMipMapped::kNo == mipMapped) { linearTiling = true; } VkImageUsageFlags usageFlags = VK_IMAGE_USAGE_SAMPLED_BIT; usageFlags |= VK_IMAGE_USAGE_TRANSFER_SRC_BIT; usageFlags |= VK_IMAGE_USAGE_TRANSFER_DST_BIT; if (isRenderTarget) { usageFlags |= VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT; } VkImage image = VK_NULL_HANDLE; GrVkAlloc alloc; VkImageTiling imageTiling = linearTiling ? VK_IMAGE_TILING_LINEAR : VK_IMAGE_TILING_OPTIMAL; VkImageLayout initialLayout = (VK_IMAGE_TILING_LINEAR == imageTiling) ? VK_IMAGE_LAYOUT_PREINITIALIZED : VK_IMAGE_LAYOUT_UNDEFINED; // Create Image VkSampleCountFlagBits vkSamples; if (!GrSampleCountToVkSampleCount(1, &vkSamples)) { return GrBackendTexture(); // invalid } // Figure out the number of mip levels. uint32_t mipLevels = 1; if (GrMipMapped::kYes == mipMapped) { mipLevels = SkMipMap::ComputeLevelCount(w, h) + 1; } const VkImageCreateInfo imageCreateInfo = { VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO, // sType nullptr, // pNext 0, // VkImageCreateFlags VK_IMAGE_TYPE_2D, // VkImageType pixelFormat, // VkFormat { (uint32_t) w, (uint32_t) h, 1 }, // VkExtent3D mipLevels, // mipLevels 1, // arrayLayers vkSamples, // samples imageTiling, // VkImageTiling usageFlags, // VkImageUsageFlags VK_SHARING_MODE_EXCLUSIVE, // VkSharingMode 0, // queueFamilyCount 0, // pQueueFamilyIndices initialLayout // initialLayout }; GR_VK_CALL_ERRCHECK(this->vkInterface(), CreateImage(this->device(), &imageCreateInfo, nullptr, &image)); if (!GrVkMemory::AllocAndBindImageMemory(this, image, linearTiling, &alloc)) { VK_CALL(DestroyImage(this->device(), image, nullptr)); return GrBackendTexture(); // invalid } // We need to declare these early so that we can delete them at the end outside of the if block. GrVkAlloc bufferAlloc; VkBuffer buffer = VK_NULL_HANDLE; VkResult err; const VkCommandBufferAllocateInfo cmdInfo = { VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO, // sType nullptr, // pNext fCmdPool, // commandPool VK_COMMAND_BUFFER_LEVEL_PRIMARY, // level 1 // bufferCount }; VkCommandBuffer cmdBuffer; err = VK_CALL(AllocateCommandBuffers(fDevice, &cmdInfo, &cmdBuffer)); if (err) { GrVkMemory::FreeImageMemory(this, false, alloc); VK_CALL(DestroyImage(fDevice, image, nullptr)); return GrBackendTexture(); // invalid } VkCommandBufferBeginInfo cmdBufferBeginInfo; memset(&cmdBufferBeginInfo, 0, sizeof(VkCommandBufferBeginInfo)); cmdBufferBeginInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO; cmdBufferBeginInfo.pNext = nullptr; cmdBufferBeginInfo.flags = VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT; cmdBufferBeginInfo.pInheritanceInfo = nullptr; err = VK_CALL(BeginCommandBuffer(cmdBuffer, &cmdBufferBeginInfo)); SkASSERT(!err); size_t bpp = GrBytesPerPixel(config); size_t rowCopyBytes = bpp * w; if (linearTiling) { const VkImageSubresource subres = { VK_IMAGE_ASPECT_COLOR_BIT, 0, // mipLevel 0, // arraySlice }; VkSubresourceLayout layout; VK_CALL(GetImageSubresourceLayout(fDevice, image, &subres, &layout)); if (!copy_testing_data(this, srcData, alloc, 0, rowCopyBytes, static_cast<size_t>(layout.rowPitch), h)) { GrVkMemory::FreeImageMemory(this, true, alloc); VK_CALL(DestroyImage(fDevice, image, nullptr)); VK_CALL(EndCommandBuffer(cmdBuffer)); VK_CALL(FreeCommandBuffers(fDevice, fCmdPool, 1, &cmdBuffer)); return GrBackendTexture(); // invalid } } else { SkASSERT(w && h); SkTArray<size_t> individualMipOffsets(mipLevels); individualMipOffsets.push_back(0); size_t combinedBufferSize = w * bpp * h; int currentWidth = w; int currentHeight = h; // The alignment must be at least 4 bytes and a multiple of the bytes per pixel of the image // config. This works with the assumption that the bytes in pixel config is always a power // of 2. SkASSERT((bpp & (bpp - 1)) == 0); const size_t alignmentMask = 0x3 | (bpp - 1); for (uint32_t currentMipLevel = 1; currentMipLevel < mipLevels; currentMipLevel++) { currentWidth = SkTMax(1, currentWidth/2); currentHeight = SkTMax(1, currentHeight/2); const size_t trimmedSize = currentWidth * bpp * currentHeight; const size_t alignmentDiff = combinedBufferSize & alignmentMask; if (alignmentDiff != 0) { combinedBufferSize += alignmentMask - alignmentDiff + 1; } individualMipOffsets.push_back(combinedBufferSize); combinedBufferSize += trimmedSize; } VkBufferCreateInfo bufInfo; memset(&bufInfo, 0, sizeof(VkBufferCreateInfo)); bufInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO; bufInfo.flags = 0; bufInfo.size = combinedBufferSize; bufInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT; bufInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE; bufInfo.queueFamilyIndexCount = 0; bufInfo.pQueueFamilyIndices = nullptr; err = VK_CALL(CreateBuffer(fDevice, &bufInfo, nullptr, &buffer)); if (err) { GrVkMemory::FreeImageMemory(this, false, alloc); VK_CALL(DestroyImage(fDevice, image, nullptr)); VK_CALL(EndCommandBuffer(cmdBuffer)); VK_CALL(FreeCommandBuffers(fDevice, fCmdPool, 1, &cmdBuffer)); return GrBackendTexture(); // invalid } if (!GrVkMemory::AllocAndBindBufferMemory(this, buffer, GrVkBuffer::kCopyRead_Type, true, &bufferAlloc)) { GrVkMemory::FreeImageMemory(this, false, alloc); VK_CALL(DestroyImage(fDevice, image, nullptr)); VK_CALL(DestroyBuffer(fDevice, buffer, nullptr)); VK_CALL(EndCommandBuffer(cmdBuffer)); VK_CALL(FreeCommandBuffers(fDevice, fCmdPool, 1, &cmdBuffer)); return GrBackendTexture(); // invalid } currentWidth = w; currentHeight = h; for (uint32_t currentMipLevel = 0; currentMipLevel < mipLevels; currentMipLevel++) { SkASSERT(0 == currentMipLevel || !srcData); size_t currentRowBytes = bpp * currentWidth; size_t bufferOffset = individualMipOffsets[currentMipLevel]; if (!copy_testing_data(this, srcData, bufferAlloc, bufferOffset, currentRowBytes, currentRowBytes, currentHeight)) { GrVkMemory::FreeImageMemory(this, false, alloc); VK_CALL(DestroyImage(fDevice, image, nullptr)); GrVkMemory::FreeBufferMemory(this, GrVkBuffer::kCopyRead_Type, bufferAlloc); VK_CALL(DestroyBuffer(fDevice, buffer, nullptr)); VK_CALL(EndCommandBuffer(cmdBuffer)); VK_CALL(FreeCommandBuffers(fDevice, fCmdPool, 1, &cmdBuffer)); return GrBackendTexture(); // invalid } currentWidth = SkTMax(1, currentWidth/2); currentHeight = SkTMax(1, currentHeight/2); } // Set image layout and add barrier VkImageMemoryBarrier barrier; memset(&barrier, 0, sizeof(VkImageMemoryBarrier)); barrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER; barrier.pNext = nullptr; barrier.srcAccessMask = GrVkMemory::LayoutToSrcAccessMask(initialLayout); barrier.dstAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT; barrier.oldLayout = initialLayout; barrier.newLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL; barrier.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED; barrier.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED; barrier.image = image; barrier.subresourceRange = { VK_IMAGE_ASPECT_COLOR_BIT, 0, mipLevels, 0 , 1}; VK_CALL(CmdPipelineBarrier(cmdBuffer, GrVkMemory::LayoutToPipelineStageFlags(initialLayout), VK_PIPELINE_STAGE_TRANSFER_BIT, 0, 0, nullptr, 0, nullptr, 1, &barrier)); initialLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL; SkTArray<VkBufferImageCopy> regions(mipLevels); currentWidth = w; currentHeight = h; for (uint32_t currentMipLevel = 0; currentMipLevel < mipLevels; currentMipLevel++) { // Submit copy command VkBufferImageCopy& region = regions.push_back(); memset(®ion, 0, sizeof(VkBufferImageCopy)); region.bufferOffset = individualMipOffsets[currentMipLevel]; region.bufferRowLength = currentWidth; region.bufferImageHeight = currentHeight; region.imageSubresource = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1 }; region.imageOffset = { 0, 0, 0 }; region.imageExtent = { (uint32_t)currentWidth, (uint32_t)currentHeight, 1 }; currentWidth = SkTMax(1, currentWidth/2); currentHeight = SkTMax(1, currentHeight/2); } VK_CALL(CmdCopyBufferToImage(cmdBuffer, buffer, image, initialLayout, regions.count(), regions.begin())); } // Change Image layout to shader read since if we use this texture as a borrowed textures within // Ganesh we require that its layout be set to that VkImageMemoryBarrier barrier; memset(&barrier, 0, sizeof(VkImageMemoryBarrier)); barrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER; barrier.pNext = nullptr; barrier.srcAccessMask = GrVkMemory::LayoutToSrcAccessMask(initialLayout); barrier.dstAccessMask = VK_ACCESS_SHADER_READ_BIT; barrier.oldLayout = initialLayout; barrier.newLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL; barrier.