/* * Copyright 2016 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "GrReducedClip.h" #include "GrAppliedClip.h" #include "GrClip.h" #include "GrColor.h" #include "GrContextPriv.h" #include "GrRenderTargetContext.h" #include "GrRenderTargetContextPriv.h" #include "GrDrawingManager.h" #include "GrFixedClip.h" #include "GrPathRenderer.h" #include "GrStencilSettings.h" #include "GrStencilClip.h" #include "GrStyle.h" #include "GrUserStencilSettings.h" #include "SkClipOpPriv.h" #include "ccpr/GrCoverageCountingPathRenderer.h" #include "effects/GrAARectEffect.h" #include "effects/GrConvexPolyEffect.h" #include "effects/GrRRectEffect.h" /** * There are plenty of optimizations that could be added here. Maybe flips could be folded into * earlier operations. Or would inserting flips and reversing earlier ops ever be a win? Perhaps * for the case where the bounds are kInsideOut_BoundsType. We could restrict earlier operations * based on later intersect operations, and perhaps remove intersect-rects. We could optionally * take a rect in case the caller knows a bound on what is to be drawn through this clip. */ GrReducedClip::GrReducedClip(const SkClipStack& stack, const SkRect& queryBounds, const GrShaderCaps* caps, int maxWindowRectangles, int maxAnalyticFPs, GrCoverageCountingPathRenderer* ccpr) : fCaps(caps) , fMaxWindowRectangles(maxWindowRectangles) , fMaxAnalyticFPs(maxAnalyticFPs) , fCCPR(fMaxAnalyticFPs ? ccpr : nullptr) { SkASSERT(!queryBounds.isEmpty()); SkASSERT(fMaxWindowRectangles <= GrWindowRectangles::kMaxWindows); fHasScissor = false; fAAClipRectGenID = SK_InvalidGenID; if (stack.isWideOpen()) { fInitialState = InitialState::kAllIn; return; } SkClipStack::BoundsType stackBoundsType; SkRect stackBounds; bool iior; stack.getBounds(&stackBounds, &stackBoundsType, &iior); if (GrClip::IsOutsideClip(stackBounds, queryBounds)) { bool insideOut = SkClipStack::kInsideOut_BoundsType == stackBoundsType; fInitialState = insideOut ? InitialState::kAllIn : InitialState::kAllOut; return; } if (iior) { // "Is intersection of rects" means the clip is a single rect indicated by the stack bounds. // This should only be true if aa/non-aa status matches among all elements. SkASSERT(SkClipStack::kNormal_BoundsType == stackBoundsType); SkClipStack::Iter iter(stack, SkClipStack::Iter::kTop_IterStart); if (!iter.prev()->isAA() || GrClip::IsPixelAligned(stackBounds)) { // The clip is a non-aa rect. Here we just implement the entire thing using fScissor. stackBounds.round(&fScissor); fHasScissor = true; fInitialState = fScissor.isEmpty() ? InitialState::kAllOut : InitialState::kAllIn; return; } if (GrClip::IsInsideClip(stackBounds, queryBounds)) { fInitialState = InitialState::kAllIn; return; } SkRect tightBounds; SkAssertResult(tightBounds.intersect(stackBounds, queryBounds)); fScissor = GrClip::GetPixelIBounds(tightBounds); if (fScissor.isEmpty()) { fInitialState = InitialState::kAllOut; return; } fHasScissor = true; fAAClipRect = stackBounds; fAAClipRectGenID = stack.getTopmostGenID(); SkASSERT(SK_InvalidGenID != fAAClipRectGenID); fInitialState = InitialState::kAllIn; } else { SkRect tighterQuery = queryBounds; if (SkClipStack::kNormal_BoundsType == stackBoundsType) { // Tighten the query by introducing a new clip at the stack's pixel boundaries. (This // new clip will be enforced by the scissor.) SkAssertResult(tighterQuery.intersect(GrClip::GetPixelBounds(stackBounds))); } fScissor = GrClip::GetPixelIBounds(tighterQuery); if (fScissor.isEmpty()) { fInitialState = InitialState::kAllOut; return; } fHasScissor = true; // Now that we have determined the bounds to use and filtered out the trivial cases, call // the helper that actually walks the stack. this->walkStack(stack, tighterQuery); } if (SK_InvalidGenID != fAAClipRectGenID && // Is there an AA clip rect? ClipResult::kNotClipped == this->addAnalyticFP(fAAClipRect, Invert::kNo, GrAA::kYes)) { if (fMaskElements.isEmpty()) { // Use a replace since it is faster than intersect. fMaskElements.addToHead(fAAClipRect, SkMatrix::I(), kReplace_SkClipOp, true /*doAA*/); fInitialState = InitialState::kAllOut; } else { fMaskElements.addToTail(fAAClipRect, SkMatrix::I(), kIntersect_SkClipOp, true /*doAA*/); } fMaskRequiresAA = true; fMaskGenID = fAAClipRectGenID; } } void GrReducedClip::walkStack(const SkClipStack& stack, const SkRect& queryBounds) { // walk backwards until we get to: // a) the beginning // b) an operation that is known to make the bounds all inside/outside // c) a replace operation enum class InitialTriState { kUnknown = -1, kAllIn = (int)GrReducedClip::InitialState::kAllIn, kAllOut = (int)GrReducedClip::InitialState::kAllOut } initialTriState = InitialTriState::kUnknown; // During our backwards walk, track whether we've seen ops that either grow or shrink the clip. // TODO: track these per saved clip so that we can consider them on the forward pass. bool embiggens = false; bool emsmallens = false; // We use a slightly relaxed set of query bounds for element containment tests. This is to // account for floating point rounding error that may have occurred during coord transforms. SkRect relaxedQueryBounds = queryBounds.makeInset(GrClip::kBoundsTolerance, GrClip::kBoundsTolerance); if (relaxedQueryBounds.isEmpty()) { relaxedQueryBounds = queryBounds; } SkClipStack::Iter iter(stack, SkClipStack::Iter::kTop_IterStart); int numAAElements = 0; while (InitialTriState::kUnknown == initialTriState) { const Element* element = iter.prev(); if (nullptr == element) { initialTriState = InitialTriState::kAllIn; break; } if (SkClipStack::kEmptyGenID == element->getGenID()) { initialTriState = InitialTriState::kAllOut; break; } if (SkClipStack::kWideOpenGenID == element->getGenID()) { initialTriState = InitialTriState::kAllIn; break; } bool skippable = false; bool isFlip = false; // does this op just flip the in/out state of every point in the bounds switch (element->getOp()) { case kDifference_SkClipOp: // check if the shape subtracted either contains the entire bounds (and makes // the clip empty) or is outside the bounds and therefore can be skipped. if (element->isInverseFilled()) { if (element->contains(relaxedQueryBounds)) { skippable = true; } else if (GrClip::IsOutsideClip(element->getBounds(), queryBounds)) { initialTriState = InitialTriState::kAllOut; skippable = true; } else if (!embiggens) { ClipResult result = this->clipInsideElement(element); if (ClipResult::kMadeEmpty == result) { return; } skippable = (ClipResult::kClipped == result); } } else { if (element->contains(relaxedQueryBounds)) { initialTriState = InitialTriState::kAllOut; skippable = true; } else if (GrClip::IsOutsideClip(element->getBounds(), queryBounds)) { skippable = true; } else if (!embiggens) { ClipResult result = this->clipOutsideElement(element); if (ClipResult::kMadeEmpty == result) { return; } skippable = (ClipResult::kClipped == result); } } if (!skippable) { emsmallens = true; } break; case kIntersect_SkClipOp: // check if the shape intersected contains the entire bounds and therefore can // be skipped or it is outside the entire bounds and therefore makes the clip // empty. if (element->isInverseFilled()) { if (element->contains(relaxedQueryBounds)) { initialTriState = InitialTriState::kAllOut; skippable = true; } else if (GrClip::IsOutsideClip(element->getBounds(), queryBounds)) { skippable = true; } else if (!embiggens) { ClipResult result = this->clipOutsideElement(element); if (ClipResult::kMadeEmpty == result) { return; } skippable = (ClipResult::kClipped == result); } } else { if (element->contains(relaxedQueryBounds)) { skippable = true; } else if (GrClip::IsOutsideClip(element->getBounds(), queryBounds)) { initialTriState = InitialTriState::kAllOut; skippable = true; } else if (!embiggens) { ClipResult result = this->clipInsideElement(element); if (ClipResult::kMadeEmpty == result) { return; } skippable = (ClipResult::kClipped == result); } } if (!skippable) { emsmallens = true; } break; case kUnion_SkClipOp: // If the union-ed shape contains the entire bounds then after this element // the bounds is entirely inside the clip. If the union-ed shape is outside the // bounds then this op can be skipped. if (element->isInverseFilled()) { if (element->contains(relaxedQueryBounds)) { skippable = true; } else if (GrClip::IsOutsideClip(element->getBounds(), queryBounds)) { initialTriState = InitialTriState::kAllIn; skippable = true; } } else { if (element->contains(relaxedQueryBounds)) { initialTriState = InitialTriState::kAllIn; skippable = true; } else if (GrClip::IsOutsideClip(element->getBounds(), queryBounds)) { skippable = true; } } if (!skippable) { embiggens = true; } break; case kXOR_SkClipOp: // If the bounds is entirely inside the shape being xor-ed then the effect is // to flip the inside/outside state of every point in the bounds. We may be // able to take advantage of this in the forward pass. If the xor-ed shape // doesn't intersect the bounds then it can be skipped. if (element->isInverseFilled()) { if (element->contains(relaxedQueryBounds)) { skippable = true; } else if (GrClip::IsOutsideClip(element->getBounds(), queryBounds)) { isFlip = true; } } else { if (element->contains(relaxedQueryBounds)) { isFlip = true; } else if (GrClip::IsOutsideClip(element->getBounds(), queryBounds)) { skippable = true; } } if (!skippable) { emsmallens = embiggens = true; } break; case kReverseDifference_SkClipOp: // When the bounds is entirely within the rev-diff shape then this behaves like xor // and reverses every point inside the bounds. If the shape is completely outside // the bounds then we know after this element is applied that the bounds will be // all outside the current clip.B if (element->isInverseFilled()) { if (element->contains(relaxedQueryBounds)) { initialTriState = InitialTriState::kAllOut; skippable = true; } else if (GrClip::IsOutsideClip(element->getBounds(), queryBounds)) { isFlip = true; } } else { if (element->contains(relaxedQueryBounds)) { isFlip = true; } else if (GrClip::IsOutsideClip(element->getBounds(), queryBounds)) { initialTriState = InitialTriState::kAllOut; skippable = true; } } if (!skippable) { emsmallens = embiggens = true; } break; case kReplace_SkClipOp: // Replace will always terminate our walk. We will either begin the forward walk // at the replace op or detect here than the shape is either completely inside // or completely outside the bounds. In this latter case it can be skipped by // setting the correct value for initialTriState. if (element->isInverseFilled()) { if (element->contains(relaxedQueryBounds)) { initialTriState = InitialTriState::kAllOut; skippable = true; } else if (GrClip::IsOutsideClip(element->getBounds(), queryBounds)) { initialTriState = InitialTriState::kAllIn; skippable = true; } else if (!embiggens) { ClipResult result = this->clipOutsideElement(element); if (ClipResult::kMadeEmpty == result) { return; } if (ClipResult::kClipped == result) { initialTriState = InitialTriState::kAllIn; skippable = true; } } } else { if (element->contains(relaxedQueryBounds)) { initialTriState = InitialTriState::kAllIn; skippable = true; } else if (GrClip::IsOutsideClip(element->getBounds(), queryBounds)) { initialTriState = InitialTriState::kAllOut; skippable = true; } else if (!embiggens) { ClipResult result = this->clipInsideElement(element); if (ClipResult::kMadeEmpty == result) { return; } if (ClipResult::kClipped == result) { initialTriState = InitialTriState::kAllIn; skippable = true; } } } if (!skippable) { initialTriState = InitialTriState::kAllOut; embiggens = emsmallens = true; } break; default: SkDEBUGFAIL("Unexpected op."); break; } if (!skippable) { if (fMaskElements.isEmpty()) { // This will be the last element. Record the stricter