/* * Copyright 2017 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #ifndef SkMalloc_DEFINED #define SkMalloc_DEFINED #include <cstddef> #include <cstring> #include "SkTypes.h" /* memory wrappers to be implemented by the porting layer (platform) */ /** Free memory returned by sk_malloc(). It is safe to pass null. */ SK_API extern void sk_free(void*); /** * Called internally if we run out of memory. The platform implementation must * not return, but should either throw an exception or otherwise exit. */ SK_API extern void sk_out_of_memory(void); enum { /** * If this bit is set, the returned buffer must be zero-initialized. If this bit is not set * the buffer can be uninitialized. */ SK_MALLOC_ZERO_INITIALIZE = 1 << 0, /** * If this bit is set, the implementation must throw/crash/quit if the request cannot * be fulfilled. If this bit is not set, then it should return nullptr on failure. */ SK_MALLOC_THROW = 1 << 1, }; /** * Return a block of memory (at least 4-byte aligned) of at least the specified size. * If the requested memory cannot be returned, either return nullptr or throw/exit, depending * on the SK_MALLOC_THROW bit. If the allocation succeeds, the memory will be zero-initialized * if the SK_MALLOC_ZERO_INITIALIZE bit was set. * * To free the memory, call sk_free() */ SK_API extern void* sk_malloc_flags(size_t size, unsigned flags); /** Same as standard realloc(), but this one never returns null on failure. It will throw * an exception if it fails. */ SK_API extern void* sk_realloc_throw(void* buffer, size_t size); static inline void* sk_malloc_throw(size_t size) { return sk_malloc_flags(size, SK_MALLOC_THROW); } static inline void* sk_calloc_throw(size_t size) { return sk_malloc_flags(size, SK_MALLOC_THROW | SK_MALLOC_ZERO_INITIALIZE); } static inline void* sk_calloc_canfail(size_t size) { return sk_malloc_flags(size, SK_MALLOC_ZERO_INITIALIZE); } // Performs a safe multiply count * elemSize, checking for overflow SK_API extern void* sk_calloc_throw(size_t count, size_t elemSize); SK_API extern void* sk_malloc_throw(size_t count, size_t elemSize); SK_API extern void* sk_realloc_throw(void* buffer, size_t count, size_t elemSize); /** * These variants return nullptr on failure */ static inline void* sk_malloc_canfail(size_t size) { return sk_malloc_flags(size, 0); } SK_API extern void* sk_malloc_canfail(size_t count, size_t elemSize); // bzero is safer than memset, but we can't rely on it, so... sk_bzero() static inline void sk_bzero(void* buffer, size_t size) { // Please c.f. sk_careful_memcpy. It's undefined behavior to call memset(null, 0, 0). if (size) { memset(buffer, 0, size); } } /** * sk_careful_memcpy() is just like memcpy(), but guards against undefined behavior. * * It is undefined behavior to call memcpy() with null dst or src, even if len is 0. * If an optimizer is "smart" enough, it can exploit this to do unexpected things. * memcpy(dst, src, 0); * if (src) { * printf("%x\n", *src); * } * In this code the compiler can assume src is not null and omit the if (src) {...} check, * unconditionally running the printf, crashing the program if src really is null. * Of the compilers we pay attention to only GCC performs this optimization in practice. */ static inline void* sk_careful_memcpy(void* dst, const void* src, size_t len) { // When we pass >0 len we had better already be passing valid pointers. // So we just need to skip calling memcpy when len == 0. if (len) { memcpy(dst,src,len); } return dst; } #endif // SkMalloc_DEFINED