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED; barrier.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED; barrier.image = image; barrier.subresourceRange = { VK_IMAGE_ASPECT_COLOR_BIT, 0, mipLevels, 0 , 1}; VK_CALL(CmdPipelineBarrier(cmdBuffer, GrVkMemory::LayoutToPipelineStageFlags(initialLayout), VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT, 0, 0, nullptr, 0, nullptr, 1, &barrier)); // End CommandBuffer err = VK_CALL(EndCommandBuffer(cmdBuffer)); SkASSERT(!err); // Create Fence for queue VkFence fence; VkFenceCreateInfo fenceInfo; memset(&fenceInfo, 0, sizeof(VkFenceCreateInfo)); fenceInfo.sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO; err = VK_CALL(CreateFence(fDevice, &fenceInfo, nullptr, &fence)); SkASSERT(!err); VkSubmitInfo submitInfo; memset(&submitInfo, 0, sizeof(VkSubmitInfo)); submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO; submitInfo.pNext = nullptr; submitInfo.waitSemaphoreCount = 0; submitInfo.pWaitSemaphores = nullptr; submitInfo.pWaitDstStageMask = 0; submitInfo.commandBufferCount = 1; submitInfo.pCommandBuffers = &cmdBuffer; submitInfo.signalSemaphoreCount = 0; submitInfo.pSignalSemaphores = nullptr; err = VK_CALL(QueueSubmit(this->queue(), 1, &submitInfo, fence)); SkASSERT(!err); err = VK_CALL(WaitForFences(fDevice, 1, &fence, true, UINT64_MAX)); if (VK_TIMEOUT == err) { GrVkMemory::FreeImageMemory(this, false, alloc); VK_CALL(DestroyImage(fDevice, image, nullptr)); GrVkMemory::FreeBufferMemory(this, GrVkBuffer::kCopyRead_Type, bufferAlloc); VK_CALL(DestroyBuffer(fDevice, buffer, nullptr)); VK_CALL(FreeCommandBuffers(fDevice, fCmdPool, 1, &cmdBuffer)); VK_CALL(DestroyFence(fDevice, fence, nullptr)); SkDebugf("Fence failed to signal: %d\n", err); SK_ABORT("failing"); } SkASSERT(!err); // Clean up transfer resources if (buffer != VK_NULL_HANDLE) { // workaround for an older NVidia driver crash GrVkMemory::FreeBufferMemory(this, GrVkBuffer::kCopyRead_Type, bufferAlloc); VK_CALL(DestroyBuffer(fDevice, buffer, nullptr)); } VK_CALL(FreeCommandBuffers(fDevice, fCmdPool, 1, &cmdBuffer)); VK_CALL(DestroyFence(fDevice, fence, nullptr)); GrVkImageInfo info; info.fImage = image; info.fAlloc = alloc; info.fImageTiling = imageTiling; info.fImageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL; info.fFormat = pixelFormat; info.fLevelCount = mipLevels; return GrBackendTexture(w, h, info); } bool GrVkGpu::isTestingOnlyBackendTexture(const GrBackendTexture& tex) const { SkASSERT(kVulkan_GrBackend == tex.fBackend); const GrVkImageInfo* backend = tex.getVkImageInfo(); if (backend && backend->fImage && backend->fAlloc.fMemory) { VkMemoryRequirements req; memset(&req, 0, sizeof(req)); GR_VK_CALL(this->vkInterface(), GetImageMemoryRequirements(fDevice, backend->fImage, &req)); // TODO: find a better check // This will probably fail with a different driver return (req.size > 0) && (req.size <= 8192 * 8192); } return false; } void GrVkGpu::deleteTestingOnlyBackendTexture(GrBackendTexture* tex, bool abandon) { SkASSERT(kVulkan_GrBackend == tex->fBackend); const GrVkImageInfo* info = tex->getVkImageInfo(); if (info && !abandon) { // something in the command buffer may still be using this, so force submit this->submitCommandBuffer(kForce_SyncQueue); GrVkImage::DestroyImageInfo(this, const_cast<GrVkImageInfo*>(info)); } } void GrVkGpu::testingOnly_flushGpuAndSync() { this->submitCommandBuffer(kForce_SyncQueue); } //////////////////////////////////////////////////////////////////////////////// void GrVkGpu::addMemoryBarrier(VkPipelineStageFlags srcStageMask, VkPipelineStageFlags dstStageMask, bool byRegion, VkMemoryBarrier* barrier) const { SkASSERT(fCurrentCmdBuffer); fCurrentCmdBuffer->pipelineBarrier(this, srcStageMask, dstStageMask, byRegion, GrVkCommandBuffer::kMemory_BarrierType, barrier); } void GrVkGpu::addBufferMemoryBarrier(VkPipelineStageFlags srcStageMask, VkPipelineStageFlags dstStageMask, bool byRegion, VkBufferMemoryBarrier* barrier) const { SkASSERT(fCurrentCmdBuffer); fCurrentCmdBuffer->pipelineBarrier(this, srcStageMask, dstStageMask, byRegion, GrVkCommandBuffer::kBufferMemory_BarrierType, barrier); } void