/* * Copyright 2015 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkBmpRLECodec.h" #include "SkCodecPriv.h" #include "SkColorData.h" #include "SkStream.h" /* * Creates an instance of the decoder * Called only by NewFromStream */ SkBmpRLECodec::SkBmpRLECodec(int width, int height, const SkEncodedInfo& info, std::unique_ptr<SkStream> stream, uint16_t bitsPerPixel, uint32_t numColors, uint32_t bytesPerColor, uint32_t offset, SkCodec::SkScanlineOrder rowOrder) : INHERITED(width, height, info, std::move(stream), bitsPerPixel, rowOrder) , fColorTable(nullptr) , fNumColors(numColors) , fBytesPerColor(bytesPerColor) , fOffset(offset) , fBytesBuffered(0) , fCurrRLEByte(0) , fSampleX(1) {} /* * Initiates the bitmap decode */ SkCodec::Result SkBmpRLECodec::onGetPixels(const SkImageInfo& dstInfo, void* dst, size_t dstRowBytes, const Options& opts, int* rowsDecoded) { if (opts.fSubset) { // Subsets are not supported. return kUnimplemented; } Result result = this->prepareToDecode(dstInfo, opts); if (kSuccess != result) { return result; } // Perform the decode int rows = this->decodeRows(dstInfo, dst, dstRowBytes, opts); if (rows != dstInfo.height()) { // We set rowsDecoded equal to the height because the background has already // been filled. RLE encodings sometimes skip pixels, so we always start by // filling the background. *rowsDecoded = dstInfo.height(); return kIncompleteInput; } return kSuccess; } /* * Process the color table for the bmp input */ bool SkBmpRLECodec::createColorTable(SkColorType dstColorType) { // Allocate memory for color table uint32_t colorBytes = 0; SkPMColor colorTable[256]; if (this->bitsPerPixel() <= 8) { // Inform the caller of the number of colors uint32_t maxColors = 1 << this->bitsPerPixel(); // Don't bother reading more than maxColors. const uint32_t numColorsToRead = fNumColors == 0 ? maxColors : SkTMin(fNumColors, maxColors); // Read the color table from the stream colorBytes = numColorsToRead * fBytesPerColor; std::unique_ptr<uint8_t[]> cBuffer(new uint8_t[colorBytes]); if (stream()->read(cBuffer.get(), colorBytes) != colorBytes) { SkCodecPrintf("Error: unable to read color table.\n"); return false; } // Fill in the color table PackColorProc packARGB = choose_pack_color_proc(false, dstColorType); uint32_t i = 0; for (; i < numColorsToRead; i++) { uint8_t blue = get_byte(cBuffer.get(), i*fBytesPerColor); uint8_t green = get_byte(cBuffer.get(), i*fBytesPerColor + 1); uint8_t red = get_byte(cBuffer.get(), i*fBytesPerColor + 2); colorTable[i] = packARGB(0xFF, red, green, blue); } // To avoid segmentation faults on bad pixel data, fill the end of the // color table with black. This is the same the behavior as the // chromium decoder. for (; i < maxColors; i++) { colorTable[i] = SkPackARGB32NoCheck(0xFF, 0, 0, 0); } // Set the color table fColorTable.reset(new SkColorTable(colorTable, maxColors)); } // Check that we have not read past the pixel array offset if(fOffset < colorBytes) { // This may occur on OS 2.1 and other old versions where the color // table defaults to max size, and the bmp tries to use a smaller // color table. This is invalid, and our decision is to indicate // an error, rather than try to guess the intended size of the // color table. SkCodecPrintf("Error: pixel data offset less than color table size.\n"); return false; } // After reading the color table, skip to the start of the pixel array if (stream()->skip(fOffset - colorBytes) != fOffset - colorBytes) { SkCodecPrintf("Error: unable to skip to image data.\n"); return false; } // Return true on success return true; } bool SkBmpRLECodec::initializeStreamBuffer() { fBytesBuffered = this->stream()->read(fStreamBuffer, kBufferSize); if (fBytesBuffered == 0) { SkCodecPrintf("Error: could not read RLE image data.