/* * Copyright 2015 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "GrYUVProvider.h" #include "GrClip.h" #include "GrContext.h" #include "GrContextPriv.h" #include "GrRenderTargetContext.h" #include "GrTextureProxy.h" #include "SkAutoMalloc.h" #include "SkCachedData.h" #include "SkRefCnt.h" #include "SkResourceCache.h" #include "SkYUVPlanesCache.h" #include "effects/GrNonlinearColorSpaceXformEffect.h" #include "effects/GrSRGBEffect.h" #include "effects/GrYUVtoRGBEffect.h" sk_sp<SkCachedData> init_provider(GrYUVProvider* provider, SkYUVPlanesCache::Info* yuvInfo, void* planes[3]) { sk_sp<SkCachedData> data; data.reset(SkYUVPlanesCache::FindAndRef(provider->onGetID(), yuvInfo)); if (data.get()) { planes[0] = (void*)data->data(); planes[1] = (uint8_t*)planes[0] + (yuvInfo->fSizeInfo.fWidthBytes[SkYUVSizeInfo::kY] * yuvInfo->fSizeInfo.fSizes[SkYUVSizeInfo::kY].fHeight); planes[2] = (uint8_t*)planes[1] + (yuvInfo->fSizeInfo.fWidthBytes[SkYUVSizeInfo::kU] * yuvInfo->fSizeInfo.fSizes[SkYUVSizeInfo::kU].fHeight); } else { // Fetch yuv plane sizes for memory allocation. if (!provider->onQueryYUV8(&yuvInfo->fSizeInfo, &yuvInfo->fColorSpace)) { return nullptr; } // Allocate the memory for YUV size_t totalSize(0); for (int i = 0; i < 3; i++) { totalSize += yuvInfo->fSizeInfo.fWidthBytes[i] * yuvInfo->fSizeInfo.fSizes[i].fHeight; } data.reset(SkResourceCache::NewCachedData(totalSize)); planes[0] = data->writable_data(); planes[1] = (uint8_t*)planes[0] + (yuvInfo->fSizeInfo.fWidthBytes[SkYUVSizeInfo::kY] * yuvInfo->fSizeInfo.fSizes[SkYUVSizeInfo::kY].fHeight); planes[2] = (uint8_t*)planes[1] + (yuvInfo->fSizeInfo.fWidthBytes[SkYUVSizeInfo::kU] * yuvInfo->fSizeInfo.fSizes[SkYUVSizeInfo::kU].fHeight); // Get the YUV planes. if (!provider->onGetYUV8Planes(yuvInfo->fSizeInfo, planes)) { return nullptr; } // Decoding is done, cache the resulting YUV planes SkYUVPlanesCache::Add(provider->onGetID(), data.get(), yuvInfo); } return data; } sk_sp<GrTextureProxy> GrYUVProvider::refAsTextureProxy(GrContext* ctx, const GrSurfaceDesc& desc, const SkColorSpace* srcColorSpace, const SkColorSpace* dstColorSpace) { SkYUVPlanesCache::Info yuvInfo; void* planes[3]; sk_sp<SkCachedData> dataStorage = init_provider(this, &yuvInfo, planes); if (!dataStorage) { return nullptr; } GrSurfaceDesc yuvDesc; yuvDesc.fOrigin = kTopLeft_GrSurfaceOrigin; yuvDesc.fConfig = kAlpha_8_GrPixelConfig; sk_sp<GrSurfaceContext> yuvTextureContexts[3]; for (int i = 0; i < 3; i++) { yuvDesc.fWidth = yuvInfo.fSizeInfo.fSizes[i].fWidth; yuvDesc.fHeight = yuvInfo.fSizeInfo.fSizes[i].fHeight; // TODO: why do we need this check? SkBackingFit fit = (yuvDesc.fWidth != yuvInfo.fSizeInfo.fSizes[SkYUVSizeInfo::kY].fWidth) || (yuvDesc.fHeight != yuvInfo.fSizeInfo.fSizes[SkYUVSizeInfo::kY].fHeight) ? SkBackingFit::kExact : SkBackingFit::kApprox; yuvTextureContexts[i] = ctx->contextPriv().makeDeferredSurfaceContext(yuvDesc, GrMipMapped::kNo, fit, SkBudgeted::kYes); if (!yuvTextureContexts[i]) { return nullptr; } const SkImageInfo ii = SkImageInfo::MakeA8(yuvDesc.fWidth, yuvDesc.fHeight); if (!yuvTextureContexts[i]->writePixels(ii, planes[i], yuvInfo.fSizeInfo.fWidthBytes[i], 0, 0)) { return nullptr; } } // We never want to perform color-space conversion during the decode // TODO: investigate preallocating mip maps here sk_sp<GrRenderTargetContext> renderTargetContext(ctx->makeDeferredRenderTargetContext( SkBackingFit::kExact, desc.fWidth, desc.fHeight, desc.fConfig, nullptr, desc.fSampleCnt, GrMipMapped::kNo, kTopLeft_GrSurfaceOrigin)); if (!renderTargetContext) { return nullptr; } GrPaint paint; auto yuvToRgbProcessor = GrYUVtoRGBEffect::Make(yuvTextureContexts[0]->asTextureProxyRef(), yuvTextureContexts[1]->asTextureProxyRef(), yuvTextureContexts[2]->asTextureProxyRef(), yuvInfo.fSizeInfo.fSizes, yuvInfo.fColorSpace, false); paint.addColorFragmentProcessor(std::move(yuvToRgbProcessor)); // If we're decoding an sRGB image, the result of our linear math on the YUV planes is already // in sRGB. (The encoding is just math on bytes, with no concept of color spaces.) So, we need // to output the results of that math directly to the buffer that we will then consider sRGB. // If we have sRGB write control, we can just tell the HW not to do the Linear -> sRGB step. // Otherwise, we do our shader math to go from YUV -> sRGB, manually convert sRGB -> Linear, // then let the HW convert Linear -> sRGB. if (GrPixelConfigIsSRGB(desc.fConfig)) { if (ctx->caps()->srgbWriteControl()) { paint.setDisableOutputConversionToSRGB(true); } else { paint.addColorFragmentProcessor(GrSRGBEffect::Make(GrSRGBEffect::Mode::kSRGBToLinear, GrSRGBEffect::Alpha::kOpaque)); } } // If the caller expects the pixels in a different color space than the one from the image, // apply a color conversion to do this. std::unique_ptr<GrFragmentProcessor> colorConversionProcessor = GrNonlinearColorSpaceXformEffect::Make(srcColorSpace, dstColorSpace); if (colorConversionProcessor) { paint.addColorFragmentProcessor(std::move(colorConversionProcessor)); } paint.setPorterDuffXPFactory(SkBlendMode::kSrc); const SkRect r = SkRect::MakeIWH(yuvInfo.fSizeInfo.fSizes[SkYUVSizeInfo::kY].fWidth, yuvInfo.fSizeInfo.fSizes[SkYUVSizeInfo::kY].fHeight); renderTargetContext->drawRect(GrNoClip(), std::move(paint), GrAA::kNo, SkMatrix::I(), r); return renderTargetContext->asTextureProxyRef(); }