/* * Copyright 2011 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "Resources.h" #include "SkAutoMalloc.h" #include "SkData.h" #include "SkFrontBufferedStream.h" #include "SkOSFile.h" #include "SkOSPath.h" #include "SkRandom.h" #include "SkStream.h" #include "SkStreamPriv.h" #include "Test.h" #include <functional> #include <limits> #ifndef SK_BUILD_FOR_WIN #include <unistd.h> #include <fcntl.h> #endif #define MAX_SIZE (256 * 1024) static void test_loop_stream(skiatest::Reporter* reporter, SkStream* stream, const void* src, size_t len, int repeat) { SkAutoSMalloc<256> storage(len); void* tmp = storage.get(); for (int i = 0; i < repeat; ++i) { size_t bytes = stream->read(tmp, len); REPORTER_ASSERT(reporter, bytes == len); REPORTER_ASSERT(reporter, !memcmp(tmp, src, len)); } // expect EOF size_t bytes = stream->read(tmp, 1); REPORTER_ASSERT(reporter, 0 == bytes); // isAtEnd might not return true until after the first failing read. REPORTER_ASSERT(reporter, stream->isAtEnd()); } static void test_filestreams(skiatest::Reporter* reporter, const char* tmpDir) { SkString path = SkOSPath::Join(tmpDir, "wstream_test"); const char s[] = "abcdefghijklmnopqrstuvwxyz"; { SkFILEWStream writer(path.c_str()); if (!writer.isValid()) { ERRORF(reporter, "Failed to create tmp file %s\n", path.c_str()); return; } for (int i = 0; i < 100; ++i) { writer.write(s, 26); } } { SkFILEStream stream(path.c_str()); REPORTER_ASSERT(reporter, stream.isValid()); test_loop_stream(reporter, &stream, s, 26, 100); std::unique_ptr<SkStreamAsset> stream2(stream.duplicate()); test_loop_stream(reporter, stream2.get(), s, 26, 100); } { FILE* file = ::fopen(path.c_str(), "rb"); SkFILEStream stream(file); REPORTER_ASSERT(reporter, stream.isValid()); test_loop_stream(reporter, &stream, s, 26, 100); std::unique_ptr<SkStreamAsset> stream2(stream.duplicate()); test_loop_stream(reporter, stream2.get(), s, 26, 100); } } static void TestWStream(skiatest::Reporter* reporter) { SkDynamicMemoryWStream ds; const char s[] = "abcdefghijklmnopqrstuvwxyz"; int i; for (i = 0; i < 100; i++) { REPORTER_ASSERT(reporter, ds.write(s, 26)); } REPORTER_ASSERT(reporter, ds.bytesWritten() == 100 * 26); char* dst = new char[100 * 26 + 1]; dst[100*26] = '*'; ds.copyTo(dst); REPORTER_ASSERT(reporter, dst[100*26] == '*'); for (i = 0; i < 100; i++) { REPORTER_ASSERT(reporter, memcmp(&dst[i * 26], s, 26) == 0); } { std::unique_ptr<SkStreamAsset> stream(ds.detachAsStream()); REPORTER_ASSERT(reporter, 100 * 26 == stream->getLength()); REPORTER_ASSERT(reporter, ds.bytesWritten() == 0); test_loop_stream(reporter, stream.get(), s, 26, 100); std::unique_ptr<SkStreamAsset> stream2(stream->duplicate()); test_loop_stream(reporter, stream2.get(), s, 26, 100); std::unique_ptr<SkStreamAsset> stream3(stream->fork()); REPORTER_ASSERT(reporter, stream3->isAtEnd()); char tmp; size_t bytes = stream->read(&tmp, 1); REPORTER_ASSERT(reporter, 0 == bytes); stream3->rewind(); test_loop_stream(reporter, stream3.get(), s, 26, 100); } for (i = 0; i < 100; i++) { REPORTER_ASSERT(reporter, ds.write(s, 26)); } REPORTER_ASSERT(reporter, ds.bytesWritten() == 100 * 26); { // Test that this works after a snapshot. std::unique_ptr<SkStreamAsset> stream(ds.detachAsStream()); REPORTER_ASSERT(reporter, ds.bytesWritten() == 