\n"); return false; } fCurrRLEByte = 0; return true; } /* * @return the number of bytes remaining in the stream buffer after * attempting to read more bytes from the stream */ size_t SkBmpRLECodec::checkForMoreData() { const size_t remainingBytes = fBytesBuffered - fCurrRLEByte; uint8_t* buffer = fStreamBuffer; // We will be reusing the same buffer, starting over from the beginning. // Move any remaining bytes to the start of the buffer. // We use memmove() instead of memcpy() because there is risk that the dst // and src memory will overlap in corrupt images. memmove(buffer, SkTAddOffset<uint8_t>(buffer, fCurrRLEByte), remainingBytes); // Adjust the buffer ptr to the start of the unfilled data. buffer += remainingBytes; // Try to read additional bytes from the stream. There are fCurrRLEByte // bytes of additional space remaining in the buffer, assuming that we // have already copied remainingBytes to the start of the buffer. size_t additionalBytes = this->stream()->read(buffer, fCurrRLEByte); // Update counters and return the number of bytes we currently have // available. We are at the start of the buffer again. fCurrRLEByte = 0; fBytesBuffered = remainingBytes + additionalBytes; return fBytesBuffered; } /* * Set an RLE pixel using the color table */ void SkBmpRLECodec::setPixel(void* dst, size_t dstRowBytes, const SkImageInfo& dstInfo, uint32_t x, uint32_t y, uint8_t index) { if (dst && is_coord_necessary(x, fSampleX, dstInfo.width())) { // Set the row uint32_t row = this->getDstRow(y, dstInfo.height()); // Set the pixel based on destination color type const int dstX = get_dst_coord(x, fSampleX); switch (dstInfo.colorType()) { case kRGBA_8888_SkColorType: case kBGRA_8888_SkColorType: { SkPMColor* dstRow = SkTAddOffset<SkPMColor>(dst, row * (int) dstRowBytes); dstRow[dstX] = fColorTable->operator[](index); break; } case kRGB_565_SkColorType: { uint16_t* dstRow = SkTAddOffset<uint16_t>(dst, row * (int) dstRowBytes); dstRow[dstX] = SkPixel32ToPixel16(fColorTable->operator[](index)); break; } default: // This case should not be reached. We should catch an invalid // color type when we check that the conversion is possible. SkASSERT(false); break; } } } /* * Set an RLE pixel from R, G, B values */ void SkBmpRLECodec::setRGBPixel(void* dst, size_t dstRowBytes, const SkImageInfo& dstInfo, uint32_t x, uint32_t y, uint8_t red, uint8_t green, uint8_t blue) { if (dst && is_coord_necessary(x, fSampleX, dstInfo.width())) { // Set the row uint32_t row = this->getDstRow(y, dstInfo.height()); // Set the pixel based on destination color type const int dstX = get_dst_coord(x, fSampleX); switch (dstInfo.colorType()) { case kRGBA_8888_SkColorType: { SkPMColor* dstRow = SkTAddOffset<SkPMColor>(dst, row * (int) dstRowBytes); dstRow[dstX] = SkPackARGB_as_RGBA(0xFF, red, green, blue); break; } case kBGRA_8888_SkColorType: { SkPMColor* dstRow = SkTAddOffset<SkPMColor>(dst, row * (int) dstRowBytes); dstRow[dstX] = SkPackARGB_as_BGRA(0xFF, red, green, blue); break; } case kRGB_565_SkColorType: { uint16_t* dstRow = SkTAddOffset<uint16_t>(dst, row * (int) dstRowBytes); dstRow[dstX] = SkPack888ToRGB16(red, green, blue); break; } default: // This case should not be reached. We should catch an invalid // color type when we check that the conversion is possible. SkASSERT(false); break; } } } SkCodec::Result SkBmpRLECodec::onPrepareToDecode(const SkImageInfo& dstInfo, const SkCodec::Options& options) { // FIXME: Support subsets for scanline decodes. if (options.fSubset) { // Subsets are not supported. return kUnimplemented; } // Reset fSampleX. If it needs to be a value other than 1, it will get modified by // the sampler. fSampleX = 1; fLinesToSkip = 0; SkColorType colorTableColorType = dstInfo.colorType(); if (this->colorXform()) { // Just set a known colorType for the colorTable. No need to actually transform // the colors in the colorTable. colorTableColorType = kBGRA_8888_SkColorType; } // Create the color table if necessary and prepare the stream for decode // Note that if it is non-NULL, inputColorCount will be modified if (!this->createColorTable(colorTableColorType)) { SkCodecPrintf("Error: could not create color table.\n"); return SkCodec::kInvalidInput; } // Initialize a buffer for encoded RLE data if (!this->initializeStreamBuffer()) { SkCodecPrintf("Error: cannot initialize stream buffer.