/* * Copyright 2017 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "GrCCQuadraticShader.h" #include "glsl/GrGLSLVertexGeoBuilder.h" #include "glsl/GrGLSLFragmentShaderBuilder.h" #include "glsl/GrGLSLVertexGeoBuilder.h" using Shader = GrCCCoverageProcessor::Shader; void GrCCQuadraticShader::emitSetupCode(GrGLSLVertexGeoBuilder* s, const char* pts, const char* repetitionID, const char* wind, GeometryVars* vars) const { s->declareGlobal(fCanonicalMatrix); s->codeAppendf("%s = float3x3(0.0, 0, 1, " "0.5, 0, 1, " "1.0, 1, 1) * " "inverse(float3x3(%s[0], 1, " "%s[1], 1, " "%s[2], 1));", fCanonicalMatrix.c_str(), pts, pts, pts); s->declareGlobal(fEdgeDistanceEquation); s->codeAppendf("float2 edgept0 = %s[%s > 0 ? 2 : 0];", pts, wind); s->codeAppendf("float2 edgept1 = %s[%s > 0 ? 0 : 2];", pts, wind); Shader::EmitEdgeDistanceEquation(s, "edgept0", "edgept1", fEdgeDistanceEquation.c_str()); this->onEmitSetupCode(s, pts, repetitionID, vars); } void GrCCQuadraticShader::onEmitVaryings(GrGLSLVaryingHandler* varyingHandler, GrGLSLVarying::Scope scope, SkString* code, const char* position, const char* inputCoverage, const char* wind) { SkASSERT(!inputCoverage); fXYDW.reset(kFloat4_GrSLType, scope); varyingHandler->addVarying("xydw", &fXYDW); code->appendf("%s.xy = (%s * float3(%s, 1)).xy;", OutName(fXYDW), fCanonicalMatrix.c_str(), position); code->appendf("%s.z = dot(%s.xy, %s) + %s.z;", OutName(fXYDW), fEdgeDistanceEquation.c_str(), position, fEdgeDistanceEquation.c_str()); code->appendf("%s.w = %s;", OutName(fXYDW), wind); this->onEmitVaryings(varyingHandler, scope, code); } void GrCCQuadraticShader::onEmitFragmentCode(GrGLSLPPFragmentBuilder* f, const char* outputCoverage) const { this->emitCoverage(f, outputCoverage); f->codeAppendf("%s *= %s.w;", outputCoverage, fXYDW.fsIn()); // Sign by wind. } void GrCCQuadraticHullShader::onEmitSetupCode(GrGLSLVertexGeoBuilder* s, const char* pts, const char* /*repetitionID*/, GeometryVars* vars) const { // Find the T value whose tangent is halfway between the tangents at the endpionts. s->codeAppendf("float2 tan0 = %s[1] - %s[0];", pts, pts); s->codeAppendf("float2 tan1 = %s[2] - %s[1];", pts, pts); s->codeAppend ("float2 midnorm = normalize(tan0) - normalize(tan1);"); s->codeAppend ("float2 T = midnorm * float2x2(tan0 - tan1, tan0);"); s->codeAppend ("float t = clamp(T.t / T.s, 0, 1);"); // T.s != 0; we cull flat curves on CPU. // Clip the bezier triangle by the tangent at our new t value. This is a simple application for // De Casteljau's algorithm. s->codeAppendf("float4x2 quadratic_hull = float4x2(%s[0], " "%s[0] + tan0 * t, " "%s[1] + tan1 * t, " "%s[2]);", pts, pts, pts, pts); vars->fHullVars.fAlternatePoints = "quadratic_hull"; } void GrCCQuadraticHullShader::onEmitVaryings(GrGLSLVaryingHandler* varyingHandler, GrGLSLVarying::Scope scope, SkString* code) { fGrad.reset(kFloat2_GrSLType, scope); varyingHandler->addVarying("grad", &fGrad); code->appendf("%s = float2(2 * %s.x, -1) * float2x2(%s);", OutName(fGrad), OutName(fXYDW), fCanonicalMatrix.c_str()); } void GrCCQuadraticHullShader::emitCoverage(GrGLSLPPFragmentBuilder* f, const char* outputCoverage) const { f->codeAppendf("float d = (%s.x * %s.x - %s.y) * inversesqrt(dot(%s, %s));", fXYDW.fsIn(), fXYDW.fsIn(), fXYDW.fsIn(), fGrad.fsIn(), fGrad.fsIn()); f->codeAppendf("%s = clamp(0.5 - d, 0, 1);", outputCoverage); f->codeAppendf("%s += min(%s.z, 0);", outputCoverage, fXYDW.fsIn()); // Flat closing edge. } void GrCCQuadraticCornerShader::onEmitSetupCode(GrGLSLVertexGeoBuilder* s, const char* pts, const char* repetitionID, GeometryVars* vars) const { s->codeAppendf("float2 corner = %s[%s * 2];", pts, repetitionID); vars->fCornerVars.fPoint = "corner"; } void GrCCQuadraticCornerShader::onEmitVaryings(GrGLSLVaryingHandler* varyingHandler, GrGLSLVarying::Scope scope, SkString* code) { fdXYDdx.reset(kFloat3_GrSLType, scope); varyingHandler->addFlatVarying("dXYDdx", &fdXYDdx); code->appendf("%s = float3(%s[0].x, %s[0].y, %s.x);", OutName(fdXYDdx), fCanonicalMatrix.c_str(), fCanonicalMatrix.c_str(), fEdgeDistanceEquation.c_str()); fdXYDdy.reset(kFloat3_GrSLType, scope); varyingHandler->addFlatVarying("dXYDdy", &fdXYDdy); code->appendf("%s = float3(%s[1].x, %s[1].y, %s.y);", OutName(fdXYDdy), fCanonicalMatrix.c_str(), fCanonicalMatrix.c_str(), fEdgeDistanceEquation.c_str()); } void GrCCQuadraticCornerShader::emitCoverage(GrGLSLPPFragmentBuilder* f, const char* outputCoverage) const { f->codeAppendf("float x = %s.x, y = %s.y, d = %s.z;", fXYDW.fsIn(), fXYDW.fsIn(), fXYDW.fsIn()); f->codeAppendf("float2x3 grad_xyd = float2x3(%s, %s);", fdXYDdx.fsIn(), fdXYDdy.fsIn()); // Erase what the previous hull shader wrote. We don't worry about the two corners falling on // the same pixel because those cases should have been weeded out by this point. f->codeAppend ("float f = x*x - y;"); f->codeAppend ("float2 grad_f = float2(2*x, -1) * float2x2(grad_xyd);"); f->codeAppendf("%s = -(0.5 - f * inversesqrt(dot(grad_f, grad_f)));", outputCoverage); f->codeAppendf("%s -= d;", outputCoverage); // Use software msaa to approximate coverage at the corner pixels. int sampleCount = Shader::DefineSoftSampleLocations(f, "samples"); f->codeAppendf("float3 xyd_center = float3(%s.xy, %s.z + 0.5);", fXYDW.fsIn(), fXYDW.fsIn()); f->codeAppendf("for (int i = 0; i < %i; ++i) {", sampleCount); f->codeAppend ( "float3 xyd = grad_xyd * samples[i] + xyd_center;"); f->codeAppend ( "half f = xyd.y - xyd.x * xyd.x;"); // f > 0 -> inside curve. f->codeAppendf( "%s += all(greaterThan(float2(f,xyd.z), float2(0))) ? %f : 0;", outputCoverage, 1.0 / sampleCount); f->codeAppendf("}"); }