/* * Copyright 2017 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "GrCCTriangleShader.h" #include "glsl/GrGLSLFragmentShaderBuilder.h" #include "glsl/GrGLSLVertexGeoBuilder.h" using Shader = GrCCCoverageProcessor::Shader; void GrCCTriangleShader::onEmitVaryings(GrGLSLVaryingHandler* varyingHandler, GrGLSLVarying::Scope scope, SkString* code, const char* /*position*/, const char* inputCoverage, const char* wind) { fCoverageTimesWind.reset(kHalf_GrSLType, scope); if (!inputCoverage) { varyingHandler->addFlatVarying("wind", &fCoverageTimesWind); code->appendf("%s = %s;", OutName(fCoverageTimesWind), wind); } else { varyingHandler->addVarying("coverage_times_wind", &fCoverageTimesWind); code->appendf("%s = %s * %s;", OutName(fCoverageTimesWind), inputCoverage, wind); } } void GrCCTriangleShader::onEmitFragmentCode(GrGLSLPPFragmentBuilder* f, const char* outputCoverage) const { f->codeAppendf("%s = %s;", outputCoverage, fCoverageTimesWind.fsIn()); } void GrCCTriangleCornerShader::emitSetupCode(GrGLSLVertexGeoBuilder* s, const char* pts, const char* repetitionID, const char* wind, GeometryVars* vars) const { s->codeAppendf("float2 corner = %s[%s];", pts, repetitionID); vars->fCornerVars.fPoint = "corner"; s->codeAppendf("float2x2 vectors = float2x2(corner - %s[0 != %s ? %s - 1 : 2], " "corner - %s[2 != %s ? %s + 1 : 0]);", pts, repetitionID, repetitionID, pts, repetitionID, repetitionID); // Make sure neither vector is 0 to avoid a divide-by-zero. Wind will be zero anyway if this // is the case, so whatever we output won't have any effect as long it isn't NaN or Inf. s->codeAppend ("for (int i = 0; i < 2; ++i) {"); s->codeAppend ( "vectors[i] = (vectors[i] != float2(0)) ? vectors[i] : float2(1);"); s->codeAppend ("}"); // Find the vector that bisects the region outside the incoming edges. Each edge is // responsible to subtract the outside region on its own the side of the bisector. s->codeAppendf("float2 leftdir = normalize(vectors[%s > 0 ? 0 : 1]);", wind); s->codeAppendf("float2 rightdir = normalize(vectors[%s > 0 ? 1 : 0]);", wind); s->codeAppend ("float2 bisect = dot(leftdir, rightdir) >= 0 ? " "leftdir + rightdir : " "float2(leftdir.y - rightdir.y, rightdir.x - leftdir.x);"); // In ccpr we don't calculate exact geometric pixel coverage. What the distance-to-edge // method actually finds is coverage inside a logical "AA box", one that is rotated inline // with the edge, and in our case, up-scaled to circumscribe the actual pixel. Below we set // up transformations into normalized logical AA box space for both incoming edges. These // will tell the fragment shader where the corner is located within each edge's AA box. s->declareGlobal(fAABoxMatrices); s->declareGlobal(fAABoxTranslates); s->declareGlobal(fGeoShaderBisects); s->codeAppendf("for (int i = 0; i < 2; ++i) {"); // The X component runs parallel to the edge (i.e. distance to the corner). s->codeAppendf( "float2 n = -vectors[%s > 0 ? i : 1 - i];", wind); s->codeAppend ( "float nwidth = (abs(n.x) + abs(n.y)) * (bloat * 2);"); s->codeAppend ( "n /= nwidth;"); // nwidth != 0 because both vectors != 0. s->codeAppendf( "%s[i][0] = n;", fAABoxMatrices.c_str()); s->codeAppendf( "%s[i][0] = -dot(n, corner) + .5;", fAABoxTranslates.c_str()); // The Y component runs perpendicular to the edge (i.e. distance-to-edge). s->codeAppend ( "n = (i == 0) ? float2(-n.y, n.x) : float2(n.y, -n.x);"); s->codeAppendf( "%s[i][1] = n;", fAABoxMatrices.c_str()); s->codeAppendf( "%s[i][1] = -dot(n, corner) + .5;", fAABoxTranslates.c_str()); // Translate