genID. fMaskGenID = element->getGenID(); } // if it is a flip, change it to a bounds-filling rect if (isFlip) { SkASSERT(kXOR_SkClipOp == element->getOp() || kReverseDifference_SkClipOp == element->getOp()); fMaskElements.addToHead(SkRect::Make(fScissor), SkMatrix::I(), kReverseDifference_SkClipOp, false); } else { Element* newElement = fMaskElements.addToHead(*element); if (newElement->isAA()) { ++numAAElements; } // Intersecting an inverse shape is the same as differencing the non-inverse shape. // Replacing with an inverse shape is the same as setting initialState=kAllIn and // differencing the non-inverse shape. bool isReplace = kReplace_SkClipOp == newElement->getOp(); if (newElement->isInverseFilled() && (kIntersect_SkClipOp == newElement->getOp() || isReplace)) { newElement->invertShapeFillType(); newElement->setOp(kDifference_SkClipOp); if (isReplace) { SkASSERT(InitialTriState::kAllOut == initialTriState); initialTriState = InitialTriState::kAllIn; } } } } } if ((InitialTriState::kAllOut == initialTriState && !embiggens) || (InitialTriState::kAllIn == initialTriState && !emsmallens)) { fMaskElements.reset(); numAAElements = 0; } else { Element* element = fMaskElements.headIter().get(); while (element) { bool skippable = false; switch (element->getOp()) { case kDifference_SkClipOp: // subtracting from the empty set yields the empty set. skippable = InitialTriState::kAllOut == initialTriState; break; case kIntersect_SkClipOp: // intersecting with the empty set yields the empty set if (InitialTriState::kAllOut == initialTriState) { skippable = true; } else { // We can clear to zero and then simply draw the clip element. initialTriState = InitialTriState::kAllOut; element->setOp(kReplace_SkClipOp); } break; case kUnion_SkClipOp: if (InitialTriState::kAllIn == initialTriState) { // unioning the infinite plane with anything is a no-op. skippable = true; } else { // unioning the empty set with a shape is the shape. element->setOp(kReplace_SkClipOp); } break; case kXOR_SkClipOp: if (InitialTriState::kAllOut == initialTriState) { // xor could be changed to diff in the kAllIn case, not sure it's a win. element->setOp(kReplace_SkClipOp); } break; case kReverseDifference_SkClipOp: if (InitialTriState::kAllIn == initialTriState) { // subtracting the whole plane will yield the empty set. skippable = true; initialTriState = InitialTriState::kAllOut; } else { // this picks up flips inserted in the backwards pass. skippable = element->isInverseFilled() ? GrClip::IsOutsideClip(element->getBounds(), queryBounds) : element->contains(relaxedQueryBounds); if (skippable) { initialTriState = InitialTriState::kAllIn; } else { element->setOp(kReplace_SkClipOp); } } break; case kReplace_SkClipOp: skippable = false; // we would have skipped it in the backwards walk if we // could've. break; default: SkDEBUGFAIL("Unexpected op."); break; } if (!skippable) { break; } else { if (element->isAA()) { --numAAElements; } fMaskElements.popHead(); element = fMaskElements.headIter().get(); } } } fMaskRequiresAA = numAAElements > 0; SkASSERT(InitialTriState::kUnknown != initialTriState); fInitialState = static_cast<GrReducedClip::InitialState>(initialTriState); } GrReducedClip::ClipResult GrReducedClip::clipInsideElement(const Element* element) { SkIRect elementIBounds; if (!element->isAA()) { element->getBounds().round(&elementIBounds); } else { elementIBounds = GrClip::GetPixelIBounds(element->getBounds()); } SkASSERT(fHasScissor); if (!fScissor.intersect(elementIBounds)) { this->makeEmpty(); return ClipResult::kMadeEmpty; } switch (element->getDeviceSpaceType()) { case Element::DeviceSpaceType::kEmpty: return ClipResult::kMadeEmpty; case Element::DeviceSpaceType::kRect: SkASSERT(element->getBounds() == element->getDeviceSpaceRect()); SkASSERT(!element->isInverseFilled()); if (element->isAA()) { if (SK_InvalidGenID == fAAClipRectGenID) { // No AA clip rect yet? fAAClipRect = element->getDeviceSpaceRect(); // fAAClipRectGenID is the value we should use for fMaskGenID if we end up // moving the AA clip rect into the mask. The mask GenID is simply the topmost // element's GenID. And since we walk the stack backwards, this means it's just // the first element we don't skip during our walk. fAAClipRectGenID = fMaskElements.isEmpty() ? element->getGenID() : fMaskGenID; SkASSERT(SK_InvalidGenID != fAAClipRectGenID); } else if (!fAAClipRect.intersect(element->getDeviceSpaceRect())) { this->makeEmpty(); return ClipResult::kMadeEmpty; } } return ClipResult::kClipped; case Element::DeviceSpaceType::kRRect: SkASSERT(!element->isInverseFilled()); return this->addAnalyticFP(element->getDeviceSpaceRRect(), Invert::kNo, GrAA(element->isAA())); case Element::DeviceSpaceType::kPath: return this->addAnalyticFP(element->getDeviceSpacePath(), Invert(element->isInverseFilled()), GrAA(element->isAA())); } SK_ABORT("Unexpected DeviceSpaceType"); return ClipResult::kNotClipped; } GrReducedClip::ClipResult GrReducedClip::clipOutsideElement(const Element* element) { switch (element->getDeviceSpaceType()) { case Element::DeviceSpaceType::kEmpty: return ClipResult::kMadeEmpty; case Element::DeviceSpaceType::kRect: SkASSERT(!element->isInverseFilled()); if (fWindowRects.count() < fMaxWindowRectangles) { // Clip out the inside of every rect. We won't be able to entirely skip the AA ones, // but it saves processing time. this->addWindowRectangle(element->getDeviceSpaceRect(), element->isAA()); if (!element->isAA()) { return ClipResult::kClipped; } } return this->addAnalyticFP(element->getDeviceSpaceRect(), Invert::kYes, GrAA(element->isAA())); case Element::DeviceSpaceType::kRRect: { SkASSERT(!element->isInverseFilled()); const SkRRect& clipRRect = element->getDeviceSpaceRRect(); ClipResult clipResult = this->addAnalyticFP(clipRRect, Invert::kYes, GrAA(element->isAA())); if (fWindowRects.count() >= fMaxWindowRectangles) { return clipResult; } // Clip out the interiors of round rects with two window rectangles in the shape of a // "plus". This doesn't let us skip the clip element, but still saves processing time. SkVector insetTL = clipRRect.radii(SkRRect::kUpperLeft_Corner); SkVector insetBR = clipRRect.radii(SkRRect::kLowerRight_Corner); if (SkRRect::kComplex_Type == clipRRect.getType()) { const SkVector& insetTR = clipRRect.radii(SkRRect::kUpperRight_Corner); const SkVector& insetBL = clipRRect.radii(SkRRect::kLowerLeft_Corner); insetTL.fX = SkTMax(insetTL.x(), insetBL.x()); insetTL.fY = SkTMax(insetTL.y(), insetTR.y()); insetBR.fX = SkTMax(insetBR.x(), insetTR.x()); insetBR.fY = SkTMax(insetBR.y(), insetBL.y()); } const SkRect& bounds = clipRRect.getBounds(); if (insetTL.x() + insetBR.x() >= bounds.width() || insetTL.y() + insetBR.y() >= bounds.height()) { return clipResult; // The interior "plus" is empty. } SkRect horzRect = SkRect::MakeLTRB(bounds.left(), bounds.top() + insetTL.y(), bounds.right(), bounds.bottom() - insetBR.y()); this->addWindowRectangle(horzRect, element->isAA()); if (fWindowRects.count() < fMaxWindowRectangles) { SkRect vertRect = SkRect::MakeLTRB(bounds.left() + insetTL.x(), bounds.top(), bounds.right() - insetBR.x(), bounds.bottom()); this->addWindowRectangle(vertRect, element->isAA()); } return clipResult; } case Element::DeviceSpaceType::kPath: return this->addAnalyticFP(element->getDeviceSpacePath(), Invert(!element->isInverseFilled()), GrAA(element->isAA())); } SK_ABORT("Unexpected DeviceSpaceType"); return ClipResult::kNotClipped; } inline void GrReducedClip::addWindowRectangle(const SkRect& elementInteriorRect, bool elementIsAA) { SkIRect window; if (!elementIsAA) { elementInteriorRect.round(&window); } else { elementInteriorRect.roundIn(&window); } if (!window.isEmpty()) { // Skip very thin windows that round to zero or negative dimensions. fWindowRects.addWindow(window); } } GrClipEdgeType