0); test_loop_stream(reporter, stream.get(), s, 26, 100); std::unique_ptr<SkStreamAsset> stream2(stream->duplicate()); test_loop_stream(reporter, stream2.get(), s, 26, 100); } delete[] dst; SkString tmpDir = skiatest::GetTmpDir(); if (!tmpDir.isEmpty()) { test_filestreams(reporter, tmpDir.c_str()); } } static void TestPackedUInt(skiatest::Reporter* reporter) { // we know that packeduint tries to write 1, 2 or 4 bytes for the length, // so we test values around each of those transitions (and a few others) const size_t sizes[] = { 0, 1, 2, 0xFC, 0xFD, 0xFE, 0xFF, 0x100, 0x101, 32767, 32768, 32769, 0xFFFD, 0xFFFE, 0xFFFF, 0x10000, 0x10001, 0xFFFFFD, 0xFFFFFE, 0xFFFFFF, 0x1000000, 0x1000001, 0x7FFFFFFE, 0x7FFFFFFF, 0x80000000, 0x80000001, 0xFFFFFFFE, 0xFFFFFFFF }; size_t i; SkDynamicMemoryWStream wstream; for (i = 0; i < SK_ARRAY_COUNT(sizes); ++i) { bool success = wstream.writePackedUInt(sizes[i]); REPORTER_ASSERT(reporter, success); } std::unique_ptr<SkStreamAsset> rstream(wstream.detachAsStream()); for (i = 0; i < SK_ARRAY_COUNT(sizes); ++i) { size_t n = rstream->readPackedUInt(); if (sizes[i] != n) { ERRORF(reporter, "sizes:%x != n:%x\n", i, sizes[i], n); } } } // Test that setting an SkMemoryStream to a nullptr data does not result in a crash when calling // methods that access fData. static void TestDereferencingData(SkMemoryStream* memStream) { memStream->read(nullptr, 0); memStream->getMemoryBase(); (void)memStream->asData(); } static void TestNullData() { SkMemoryStream memStream(nullptr); TestDereferencingData(&memStream); memStream.setData(nullptr); TestDereferencingData(&memStream); } DEF_TEST(Stream, reporter) { TestWStream(reporter); TestPackedUInt(reporter); TestNullData(); } #ifndef SK_BUILD_FOR_IOS /** * Tests peeking and then reading the same amount. The two should provide the * same results. * Returns the amount successfully read minus the amount successfully peeked. */ static size_t compare_peek_to_read(skiatest::Reporter* reporter, SkStream* stream, size_t bytesToPeek) { // The rest of our tests won't be very interesting if bytesToPeek is zero. REPORTER_ASSERT(reporter, bytesToPeek > 0); SkAutoMalloc peekStorage(bytesToPeek); SkAutoMalloc readStorage(bytesToPeek); void* peekPtr = peekStorage.get(); void* readPtr = peekStorage.get(); const size_t bytesPeeked = stream->peek(peekPtr, bytesToPeek); const size_t bytesRead = stream->read(readPtr, bytesToPeek); // bytesRead should only be less than attempted if the stream is at the // end. REPORTER_ASSERT(reporter, bytesRead == bytesToPeek || stream->isAtEnd()); // peek and read should behave the same, except peek returned to the // original position, so they read the same data. REPORTER_ASSERT(reporter, !memcmp(peekPtr, readPtr, bytesPeeked)); // A stream should never be able to peek more than it can read. REPORTER_ASSERT(reporter, bytesRead >= bytesPeeked); return bytesRead - bytesPeeked; } static void test_fully_peekable_stream(skiatest::Reporter* r, SkStream* stream, size_t limit) { for (size_t i = 1; !stream->isAtEnd(); i++) { REPORTER_ASSERT(r, compare_peek_to_read(r, stream, i) == 0); } } static void test_peeking_front_buffered_stream(skiatest::Reporter* r, const SkStream& original, size_t