the bisector into logical AA box space. // NOTE: Since the region outside two edges of a convex shape is in [180 deg, 360 deg], the // bisector will therefore be in [90 deg, 180 deg]. Or, x >= 0 and y <= 0 in AA box space. s->codeAppendf( "%s[i] = -bisect * %s[i];", fGeoShaderBisects.c_str(), fAABoxMatrices.c_str()); s->codeAppend ("}"); } void GrCCTriangleCornerShader::onEmitVaryings(GrGLSLVaryingHandler* varyingHandler, GrGLSLVarying::Scope scope, SkString* code, const char* position, const char* inputCoverage, const char* wind) { SkASSERT(!inputCoverage); fCornerLocationInAABoxes.reset(kFloat2x2_GrSLType, scope); varyingHandler->addVarying("corner_location_in_aa_boxes", &fCornerLocationInAABoxes); fBisectInAABoxes.reset(kFloat2x2_GrSLType, scope); varyingHandler->addFlatVarying("bisect_in_aa_boxes", &fBisectInAABoxes); code->appendf("for (int i = 0; i < 2; ++i) {"); code->appendf( "%s[i] = %s * %s[i] + %s[i];", OutName(fCornerLocationInAABoxes), position, fAABoxMatrices.c_str(), fAABoxTranslates.c_str()); code->appendf( "%s[i] = %s[i];", OutName(fBisectInAABoxes), fGeoShaderBisects.c_str()); code->appendf("}"); fWindTimesHalf.reset(kHalf_GrSLType, scope); varyingHandler->addFlatVarying("wind_times_half", &fWindTimesHalf); code->appendf("%s = %s * .5;", OutName(fWindTimesHalf), wind); } void GrCCTriangleCornerShader::onEmitFragmentCode(GrGLSLPPFragmentBuilder* f, const char* outputCoverage) const { // By the time we reach this shader, the pixel is in the following state: // // 1. The hull shader has emitted a coverage of 1. // 2. Both edges have subtracted the area on their outside. // // This generally works, but it is a problem for corner pixels. There is a region within // corner pixels that is outside both edges at the same time. This means the region has been // double subtracted (once by each edge). The purpose of this shader is to fix these corner // pixels. // // More specifically, each edge redoes its coverage analysis so that it only subtracts the // outside area that falls on its own side of the bisector line. // // NOTE: unless the edges fall on multiples of 90 deg from one another, they will have // different AA boxes. (For an explanation of AA boxes, see comments in // onEmitGeometryShader.) This means the coverage analysis will only be approximate. It // seems acceptable, but if we want exact coverage we will need to switch to a more // expensive model. f->codeAppendf("for (int i = 0; i < 2; ++i) {"); // Loop through both edges. f->codeAppendf( "half2 corner = %s[i];", fCornerLocationInAABoxes.fsIn()); f->codeAppendf( "half2 bisect = %s[i];", fBisectInAABoxes.fsIn()); // Find the point at which the bisector exits the logical AA box. // (The inequality works because bisect.x is known >= 0 and bisect.y is known <= 0.) f->codeAppendf( "half2 d = half2(1 - corner.x, -corner.y);"); f->codeAppendf( "half T = d.y * bisect.x >= d.x * bisect.y ? d.y / bisect.y " ": d.x / bisect.x;"); f->codeAppendf( "half2 exit = corner + bisect * T;"); // These lines combined (and the final multiply by .5) accomplish the following: // 1. Add back the area beyond the corner that was subtracted out previously. // 2. Subtract out the area beyond the corner, but under the bisector. // The other edge will take care of the area on its own side of the bisector. f->codeAppendf( "%s += (2 - corner.x - exit.x) * corner.y;", outputCoverage); f->codeAppendf( "%s += (corner.x - 1) * exit.y;", outputCoverage); f->codeAppendf("}"); f->codeAppendf("%s *= %s;", outputCoverage, fWindTimesHalf.fsIn()); }