GrReducedClip::GetClipEdgeType(Invert invert, GrAA aa) { if (Invert::kNo == invert) { return (GrAA::kYes == aa) ? GrClipEdgeType::kFillAA : GrClipEdgeType::kFillBW; } else { return (GrAA::kYes == aa) ? GrClipEdgeType::kInverseFillAA : GrClipEdgeType::kInverseFillBW; } } GrReducedClip::ClipResult GrReducedClip::addAnalyticFP(const SkRect& deviceSpaceRect, Invert invert, GrAA aa) { if (this->numAnalyticFPs() >= fMaxAnalyticFPs) { return ClipResult::kNotClipped; } fAnalyticFPs.push_back(GrAARectEffect::Make(GetClipEdgeType(invert, aa), deviceSpaceRect)); SkASSERT(fAnalyticFPs.back()); return ClipResult::kClipped; } GrReducedClip::ClipResult GrReducedClip::addAnalyticFP(const SkRRect& deviceSpaceRRect, Invert invert, GrAA aa) { if (this->numAnalyticFPs() >= fMaxAnalyticFPs) { return ClipResult::kNotClipped; } if (auto fp = GrRRectEffect::Make(GetClipEdgeType(invert, aa), deviceSpaceRRect, *fCaps)) { fAnalyticFPs.push_back(std::move(fp)); return ClipResult::kClipped; } SkPath deviceSpacePath; deviceSpacePath.setIsVolatile(true); deviceSpacePath.addRRect(deviceSpaceRRect); return this->addAnalyticFP(deviceSpacePath, invert, aa); } GrReducedClip::ClipResult GrReducedClip::addAnalyticFP(const SkPath& deviceSpacePath, Invert invert, GrAA aa) { if (this->numAnalyticFPs() >= fMaxAnalyticFPs) { return ClipResult::kNotClipped; } if (auto fp = GrConvexPolyEffect::Make(GetClipEdgeType(invert, aa), deviceSpacePath)) { fAnalyticFPs.push_back(std::move(fp)); return ClipResult::kClipped; } if (fCCPR && GrAA::kYes == aa && fCCPR->canMakeClipProcessor(deviceSpacePath)) { // Set aside CCPR paths for later. We will create their clip FPs once we know the ID of the // opList they will operate in. SkPath& ccprClipPath = fCCPRClipPaths.push_back(deviceSpacePath); if (Invert::kYes == invert) { ccprClipPath.toggleInverseFillType(); } return ClipResult::kClipped; } return ClipResult::kNotClipped; } void GrReducedClip::makeEmpty() { fHasScissor = false; fAAClipRectGenID = SK_InvalidGenID; fWindowRects.reset(); fMaskElements.reset(); fInitialState = InitialState::kAllOut; } //////////////////////////////////////////////////////////////////////////////// // Create a 8-bit clip mask in alpha static bool stencil_element(GrRenderTargetContext* rtc, const GrFixedClip& clip, const GrUserStencilSettings* ss, const SkMatrix& viewMatrix, const SkClipStack::Element* element) { GrAA aa = GrAA(element->isAA()); switch (element->getDeviceSpaceType()) { case SkClipStack::Element::DeviceSpaceType::kEmpty: SkDEBUGFAIL("Should never get here with an empty element."); break; case SkClipStack::Element::DeviceSpaceType::kRect: return rtc->priv().drawAndStencilRect(clip, ss, (SkRegion::Op)element->getOp(), element->isInverseFilled(), aa, viewMatrix, element->getDeviceSpaceRect()); break; default: { SkPath path; element->asDeviceSpacePath(&path); if (path.isInverseFillType()) { path.toggleInverseFillType(); } return rtc->priv().drawAndStencilPath(clip, ss, (SkRegion::Op)element->getOp(), element->isInverseFilled(), aa, viewMatrix, path); break; } } return false; } static void draw_element(GrRenderTargetContext* rtc, const GrClip& clip, // TODO: can this just always be WideOpen? GrPaint&& paint, GrAA aa, const SkMatrix& viewMatrix, const SkClipStack::Element* element) { // TODO: Draw rrects directly here. switch (element->getDeviceSpaceType()) { case SkClipStack::Element::DeviceSpaceType::kEmpty: SkDEBUGFAIL("Should never get here with an empty element."); break; case SkClipStack::Element::DeviceSpaceType::kRect: rtc->drawRect(clip, std::move(paint), aa, viewMatrix, element->getDeviceSpaceRect()); break; default: { SkPath path; element->asDeviceSpacePath(&path); if (path.isInverseFillType()) { path.toggleInverseFillType(); } rtc->drawPath(clip, std::move(paint), aa, viewMatrix, path, GrStyle::SimpleFill()); break; } } } bool GrReducedClip::drawAlphaClipMask(GrRenderTargetContext* rtc) const { // The texture may