GrVkGpu::addImageMemoryBarrier(VkPipelineStageFlags srcStageMask, VkPipelineStageFlags dstStageMask, bool byRegion, VkImageMemoryBarrier* barrier) const { SkASSERT(fCurrentCmdBuffer); fCurrentCmdBuffer->pipelineBarrier(this, srcStageMask, dstStageMask, byRegion, GrVkCommandBuffer::kImageMemory_BarrierType, barrier); } void GrVkGpu::onFinishFlush(bool insertedSemaphore) { // Submit the current command buffer to the Queue. Whether we inserted semaphores or not does // not effect what we do here. this->submitCommandBuffer(kSkip_SyncQueue); } void GrVkGpu::clearStencil(GrRenderTarget* target, int clearValue) { if (!target) { return; } GrStencilAttachment* stencil = target->renderTargetPriv().getStencilAttachment(); GrVkStencilAttachment* vkStencil = (GrVkStencilAttachment*)stencil; VkClearDepthStencilValue vkStencilColor; vkStencilColor.depth = 0.0f; vkStencilColor.stencil = clearValue; vkStencil->setImageLayout(this, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, VK_ACCESS_TRANSFER_WRITE_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, false); VkImageSubresourceRange subRange; memset(&subRange, 0, sizeof(VkImageSubresourceRange)); subRange.aspectMask = VK_IMAGE_ASPECT_STENCIL_BIT; subRange.baseMipLevel = 0; subRange.levelCount = 1; subRange.baseArrayLayer = 0; subRange.layerCount = 1; // TODO: I imagine that most times we want to clear a stencil it will be at the beginning of a // draw. Thus we should look into using the load op functions on the render pass to clear out // the stencil there. fCurrentCmdBuffer->clearDepthStencilImage(this, vkStencil, &vkStencilColor, 1, &subRange); } inline bool can_copy_image(const GrSurface* dst, GrSurfaceOrigin dstOrigin, const GrSurface* src, GrSurfaceOrigin srcOrigin, const GrVkGpu* gpu) { const GrRenderTarget* dstRT = dst->asRenderTarget(); const GrRenderTarget* srcRT = src->asRenderTarget(); if (dstRT && srcRT) { if (srcRT->numColorSamples() != dstRT->numColorSamples()) { return false; } } else if (dstRT) { if (dstRT->numColorSamples() > 1) { return false; } } else if (srcRT) { if (srcRT->numColorSamples() > 1) { return false; } } // We require that all vulkan GrSurfaces have been created with transfer_dst and transfer_src // as image usage flags. if (srcOrigin == dstOrigin && GrBytesPerPixel(src->config()) == GrBytesPerPixel(dst->config())) { return true; } return false; } void GrVkGpu::copySurfaceAsCopyImage(GrSurface* dst, GrSurfaceOrigin dstOrigin, GrSurface* src, GrSurfaceOrigin srcOrigin, GrVkImage* dstImage, GrVkImage* srcImage, const SkIRect& srcRect, const SkIPoint& dstPoint) { SkASSERT(can_copy_image(dst, dstOrigin, src, srcOrigin, this)); // These flags are for flushing/invalidating caches and for the dst image it doesn't matter if // the cache is flushed since it is only being written to. dstImage->setImageLayout(this, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, VK_ACCESS_TRANSFER_WRITE_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, false); srcImage->setImageLayout(this, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, VK_ACCESS_TRANSFER_READ_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, false); // Flip rect if necessary SkIRect srcVkRect = srcRect; int32_t dstY = dstPoint.fY; if (kBottomLeft_GrSurfaceOrigin == srcOrigin) { SkASSERT(kBottomLeft_GrSurfaceOrigin == dstOrigin); srcVkRect.fTop = src->height() - srcRect.fBottom; srcVkRect.fBottom = src->height() - srcRect.fTop; dstY = dst->height() - dstPoint.fY - srcVkRect.height(); } VkImageCopy copyRegion; memset(©Region, 0, sizeof(VkImageCopy)); copyRegion.srcSubresource = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1 }; copyRegion.srcOffset = { srcVkRect.fLeft, srcVkRect.fTop, 0 }; copyRegion.dstSubresource = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1 }; copyRegion.dstOffset = { dstPoint.fX, dstY, 0 }; copyRegion.extent = { (uint32_t)srcVkRect.width(), (uint32_t)srcVkRect.height(), 1 }; fCurrentCmdBuffer->copyImage(this, srcImage, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, dstImage, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, ©Region); SkIRect dstRect = SkIRect::MakeXYWH(dstPoint.fX, dstPoint.fY, srcRect.width(), srcRect.height()); this->didWriteToSurface(dst, &dstRect); } inline bool can_copy_as_blit(const GrSurface* dst, const GrSurface* src, const GrVkImage* dstImage, const GrVkImage* srcImage, const GrVkGpu* gpu) { // We require that all vulkan GrSurfaces have been created with transfer_dst and transfer_src // as image usage flags. const GrVkCaps& caps = gpu->vkCaps(); if (!caps.configCanBeDstofBlit(dst->config(), dstImage->isLinearTiled()) || !caps.configCanBeSrcofBlit(src->config(), srcImage->isLinearTiled())) { return false; } // We cannot blit images that are multisampled. Will need to figure out if we can blit the // resolved msaa though. if ((dst->asRenderTarget() && dst->asRenderTarget()->numColorSamples() > 1) || (src->asRenderTarget() && src->asRenderTarget()->numColorSamples() > 1)) { return false; } return true; } void GrVkGpu::copySurfaceAsBlit(GrSurface* dst, GrSurfaceOrigin dstOrigin, GrSurface* src, GrSurfaceOrigin srcOrigin, GrVkImage* dstImage, GrVkImage* srcImage, const SkIRect& srcRect, const SkIPoint& dstPoint) { SkASSERT(can_copy_as_blit(dst, src, dstImage, srcImage, this)); dstImage->setImageLayout(this, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, VK_ACCESS_TRANSFER_WRITE_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, false); srcImage->setImageLayout(this, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, VK_ACCESS_TRANSFER_READ_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, false); // Flip rect if necessary SkIRect srcVkRect; srcVkRect.fLeft = srcRect.fLeft; srcVkRect.fRight = srcRect.fRight; SkIRect dstRect; dstRect.fLeft = dstPoint.fX; dstRect.fRight = dstPoint.fX + srcRect.width(); if (kBottomLeft_GrSurfaceOrigin == srcOrigin) { srcVkRect.fTop = src->height() - srcRect.fBottom; srcVkRect.fBottom = src->height() - srcRect.fTop; } else { srcVkRect.fTop = srcRect.fTop; srcVkRect.fBottom = srcRect.fBottom; } if (kBottomLeft_GrSurfaceOrigin == dstOrigin) { dstRect.fTop = dst->height() - dstPoint.fY - srcVkRect.height(); } else { dstRect.fTop = dstPoint.fY; } dstRect.fBottom = dstRect.fTop + srcVkRect.height(); // If we have different origins, we need to flip the top and bottom of the dst rect so that we // get the correct origintation of the copied data. if (srcOrigin != dstOrigin) { SkTSwap(dstRect.fTop, dstRect.fBottom); } VkImageBlit blitRegion; memset(&blitRegion, 0, sizeof(VkImageBlit)); blitRegion.srcSubresource = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1 }; blitRegion.srcOffsets[0] = { srcVkRect.fLeft, srcVkRect.fTop, 0 }; blitRegion.srcOffsets[1] = { srcVkRect.fRight, srcVkRect.fBottom, 1 }; blitRegion.dstSubresource = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1 }; blitRegion.dstOffsets[0] = { dstRect.fLeft, dstRect.fTop, 0 }; blitRegion.dstOffsets[1] = { dstRect.fRight, dstRect.fBottom, 1 }; fCurrentCmdBuffer->blitImage(this, *srcImage, *dstImage, 1, &blitRegion, VK_FILTER_NEAREST); // We never scale so any filter works here this->didWriteToSurface(dst, &dstRect); } inline bool can_copy_as_resolve(const GrSurface* dst, GrSurfaceOrigin dstOrigin, const GrSurface* src, GrSurfaceOrigin srcOrigin, const GrVkGpu* gpu) { // Our src must be a multisampled render target if (!src->asRenderTarget() || 1 == src->asRenderTarget()->numColorSamples()) { return false; } // The dst must not be a multisampled render target, expect in the case where the dst is the // resolve texture connected to the msaa src. We check for this in case we are copying a part of // a surface to a different region in the same surface. if (dst->asRenderTarget() && dst->asRenderTarget()->numColorSamples() > 1 && dst != src) { return false; } // Surfaces must have the same origin. if (srcOrigin != dstOrigin) { return false; } return true; } void GrVkGpu::copySurfaceAsResolve(GrSurface* dst, GrSurfaceOrigin dstOrigin, GrSurface* src, GrSurfaceOrigin srcOrigin, const SkIRect& srcRect, const SkIPoint& dstPoint) { GrVkRenderTarget* srcRT = static_cast<GrVkRenderTarget*>(src->asRenderTarget()); this->resolveImage(dst, dstOrigin, srcRT, srcOrigin, srcRect, dstPoint); } bool GrVkGpu::onCopySurface(GrSurface* dst, GrSurfaceOrigin