\n"); return SkCodec::kInvalidInput; } return SkCodec::kSuccess; } /* * Performs the bitmap decoding for RLE input format * RLE decoding is performed all at once, rather than a one row at a time */ int SkBmpRLECodec::decodeRows(const SkImageInfo& info, void* dst, size_t dstRowBytes, const Options& opts) { const int width = this->getInfo().width(); int height = info.height(); // Account for sampling. SkImageInfo dstInfo = info.makeWH(get_scaled_dimension(width, fSampleX), height); // Set the background as transparent. Then, if the RLE code skips pixels, // the skipped pixels will be transparent. if (dst) { SkSampler::Fill(dstInfo, dst, dstRowBytes, SK_ColorTRANSPARENT, opts.fZeroInitialized); } // Adjust the height and the dst if the previous call to decodeRows() left us // with lines that need to be skipped. if (height > fLinesToSkip) { height -= fLinesToSkip; if (dst) { dst = SkTAddOffset<void>(dst, fLinesToSkip * dstRowBytes); } fLinesToSkip = 0; dstInfo = dstInfo.makeWH(dstInfo.width(), height); } else { fLinesToSkip -= height; return height; } void* decodeDst = dst; size_t decodeRowBytes = dstRowBytes; SkImageInfo decodeInfo = dstInfo; if (decodeDst) { if (this->colorXform()) { decodeInfo = decodeInfo.makeColorType(kXformSrcColorType); if (kRGBA_F16_SkColorType == dstInfo.colorType()) { int count = height * dstInfo.width(); this->resetXformBuffer(count); sk_bzero(this->xformBuffer(), count * sizeof(uint32_t)); decodeDst = this->xformBuffer(); decodeRowBytes = dstInfo.width() * sizeof(uint32_t); } } } int decodedHeight = this->decodeRLE(decodeInfo, decodeDst, decodeRowBytes); if (this->colorXform() && decodeDst) { for (int y = 0; y < decodedHeight; y++) { this->applyColorXform(dst, decodeDst, dstInfo.width()); decodeDst = SkTAddOffset<void>(decodeDst, decodeRowBytes); dst = SkTAddOffset<void>(dst, dstRowBytes); } } return decodedHeight; } int SkBmpRLECodec::decodeRLE(const SkImageInfo& dstInfo, void* dst, size_t dstRowBytes) { // Use the original width to count the number of pixels in each row. const int width = this->getInfo().width(); // This tells us the number of rows that we are meant to decode. const int height = dstInfo.height(); // Set RLE flags constexpr uint8_t RLE_ESCAPE = 0; constexpr uint8_t RLE_EOL = 0; constexpr uint8_t RLE_EOF = 1; constexpr uint8_t RLE_DELTA = 2; // Destination parameters int x = 0; int y = 0; while (true) { // If we have reached a row that is beyond the requested height, we have // succeeded. if (y >= height) { // It would be better to check for the EOF marker before indicating // success, but we may be performing a scanline decode, which // would require us to stop before decoding the full height. return height; } // Every entry takes at least two bytes if ((int) fBytesBuffered - fCurrRLEByte < 2) { if (this->checkForMoreData() < 2) { return y; } } // Read the next two bytes. These bytes have different meanings // depending on their values. In the first interpretation, the first // byte is an escape flag and the second byte indicates what special // task to perform. const uint8_t flag = fStreamBuffer[fCurrRLEByte++]; const uint8_t task = fStreamBuffer[fCurrRLEByte++]; // Perform decoding if (RLE_ESCAPE == flag) { switch (task) { case RLE_EOL: x = 0; y++; break; case RLE_EOF: return height; case RLE_DELTA: { // Two bytes are needed to specify delta if ((int) fBytesBuffered - fCurrRLEByte < 2) { if (this->checkForMoreData() < 2) { return y; } } // Modify x and y const uint8_t dx = fStreamBuffer[fCurrRLEByte++]; const uint8_t dy = fStreamBuffer[fCurrRLEByte++]; x += dx; y += dy; if (x > width) { SkCodecPrintf("Warning: invalid RLE input.\n"); return y - dy; } else if (y > height) { fLinesToSkip = y - height; return height; } break; } default: { // If task does not match any of the above signals, it // indicates that we have a sequence of non-RLE pixels. // Furthermore, the value of task is equal to the number // of pixels to interpret. uint8_t numPixels = task; const size_t rowBytes = compute_row_bytes(numPixels, this->bitsPerPixel()); // Abort if setting numPixels moves us off the edge of the // image. if (x + numPixels > width) { SkCodecPrintf("Warning: invalid RLE input.