be larger than necessary, this rect represents the part of the texture // we populate with a rasterization of the clip. GrFixedClip clip(SkIRect::MakeWH(fScissor.width(), fScissor.height())); if (!fWindowRects.empty()) { clip.setWindowRectangles(fWindowRects.makeOffset(-fScissor.left(), -fScissor.top()), GrWindowRectsState::Mode::kExclusive); } // The scratch texture that we are drawing into can be substantially larger than the mask. Only // clear the part that we care about. GrColor initialCoverage = InitialState::kAllIn == this->initialState() ? -1 : 0; rtc->priv().clear(clip, initialCoverage, GrRenderTargetContext::CanClearFullscreen::kYes); // Set the matrix so that rendered clip elements are transformed to mask space from clip space. SkMatrix translate; translate.setTranslate(SkIntToScalar(-fScissor.left()), SkIntToScalar(-fScissor.top())); // walk through each clip element and perform its set op for (ElementList::Iter iter(fMaskElements); iter.get(); iter.next()) { const Element* element = iter.get(); SkRegion::Op op = (SkRegion::Op)element->getOp(); GrAA aa = GrAA(element->isAA()); bool invert = element->isInverseFilled(); if (invert || SkRegion::kIntersect_Op == op || SkRegion::kReverseDifference_Op == op) { // draw directly into the result with the stencil set to make the pixels affected // by the clip shape be non-zero. static constexpr GrUserStencilSettings kStencilInElement( GrUserStencilSettings::StaticInit< 0xffff, GrUserStencilTest::kAlways, 0xffff, GrUserStencilOp::kReplace, GrUserStencilOp::kReplace, 0xffff>() ); if (!stencil_element(rtc, clip, &kStencilInElement, translate, element)) { return false; } // Draw to the exterior pixels (those with a zero stencil value). static constexpr GrUserStencilSettings kDrawOutsideElement( GrUserStencilSettings::StaticInit< 0x0000, GrUserStencilTest::kEqual, 0xffff, GrUserStencilOp::kZero, GrUserStencilOp::kZero, 0xffff>() ); if (!rtc->priv().drawAndStencilRect(clip, &kDrawOutsideElement, op, !invert, GrAA::kNo, translate, SkRect::Make(fScissor))) { return false; } } else { // all the remaining ops can just be directly draw into the accumulation buffer GrPaint paint; paint.setCoverageSetOpXPFactory(op, false); draw_element(rtc, clip, std::move(paint), aa, translate, element); } } return true; } //////////////////////////////////////////////////////////////////////////////// // Create a 1-bit clip mask in the stencil buffer. bool GrReducedClip::drawStencilClipMask(GrContext* context, GrRenderTargetContext* renderTargetContext) const { // We set the current clip to the bounds so that our recursive draws are scissored to them. GrStencilClip stencilClip(fScissor, this->maskGenID()); if (!fWindowRects.empty()) { stencilClip.fixedClip().setWindowRectangles(fWindowRects, GrWindowRectsState::Mode::kExclusive); } bool initialState = InitialState::kAllIn == this->initialState(); renderTargetContext->priv().clearStencilClip(stencilClip.fixedClip(), initialState); // walk through each clip element and perform its set op with the existing clip. for (ElementList::Iter iter(fMaskElements); iter.get(); iter.next()) { const Element* element = iter.get(); GrAAType aaType = GrAAType::kNone; if (element->isAA() && GrFSAAType::kNone != renderTargetContext->fsaaType()) { aaType = GrAAType::kMSAA; } bool fillInverted = false; // This will be used to determine whether the clip shape can be rendered into the // stencil with arbitrary stencil settings. GrPathRenderer::StencilSupport stencilSupport; SkRegion::Op op = (SkRegion::Op)element->getOp(); GrPathRenderer* pr = nullptr; SkPath clipPath; if (Element::DeviceSpaceType::kRect == element->getDeviceSpaceType()) { stencilSupport = GrPathRenderer::kNoRestriction_StencilSupport; fillInverted = false; } else { element->asDeviceSpacePath(&clipPath); fillInverted = clipPath.isInverseFillType(); if (fillInverted) { clipPath.toggleInverseFillType(); } GrShape