dstOrigin, GrSurface* src, GrSurfaceOrigin srcOrigin, const SkIRect& srcRect, const SkIPoint& dstPoint, bool canDiscardOutsideDstRect) { if (can_copy_as_resolve(dst, dstOrigin, src, srcOrigin, this)) { this->copySurfaceAsResolve(dst, dstOrigin, src, srcOrigin, srcRect, dstPoint); return true; } if (this->vkCaps().mustSubmitCommandsBeforeCopyOp()) { this->submitCommandBuffer(GrVkGpu::kSkip_SyncQueue); } if (fCopyManager.copySurfaceAsDraw(this, dst, dstOrigin, src, srcOrigin, srcRect, dstPoint, canDiscardOutsideDstRect)) { auto dstRect = srcRect.makeOffset(dstPoint.fX, dstPoint.fY); this->didWriteToSurface(dst, &dstRect); return true; } GrVkImage* dstImage; GrVkImage* srcImage; GrRenderTarget* dstRT = dst->asRenderTarget(); if (dstRT) { GrVkRenderTarget* vkRT = static_cast<GrVkRenderTarget*>(dstRT); dstImage = vkRT->numColorSamples() > 1 ? vkRT->msaaImage() : vkRT; } else { SkASSERT(dst->asTexture()); dstImage = static_cast<GrVkTexture*>(dst->asTexture()); } GrRenderTarget* srcRT = src->asRenderTarget(); if (srcRT) { GrVkRenderTarget* vkRT = static_cast<GrVkRenderTarget*>(srcRT); srcImage = vkRT->numColorSamples() > 1 ? vkRT->msaaImage() : vkRT; } else { SkASSERT(src->asTexture()); srcImage = static_cast<GrVkTexture*>(src->asTexture()); } // For borrowed textures, we *only* want to copy using draws (to avoid layout changes) if (srcImage->isBorrowed()) { return false; } if (can_copy_image(dst, dstOrigin, src, srcOrigin, this)) { this->copySurfaceAsCopyImage(dst, dstOrigin, src, srcOrigin, dstImage, srcImage, srcRect, dstPoint); return true; } if (can_copy_as_blit(dst, src, dstImage, srcImage, this)) { this->copySurfaceAsBlit(dst, dstOrigin, src, srcOrigin, dstImage, srcImage, srcRect, dstPoint); return true; } return false; } void GrVkGpu::onQueryMultisampleSpecs(GrRenderTarget* rt, GrSurfaceOrigin, const GrStencilSettings&, int* effectiveSampleCnt, SamplePattern*) { // TODO: stub. SkASSERT(!this->caps()->sampleLocationsSupport()); *effectiveSampleCnt = rt->numStencilSamples(); } bool GrVkGpu::onGetReadPixelsInfo(GrSurface* srcSurface, GrSurfaceOrigin srcOrigin, int width, int height, size_t rowBytes, GrPixelConfig readConfig, DrawPreference* drawPreference, ReadPixelTempDrawInfo* tempDrawInfo) { // These settings we will always want if a temp draw is performed. tempDrawInfo->fTempSurfaceDesc.fFlags = kRenderTarget_GrSurfaceFlag; tempDrawInfo->fTempSurfaceDesc.fWidth = width; tempDrawInfo->fTempSurfaceDesc.fHeight = height; tempDrawInfo->fTempSurfaceDesc.fSampleCnt = 1; tempDrawInfo->fTempSurfaceDesc.fOrigin = kTopLeft_GrSurfaceOrigin; // no CPU y-flip for TL. tempDrawInfo->fTempSurfaceFit = SkBackingFit::kApprox; // For now assume no swizzling, we may change that below. tempDrawInfo->fSwizzle = GrSwizzle::RGBA(); // Depends on why we need/want a temp draw. Start off assuming no change, the surface we read // from will be srcConfig and we will read readConfig pixels from it. // Note that if we require a draw and return a non-renderable format for the temp surface the // base class will fail for us. tempDrawInfo->fTempSurfaceDesc.fConfig = srcSurface->config(); tempDrawInfo->fReadConfig = readConfig; if (srcSurface->config() == readConfig) { return true; } // Any config change requires a draw ElevateDrawPreference(drawPreference, kRequireDraw_DrawPreference); tempDrawInfo->fTempSurfaceDesc.fConfig = readConfig; tempDrawInfo->fReadConfig = readConfig; return true; } bool GrVkGpu::onReadPixels(GrSurface* surface, GrSurfaceOrigin origin, int left, int top, int width, int height, GrPixelConfig config, void* buffer, size_t rowBytes) { VkFormat pixelFormat; if (!GrPixelConfigToVkFormat(config, &pixelFormat)) { return false; } GrVkImage* image = nullptr; GrVkRenderTarget* rt = static_cast<GrVkRenderTarget*>(surface->asRenderTarget()); if (rt) { // resolve the render target if necessary switch (rt->getResolveType()) { case GrVkRenderTarget::kCantResolve_ResolveType: return false; case GrVkRenderTarget::kAutoResolves_ResolveType: break; case GrVkRenderTarget::kCanResolve_ResolveType: this->internalResolveRenderTarget(rt, origin, false); break; default: SK_ABORT("Unknown resolve type"); } image = rt; } else { image = static_cast<GrVkTexture*>(surface->asTexture()); } if (!image) { return false; } // Change layout of our target so it can be used as copy image->setImageLayout(this, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, VK_ACCESS_TRANSFER_READ_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, false); size_t bpp = GrBytesPerPixel(config); size_t tightRowBytes = bpp * width; bool flipY = kBottomLeft_GrSurfaceOrigin == origin; VkBufferImageCopy region; memset(®ion, 0, sizeof(VkBufferImageCopy)); bool copyFromOrigin = this->vkCaps().mustDoCopiesFromOrigin(); if (copyFromOrigin) { region.imageOffset = { 0, 0, 0 }; region.imageExtent = { (uint32_t)(left + width), (uint32_t)(flipY ? surface->height() - top : top + height), 1 }; } else { VkOffset3D offset = { left, flipY ? surface->height() - top - height : top, 0 }; region.imageOffset = offset; region.imageExtent = { (uint32_t)width, (uint32_t)height, 1 }; } size_t transBufferRowBytes = bpp * region.imageExtent.width; size_t imageRows = bpp * region.imageExtent.height; GrVkTransferBuffer* transferBuffer = static_cast<GrVkTransferBuffer*>(this->createBuffer(transBufferRowBytes * imageRows, kXferGpuToCpu_GrBufferType, kStream_GrAccessPattern)); // Copy the image to a buffer so we can map it to cpu memory region.bufferOffset = transferBuffer->offset(); region.bufferRowLength = 0; // Forces RowLength to be width. We handle the rowBytes below. region.bufferImageHeight = 0; // Forces height to be tightly packed. Only useful for 3d images. region.imageSubresource = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1 }; fCurrentCmdBuffer->copyImageToBuffer(this, image, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, transferBuffer, 1, ®ion); // make sure the copy to buffer has finished transferBuffer->addMemoryBarrier(this, VK_ACCESS_TRANSFER_WRITE_BIT, VK_ACCESS_HOST_READ_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_HOST_BIT, false); // We need to submit the current command buffer to the Queue and make sure it finishes before // we can copy the data out of the buffer. this->submitCommandBuffer(kForce_SyncQueue); void* mappedMemory = transferBuffer->map(); const GrVkAlloc& transAlloc = transferBuffer->alloc(); GrVkMemory::InvalidateMappedAlloc(this, transAlloc, transAlloc.fOffset, VK_WHOLE_SIZE); if (copyFromOrigin) { uint32_t skipRows = region.imageExtent.height - height; mappedMemory = (char*)mappedMemory + transBufferRowBytes * skipRows + bpp * left; } if (flipY) { const char* srcRow = reinterpret_cast<const char*>(mappedMemory); char* dstRow = reinterpret_cast<char*>(buffer)+(height - 1) * rowBytes; for (int y = 0; y < height; y++) { memcpy(dstRow, srcRow, tightRowBytes); srcRow += transBufferRowBytes; dstRow -= rowBytes; } } else { SkRectMemcpy(buffer, rowBytes, mappedMemory, transBufferRowBytes, tightRowBytes, height); } transferBuffer->unmap(); transferBuffer->unref(); return true; } // The RenderArea bounds we pass into BeginRenderPass must have a start x value that is a multiple // of the granularity. The width must also be a multiple of the granularity or eaqual to the width // the the entire attachment. Similar requirements for the y and height components. void adjust_bounds_to_granularity(SkIRect* dstBounds, const SkIRect& srcBounds, const VkExtent2D& granularity, int maxWidth, int maxHeight) { // Adjust Width if ((0 != granularity.width && 1 != granularity.width)) { // Start with the right side of rect so we know if we end up going pass the maxWidth. int rightAdj = srcBounds.fRight % granularity.width; if (rightAdj != 0) { rightAdj = granularity.width - rightAdj; } dstBounds->fRight = srcBounds.fRight + rightAdj; if (dstBounds->fRight > maxWidth) { dstBounds->fRight = maxWidth; dstBounds->fLeft = 0; } else { dstBounds->fLeft = srcBounds.fLeft - srcBounds.fLeft % granularity.width; } } else { dstBounds->fLeft = srcBounds.fLeft; dstBounds->fRight = srcBounds.fRight; } // Adjust height if ((0 != granularity.height && 1 != granularity.height)) { // Start with the bottom side of rect so we know if we end up going pass the maxHeight. int bottomAdj = srcBounds.fBottom % granularity.height; if (bottomAdj != 0) { bottomAdj = granularity.height - bottomAdj; } dstBounds->fBottom = srcBounds.fBottom + bottomAdj; if (dstBounds->fBottom > maxHeight) { dstBounds->fBottom = maxHeight; dstBounds->fTop = 0; } else { dstBounds->fTop = srcBounds.fTop - srcBounds.fTop % granularity.height; } } else { dstBounds->fTop = srcBounds.fTop; dstBounds->fBottom = srcBounds.fBottom; } } void GrVkGpu::submitSecondaryCommandBuffer(const SkTArray<GrVkSecondaryCommandBuffer*>& buffers, const GrVkRenderPass* renderPass, const VkClearValue* colorClear, GrVkRenderTarget* target, GrSurfaceOrigin origin, const SkIRect& bounds) { const SkIRect* pBounds = &bounds; SkIRect flippedBounds; if (kBottomLeft_GrSurfaceOrigin == origin) { flippedBounds = bounds; flippedBounds.fTop = target->height() - bounds.fBottom; flippedBounds.fBottom = target->height() - bounds.fTop; pBounds = &flippedBounds; } // The bounds we use for the render pass should be of the granularity supported // by the device. const VkExtent2D& granularity = renderPass->granularity(); SkIRect adjustedBounds; if ((0 != granularity.width && 1 != granularity.width) || (0 != granularity.height && 1 != granularity.height)) { adjust_bounds_to_granularity(&adjustedBounds, *pBounds, granularity, target->width(), target->height()); pBounds = &adjustedBounds; } #ifdef SK_DEBUG uint32_t index; bool result = renderPass->colorAttachmentIndex(&index); SkASSERT(result && 0 == index); result = renderPass->stencilAttachmentIndex(&index); if (result) { SkASSERT(1 == index); } #endif VkClearValue clears[2]; clears[0].color = colorClear->color; clears[1].depthStencil.depth = 0.0f; clears[1].depthStencil.stencil = 0; fCurrentCmdBuffer->beginRenderPass(this, renderPass, clears, *target, *pBounds, true); for (int i = 0; i < buffers.count(); ++i) { fCurrentCmdBuffer->executeCommands(this, buffers[i]); } fCurrentCmdBuffer->endRenderPass(this); this->didWriteToSurface(target, &bounds); } GrFence SK_WARN_UNUSED_RESULT GrVkGpu::insertFence() { VkFenceCreateInfo createInfo; memset(&createInfo, 0, sizeof(VkFenceCreateInfo)); createInfo.sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO; createInfo.pNext = nullptr; createInfo.flags = 0; VkFence fence = VK_NULL_HANDLE; VK_CALL_ERRCHECK(CreateFence(this->device(), &createInfo, nullptr, &fence)); VK_CALL(QueueSubmit(this->queue(), 0, nullptr, fence)); GR_STATIC_ASSERT(sizeof(GrFence) >= sizeof(VkFence)); return (GrFence)fence; } bool GrVkGpu::waitFence(GrFence fence, uint64_t timeout) { SkASSERT(VK_NULL_HANDLE != (VkFence)fence); VkResult result = VK_CALL(WaitForFences(this->device(), 1, (VkFence*)&fence, VK_TRUE, timeout)); return (VK_SUCCESS == result); } void GrVkGpu::deleteFence(GrFence fence) const { VK_CALL(DestroyFence(this->device(), (VkFence)fence, nullptr)); } sk_sp<GrSemaphore> SK_WARN_UNUSED_RESULT GrVkGpu::makeSemaphore(bool isOwned) { return GrVkSemaphore::Make(this, isOwned); } sk_sp<GrSemaphore> GrVkGpu::wrapBackendSemaphore(const GrBackendSemaphore& semaphore, GrResourceProvider::SemaphoreWrapType wrapType, GrWrapOwnership ownership) { return GrVkSemaphore::MakeWrapped(this, semaphore.vkSemaphore(), wrapType, ownership); } void GrVkGpu::insertSemaphore(sk_sp<GrSemaphore> semaphore, bool flush) { GrVkSemaphore* vkSem = static_cast<GrVkSemaphore*>(semaphore.get()); GrVkSemaphore::Resource* resource = vkSem->getResource(); if (resource->shouldSignal()) { resource->ref(); fSemaphoresToSignal.push_back(resource); } if (flush) { this->submitCommandBuffer(kSkip_SyncQueue); } } void GrVkGpu::waitSemaphore(sk_sp<GrSemaphore> semaphore) { GrVkSemaphore* vkSem = static_cast<GrVkSemaphore*>(semaphore.get()); GrVkSemaphore::Resource* resource = vkSem->getResource(); if (resource->shouldWait()) { resource->ref(); fSemaphoresToWaitOn.push_back(resource); } } sk_sp<GrSemaphore> GrVkGpu::prepareTextureForCrossContextUsage(GrTexture* texture) { SkASSERT(texture); GrVkTexture* vkTexture = static_cast<GrVkTexture*>(texture); vkTexture->setImageLayout(this, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL, VK_ACCESS_SHADER_READ_BIT, VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT, false); this->submitCommandBuffer(kSkip_SyncQueue); // The image layout change serves as a barrier, so no semaphore is needed return nullptr; }