bufferSize) { std::unique_ptr<SkStream> dupe(original.duplicate()); REPORTER_ASSERT(r, dupe != nullptr); auto bufferedStream = SkFrontBufferedStream::Make(std::move(dupe), bufferSize); REPORTER_ASSERT(r, bufferedStream != nullptr); size_t peeked = 0; for (size_t i = 1; !bufferedStream->isAtEnd(); i++) { const size_t unpeekableBytes = compare_peek_to_read(r, bufferedStream.get(), i); if (unpeekableBytes > 0) { // This could not have returned a number greater than i. REPORTER_ASSERT(r, unpeekableBytes <= i); // We have reached the end of the buffer. Verify that it was at least // bufferSize. REPORTER_ASSERT(r, peeked + i - unpeekableBytes >= bufferSize); // No more peeking is supported. break; } peeked += i; } // Test that attempting to peek beyond the length of the buffer does not prevent rewinding. bufferedStream = SkFrontBufferedStream::Make(original.duplicate(), bufferSize); REPORTER_ASSERT(r, bufferedStream != nullptr); const size_t bytesToPeek = bufferSize + 1; SkAutoMalloc peekStorage(bytesToPeek); SkAutoMalloc readStorage(bytesToPeek); for (size_t start = 0; start <= bufferSize; start++) { // Skip to the starting point REPORTER_ASSERT(r, bufferedStream->skip(start) == start); const size_t bytesPeeked = bufferedStream->peek(peekStorage.get(), bytesToPeek); if (0 == bytesPeeked) { // Peeking should only fail completely if we have read/skipped beyond the buffer. REPORTER_ASSERT(r, start >= bufferSize); break; } // Only read the amount that was successfully peeked. const size_t bytesRead = bufferedStream->read(readStorage.get(), bytesPeeked); REPORTER_ASSERT(r, bytesRead == bytesPeeked); REPORTER_ASSERT(r, !memcmp(peekStorage.get(), readStorage.get(), bytesPeeked)); // This should be safe to rewind. REPORTER_ASSERT(r, bufferedStream->rewind()); } } // This test uses file system operations that don't work out of the // box on iOS. It's likely that we don't need them on iOS. Ignoring for now. // TODO(stephana): Re-evaluate if we need this in the future. DEF_TEST(StreamPeek, reporter) { // Test a memory stream. const char gAbcs[] = "abcdefghijklmnopqrstuvwxyz"; SkMemoryStream memStream(gAbcs, strlen(gAbcs), false); test_fully_peekable_stream(reporter, &memStream, memStream.getLength()); // Test an arbitrary file stream. file streams do not support peeking. auto tmpdir = skiatest::GetTmpDir(); if (tmpdir.isEmpty()) { ERRORF(reporter, "no tmp dir!"); return; } auto path = SkOSPath::Join(tmpdir.c_str(), "file"); { SkFILEWStream wStream(path.c_str()); constexpr char filename[] = "images/baby_tux.webp"; auto data = GetResourceAsData(filename); if (!data || data->size() == 0) { ERRORF(reporter, "resource missing: %s\n", filename); return; } if (!wStream.isValid() || !wStream.write(data->data(), data->size())) { ERRORF(reporter, "error wrtiting to file %s", path.c_str()); return; } } SkFILEStream fileStream(path.c_str()); REPORTER_ASSERT(reporter, fileStream.isValid()); if (!fileStream.isValid()) { return; } SkAutoMalloc storage(fileStream.getLength()); for (size_t i = 1; i < fileStream.getLength(); i++) { REPORTER_ASSERT(reporter, fileStream.peek(storage.get(), i) == 0); } // Now test some FrontBufferedStreams for (size_t i = 1; i < memStream.getLength(); i++) { test_peeking_front_buffered_stream(reporter, memStream, i); } } #endif // Asserts that asset == expected and is peekable. static void stream_peek_test(skiatest::Reporter* rep, SkStreamAsset* asset, const SkData* expected) { if (asset->getLength() != expected->size()) { ERRORF(rep, "Unexpected length."); return; } SkRandom rand; uint8_t buffer[4096]; const uint8_t* expect = expected->bytes(); for (size_t i = 0; i < asset->getLength(); ++i) { uint32_t maxSize = SkToU32(SkTMin(sizeof(buffer), asset->getLength() - i)); size_t size = rand.nextRangeU(1, maxSize); SkASSERT(size >= 1); SkASSERT(size <= sizeof(buffer)); SkASSERT(size + i <= asset->getLength()); if (asset->peek(buffer, size) < size) { ERRORF(rep, "Peek Failed!"); return; } if (0 != memcmp(buffer, &expect[i], size)) { ERRORF(rep, "Peek returned wrong bytes!"); return; } uint8_t value; REPORTER_ASSERT(rep, 1 == asset->read(&value, 1)); if (value != expect[i]) { ERRORF(rep, "Read Failed!"); return; } } } DEF_TEST(StreamPeek_BlockMemoryStream, rep) { const static int kSeed = 1234; SkRandom valueSource(kSeed); SkRandom rand(kSeed << 1); uint8_t buffer[4096]; SkDynamicMemoryWStream dynamicMemoryWStream; size_t totalWritten = 0; for (int i = 0; i < 32; ++i) { // Randomize the length of the blocks. size_t size = rand.nextRangeU(1, sizeof(buffer)); for (size_t j = 0; j < size; ++j) { buffer[j] = valueSource.nextU() & 0xFF; } dynamicMemoryWStream.write(buffer, size); totalWritten += size; REPORTER_ASSERT(rep, totalWritten == dynamicMemoryWStream.bytesWritten()); } std::unique_ptr<SkStreamAsset> asset(dynamicMemoryWStream.detachAsStream()); sk_sp<SkData> expected(SkData::MakeUninitialized(asset->getLength())); uint8_t* expectedPtr = static_cast<uint8_t*>(expected->writable_data()); valueSource.setSeed(kSeed); // reseed. // We want the exact same same "random" string of numbers to put // in expected. i.e.: don't rely on SkDynamicMemoryStream to work // correctly while we are testing SkDynamicMemoryStream. for (size_t i = 0; i < asset->getLength(); ++i) { expectedPtr[i] = valueSource.nextU() & 0xFF; } stream_peek_test(rep, asset.get(), expected.get()); } namespace { class DumbStream : public SkStream { public: DumbStream(const uint8_t* data, size_t n) : fData(data), fCount(n), fIdx(0) {} size_t read(void* buffer, size_t size) override { size_t copyCount = SkTMin(fCount - fIdx, size); if (copyCount) { memcpy(buffer, &fData[fIdx], copyCount); fIdx += copyCount; } return copyCount; } bool isAtEnd() const override { return fCount == fIdx; } private: const uint8_t* fData; size_t fCount, fIdx; }; } // namespace static void stream_copy_test(skiatest::Reporter* reporter, const void* srcData, size_t N, SkStream* stream) { SkDynamicMemoryWStream tgt; if (!SkStreamCopy(&tgt, stream)) { ERRORF(reporter, "SkStreamCopy failed"); return; } sk_sp<SkData> data(tgt.detachAsData()); if (data->size() != N) { ERRORF(reporter, "SkStreamCopy incorrect size"); return; } if (0 != memcmp(data->data(), srcData, N)) { ERRORF(reporter, "SkStreamCopy bad copy"); } } DEF_TEST(DynamicMemoryWStream_detachAsData, r) { const char az[] = "abcdefghijklmnopqrstuvwxyz"; const unsigned N = 40000; SkDynamicMemoryWStream dmws; for (unsigned i = 0; i < N; ++i) { dmws.writeText(az); } REPORTER_ASSERT(r, dmws.bytesWritten() == N * strlen(az)); auto