shape(clipPath, GrStyle::SimpleFill()); GrPathRenderer::CanDrawPathArgs canDrawArgs; canDrawArgs.fCaps = context->caps(); canDrawArgs.fClipConservativeBounds = &stencilClip.fixedClip().scissorRect(); canDrawArgs.fViewMatrix = &SkMatrix::I(); canDrawArgs.fShape = &shape; canDrawArgs.fAAType = aaType; canDrawArgs.fHasUserStencilSettings = false; GrDrawingManager* dm = context->contextPriv().drawingManager(); pr = dm->getPathRenderer(canDrawArgs, false, GrPathRendererChain::DrawType::kStencil, &stencilSupport); if (!pr) { return false; } } bool canRenderDirectToStencil = GrPathRenderer::kNoRestriction_StencilSupport == stencilSupport; bool drawDirectToClip; // Given the renderer, the element, // fill rule, and set operation should // we render the element directly to // stencil bit used for clipping. GrUserStencilSettings const* const* stencilPasses = GrStencilSettings::GetClipPasses(op, canRenderDirectToStencil, fillInverted, &drawDirectToClip); // draw the element to the client stencil bits if necessary if (!drawDirectToClip) { static constexpr GrUserStencilSettings kDrawToStencil( GrUserStencilSettings::StaticInit< 0x0000, GrUserStencilTest::kAlways, 0xffff, GrUserStencilOp::kIncMaybeClamp, GrUserStencilOp::kIncMaybeClamp, 0xffff>() ); if (Element::DeviceSpaceType::kRect == element->getDeviceSpaceType()) { renderTargetContext->priv().stencilRect(stencilClip.fixedClip(), &kDrawToStencil, aaType, SkMatrix::I(), element->getDeviceSpaceRect()); } else { if (!clipPath.isEmpty()) { GrShape shape(clipPath, GrStyle::SimpleFill()); if (canRenderDirectToStencil) { GrPaint paint; paint.setXPFactory(GrDisableColorXPFactory::Get()); GrPathRenderer::DrawPathArgs args{context, std::move(paint), &kDrawToStencil, renderTargetContext, &stencilClip.fixedClip(), &stencilClip.fixedClip().scissorRect(), &SkMatrix::I(), &shape, aaType, false}; pr->drawPath(args); } else { GrPathRenderer::StencilPathArgs args; args.fContext = context; args.fRenderTargetContext = renderTargetContext; args.fClip = &stencilClip.fixedClip(); args.fClipConservativeBounds = &stencilClip.fixedClip().scissorRect(); args.fViewMatrix = &SkMatrix::I(); args.fAAType = aaType; args.fShape = &shape; pr->stencilPath(args); } } } } // now we modify the clip bit by rendering either the clip // element directly or a bounding rect of the entire clip. for (GrUserStencilSettings const* const* pass = stencilPasses; *pass; ++pass) { if (drawDirectToClip) { if (Element::DeviceSpaceType::kRect == element->getDeviceSpaceType()) { renderTargetContext->priv().stencilRect(stencilClip, *pass, aaType, SkMatrix::I(), element->getDeviceSpaceRect()); } else { GrShape shape(clipPath, GrStyle::SimpleFill()); GrPaint paint; paint.setXPFactory(GrDisableColorXPFactory::Get()); GrPathRenderer::DrawPathArgs args{context, std::move(paint), *pass, renderTargetContext, &stencilClip, &stencilClip.fixedClip().scissorRect(), &SkMatrix::I(), &shape, aaType, false}; pr->drawPath(args); } } else { // The view matrix is setup to do clip space -> stencil space translation, so // draw rect in clip space. renderTargetContext->priv().stencilRect(stencilClip, *pass, aaType, SkMatrix::I(), SkRect::Make(fScissor)); } } } return true; } std::unique_ptr<GrFragmentProcessor> GrReducedClip::finishAndDetachAnalyticFPs( GrProxyProvider* proxyProvider, uint32_t opListID, int rtWidth, int rtHeight) { // Make sure finishAndDetachAnalyticFPs hasn't been called already. SkDEBUGCODE(for (const auto& fp : fAnalyticFPs) { SkASSERT(fp); }) if (!fCCPRClipPaths.empty()) { fAnalyticFPs.reserve(fAnalyticFPs.count() + fCCPRClipPaths.count()); for (const SkPath& ccprClipPath : fCCPRClipPaths) { SkASSERT(fHasScissor); auto fp = fCCPR->makeClipProcessor(proxyProvider, opListID, ccprClipPath, fScissor, rtWidth, rtHeight); fAnalyticFPs.push_back(std::move(fp)); } fCCPRClipPaths.reset(); } return GrFragmentProcessor::RunInSeries(fAnalyticFPs.begin(), fAnalyticFPs.count()); }