\n"); return y; } // Also abort if there are not enough bytes // remaining in the stream to set numPixels. // At most, alignedRowBytes can be 255 (max uint8_t) * // 3 (max bytes per pixel) + 1 (aligned) = 766. If // fStreamBuffer was smaller than this, // checkForMoreData would never succeed for some bmps. static_assert(255 * 3 + 1 < kBufferSize, "kBufferSize needs to be larger!"); const size_t alignedRowBytes = SkAlign2(rowBytes); if ((int) fBytesBuffered - fCurrRLEByte < alignedRowBytes) { SkASSERT(alignedRowBytes < kBufferSize); if (this->checkForMoreData() < alignedRowBytes) { return y; } } // Set numPixels number of pixels while (numPixels > 0) { switch(this->bitsPerPixel()) { case 4: { SkASSERT(fCurrRLEByte < fBytesBuffered); uint8_t val = fStreamBuffer[fCurrRLEByte++]; setPixel(dst, dstRowBytes, dstInfo, x++, y, val >> 4); numPixels--; if (numPixels != 0) { setPixel(dst, dstRowBytes, dstInfo, x++, y, val & 0xF); numPixels--; } break; } case 8: SkASSERT(fCurrRLEByte < fBytesBuffered); setPixel(dst, dstRowBytes, dstInfo, x++, y, fStreamBuffer[fCurrRLEByte++]); numPixels--; break; case 24: { SkASSERT(fCurrRLEByte + 2 < fBytesBuffered); uint8_t blue = fStreamBuffer[fCurrRLEByte++]; uint8_t green = fStreamBuffer[fCurrRLEByte++]; uint8_t red = fStreamBuffer[fCurrRLEByte++]; setRGBPixel(dst, dstRowBytes, dstInfo, x++, y, red, green, blue); numPixels--; break; } default: SkASSERT(false); return y; } } // Skip a byte if necessary to maintain alignment if (!SkIsAlign2(rowBytes)) { fCurrRLEByte++; } break; } } } else { // If the first byte read is not a flag, it indicates the number of // pixels to set in RLE mode. const uint8_t numPixels = flag; const int endX = SkTMin<int>(x + numPixels, width); if (24 == this->bitsPerPixel()) { // In RLE24, the second byte read is part of the pixel color. // There are two more required bytes to finish encoding the // color. if ((int) fBytesBuffered - fCurrRLEByte < 2) { if (this->checkForMoreData() < 2) { return y; } } // Fill the pixels up to endX with the specified color uint8_t blue = task; uint8_t green = fStreamBuffer[fCurrRLEByte++]; uint8_t red = fStreamBuffer[fCurrRLEByte++]; while (x < endX) { setRGBPixel(dst, dstRowBytes, dstInfo, x++, y, red, green, blue); } } else { // In RLE8 or RLE4, the second byte read gives the index in the // color table to look up the pixel color. // RLE8 has one color index that gets repeated // RLE4 has two color indexes in the upper and lower 4 bits of // the bytes, which are alternated uint8_t indices[2] = { task, task }; if (4 == this->bitsPerPixel()) { indices[0] >>= 4; indices[1] &= 0xf; } // Set the indicated number of pixels for (int which = 0; x < endX; x++) { setPixel(dst, dstRowBytes, dstInfo, x, y, indices[which]); which = !which; } } } } } bool SkBmpRLECodec::skipRows(int count) { const SkImageInfo rowInfo = SkImageInfo::Make(this->getInfo().width(), count, kN32_SkColorType, kUnpremul_SkAlphaType); return count == this->decodeRows(rowInfo, nullptr, 0, this->options()); } // FIXME: Make SkBmpRLECodec have no knowledge of sampling. // Or it should do all sampling natively. // It currently is a hybrid that needs to know what SkScaledCodec is doing. class SkBmpRLESampler : public SkSampler { public: SkBmpRLESampler(SkBmpRLECodec* codec) : fCodec(codec) { SkASSERT(fCodec); } private: int onSetSampleX(int sampleX) override { return fCodec->setSampleX(sampleX); } // Unowned pointer. fCodec will delete this class in its destructor. SkBmpRLECodec* fCodec; }; SkSampler* SkBmpRLECodec::getSampler(bool /*createIfNecessary*/) { // We will always create an SkBmpRLESampler if one is requested. // This allows clients to always use the SkBmpRLESampler's // version of fill(), which does nothing since RLE decodes have // already filled pixel memory. This seems fine, since creating // an SkBmpRLESampler is pretty inexpensive. if (!fSampler) { fSampler.reset(new SkBmpRLESampler(this)); } return fSampler.get(); } int SkBmpRLECodec::setSampleX(int sampleX){ fSampleX = sampleX; return get_scaled_dimension(this->getInfo().width(), sampleX); }