data = dmws.detachAsData(); REPORTER_ASSERT(r, data->size() == N * strlen(az)); const uint8_t* ptr = data->bytes(); for (unsigned i = 0; i < N; ++i) { if (0 != memcmp(ptr, az, strlen(az))) { ERRORF(r, "detachAsData() memcmp failed"); return; } ptr += strlen(az); } } DEF_TEST(StreamCopy, reporter) { SkRandom random(123456); static const int N = 10000; SkAutoTMalloc<uint8_t> src((size_t)N); for (int j = 0; j < N; ++j) { src[j] = random.nextU() & 0xff; } // SkStreamCopy had two code paths; this test both. DumbStream dumbStream(src.get(), (size_t)N); stream_copy_test(reporter, src, N, &dumbStream); SkMemoryStream smartStream(src.get(), (size_t)N); stream_copy_test(reporter, src, N, &smartStream); } DEF_TEST(StreamEmptyStreamMemoryBase, r) { SkDynamicMemoryWStream tmp; std::unique_ptr<SkStreamAsset> asset(tmp.detachAsStream()); REPORTER_ASSERT(r, nullptr == asset->getMemoryBase()); } DEF_TEST(FILEStreamWithOffset, r) { if (GetResourcePath().isEmpty()) { return; } SkString filename = GetResourcePath("images/baby_tux.png"); SkFILEStream stream1(filename.c_str()); if (!stream1.isValid()) { ERRORF(r, "Could not create SkFILEStream from %s", filename.c_str()); return; } REPORTER_ASSERT(r, stream1.hasLength()); REPORTER_ASSERT(r, stream1.hasPosition()); // Seek halfway through the file. The second SkFILEStream will be created // with the same filename and offset and therefore will treat that offset as // the beginning. const size_t size = stream1.getLength(); const size_t middle = size / 2; if (!stream1.seek(middle)) { ERRORF(r, "Could not seek SkFILEStream to %lu out of %lu", middle, size); return; } REPORTER_ASSERT(r, stream1.getPosition() == middle); FILE* file = sk_fopen(filename.c_str(), kRead_SkFILE_Flag); if (!file) { ERRORF(r, "Could not open %s as a FILE", filename.c_str()); return; } if (fseek(file, (long) middle, SEEK_SET) != 0) { ERRORF(r, "Could not fseek FILE to %lu out of %lu", middle, size); return; } SkFILEStream stream2(file); const size_t remaining = size - middle; SkAutoTMalloc<uint8_t> expected(remaining); REPORTER_ASSERT(r, stream1.read(expected.get(), remaining) == remaining); auto test_full_read = [&r, &expected, remaining](SkStream* stream) { SkAutoTMalloc<uint8_t> actual(remaining); REPORTER_ASSERT(r, stream->read(actual.get(), remaining) == remaining); REPORTER_ASSERT(r, !memcmp(expected.get(), actual.get(), remaining)); REPORTER_ASSERT(r, stream->getPosition() == stream->getLength()); REPORTER_ASSERT(r, stream->isAtEnd()); }; auto test_rewind = [&r, &expected, remaining](SkStream* stream) { // Rewind goes back to original offset. REPORTER_ASSERT(r, stream->rewind()); REPORTER_ASSERT(r, stream->getPosition() == 0); SkAutoTMalloc<uint8_t> actual(remaining); REPORTER_ASSERT(r, stream->read(actual.get(), remaining) == remaining); REPORTER_ASSERT(r, !memcmp(expected.get(), actual.get(), remaining)); }; auto test_move = [&r, &expected, size, remaining](SkStream* stream) { // Cannot move to before the original offset. REPORTER_ASSERT(r, stream->move(- (long) size)); REPORTER_ASSERT(r, stream->getPosition() == 0); REPORTER_ASSERT(r, stream->move(std::numeric_limits<long>::min())); REPORTER_ASSERT(r, stream->getPosition() == 0); SkAutoTMalloc<uint8_t> actual(remaining); REPORTER_ASSERT(r, stream->read(actual.get(), remaining) == remaining); REPORTER_ASSERT(r, !memcmp(expected.get(), actual.get(), remaining)); REPORTER_ASSERT(r, stream->isAtEnd()); REPORTER_ASSERT(r, stream->getPosition() == remaining); // Cannot move beyond the end. REPORTER_ASSERT(r, stream->move(1)); REPORTER_ASSERT(r, stream->isAtEnd()); REPORTER_ASSERT(r, stream->getPosition() == remaining); }; auto test_seek = [&r, &expected, middle, remaining](SkStream* stream) { // Seek to an arbitrary position. const size_t arbitrary = middle / 2; REPORTER_ASSERT(r, stream->seek(arbitrary)); REPORTER_ASSERT(r, stream->getPosition() == arbitrary); const size_t miniRemaining = remaining - arbitrary; SkAutoTMalloc<uint8_t> actual(miniRemaining); REPORTER_ASSERT(r, stream->read(actual.get(), miniRemaining) == miniRemaining); REPORTER_ASSERT(r, !memcmp(expected.get() + arbitrary, actual.get(), miniRemaining)); }; auto test_seek_beginning = [&r, &expected, remaining](SkStream* stream) { // Seek to the beginning. REPORTER_ASSERT(r, stream->seek(0)); REPORTER_ASSERT(r, stream->getPosition() == 0); SkAutoTMalloc<uint8_t> actual(remaining); REPORTER_ASSERT(r, stream->read(actual.get(), remaining) == remaining); REPORTER_ASSERT(r, !memcmp(expected.get(), actual.get(), remaining)); }; auto test_seek_end = [&r, remaining](SkStream* stream) { // Cannot seek past the end. REPORTER_ASSERT(r, stream->isAtEnd()); REPORTER_ASSERT(r, stream->seek(remaining + 1)); REPORTER_ASSERT(r, stream->isAtEnd()); REPORTER_ASSERT(r, stream->getPosition() == remaining); const size_t middle = remaining / 2; REPORTER_ASSERT(r, stream->seek(middle)); REPORTER_ASSERT(r, !stream->isAtEnd()); REPORTER_ASSERT(r, stream->getPosition() == middle); REPORTER_ASSERT(r, stream->seek(remaining * 2)); REPORTER_ASSERT(r, stream->isAtEnd()); REPORTER_ASSERT(r, stream->getPosition() == remaining); REPORTER_ASSERT(r, stream->seek(std::numeric_limits<long>::max())); REPORTER_ASSERT(r, stream->isAtEnd()); REPORTER_ASSERT(r, stream->getPosition() == remaining); }; std::function<void (SkStream* stream, bool recurse)> test_all; test_all = [&](SkStream* stream, bool recurse) { REPORTER_ASSERT(r, stream->getLength() == remaining); REPORTER_ASSERT(r, stream->getPosition() == 0); test_full_read(stream); test_rewind(stream); test_move(stream); test_seek(stream); test_seek_beginning(stream); test_seek_end(stream); if (recurse) { // Duplicate shares the original offset. auto duplicate = stream->duplicate(); if (!duplicate) { ERRORF(r, "Failed to duplicate the stream!"); } else { test_all(duplicate.get(), false); } // Fork shares the original offset, too. auto fork = stream->fork(); if (!fork) { ERRORF(r, "Failed to fork the stream!"); } else { REPORTER_ASSERT(r, fork->isAtEnd()); REPORTER_ASSERT(r, fork->getLength() == remaining); REPORTER_ASSERT(r, fork->rewind()); test_all(fork.get(), false); } } }; test_all(&stream2, true); } #include "SkBuffer.h" DEF_TEST(RBuffer, reporter) { int32_t value = 0; SkRBuffer buffer(&value, 4); REPORTER_ASSERT(reporter, buffer.isValid()); int32_t tmp; REPORTER_ASSERT(reporter, buffer.read(&tmp, 4)); REPORTER_ASSERT(reporter, buffer.isValid()); REPORTER_ASSERT(reporter, !buffer.read(&tmp, 4)); REPORTER_ASSERT(reporter, !buffer.isValid()); }