/* * Copyright 2016 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkSLCPPCodeGenerator.h" #include "SkSLCompiler.h" #include "SkSLHCodeGenerator.h" namespace SkSL { static bool needs_uniform_var(const Variable& var) { return (var.fModifiers.fFlags & Modifiers::kUniform_Flag) && var.fType.kind() != Type::kSampler_Kind; } CPPCodeGenerator::CPPCodeGenerator(const Context* context, const Program* program, ErrorReporter* errors, String name, OutputStream* out) : INHERITED(context, program, errors, out) , fName(std::move(name)) , fFullName(String::printf("Gr%s", fName.c_str())) , fSectionAndParameterHelper(*program, *errors) { fLineEnding = "\\n"; } void CPPCodeGenerator::writef(const char* s, va_list va) { static constexpr int BUFFER_SIZE = 1024; va_list copy; va_copy(copy, va); char buffer[BUFFER_SIZE]; int length = vsnprintf(buffer, BUFFER_SIZE, s, va); if (length < BUFFER_SIZE) { fOut->write(buffer, length); } else { std::unique_ptr<char[]> heap(new char[length + 1]); vsprintf(heap.get(), s, copy); fOut->write(heap.get(), length); } } void CPPCodeGenerator::writef(const char* s, ...) { va_list va; va_start(va, s); this->writef(s, va); va_end(va); } void CPPCodeGenerator::writeHeader() { } bool CPPCodeGenerator::usesPrecisionModifiers() const { return false; } String CPPCodeGenerator::getTypeName(const Type& type) { return type.name(); } void CPPCodeGenerator::writeBinaryExpression(const BinaryExpression& b, Precedence parentPrecedence) { if (b.fOperator == Token::PERCENT) { // need to use "%%" instead of "%" b/c the code will be inside of a printf Precedence precedence = GetBinaryPrecedence(b.fOperator); if (precedence >= parentPrecedence) { this->write("("); } this->writeExpression(*b.fLeft, precedence); this->write(" %% "); this->writeExpression(*b.fRight, precedence); if (precedence >= parentPrecedence) { this->write(")"); } } else { INHERITED::writeBinaryExpression(b, parentPrecedence); } } void CPPCodeGenerator::writeIndexExpression(const IndexExpression& i) { const Expression& base = *i.fBase; if (base.fKind == Expression::kVariableReference_Kind) { int builtin = ((VariableReference&) base).fVariable.fModifiers.fLayout.fBuiltin; if (SK_TRANSFORMEDCOORDS2D_BUILTIN == builtin) { this->write("%s"); if (i.fIndex->fKind != Expression::kIntLiteral_Kind) { fErrors.error(i.fIndex->fOffset, "index into sk_TransformedCoords2D must be an integer literal"); return; } int64_t index = ((IntLiteral&) *i.fIndex).fValue; String name = "sk_TransformedCoords2D_" + to_string(index); fFormatArgs.push_back(name + ".c_str()"); if (fWrittenTransformedCoords.find(index) == fWrittenTransformedCoords.end()) { fExtraEmitCodeCode += " SkString " + name + " = fragBuilder->ensureCoords2D(args.fTransformedCoords[" + to_string(index) + "]);\n"; fWrittenTransformedCoords.insert(index); } return; } else if (SK_TEXTURESAMPLERS_BUILTIN == builtin) { this->write("%s"); if (i.fIndex->fKind != Expression::kIntLiteral_Kind) { fErrors.error(i.fIndex->fOffset, "index into sk_TextureSamplers must be an integer literal"); return; } int64_t index = ((IntLiteral&) *i.fIndex).fValue; fFormatArgs.push_back(" fragBuilder->getProgramBuilder()->samplerVariable(" "args.fTexSamplers[" + to_string(index) + "]).c_str()"); return; } } INHERITED::writeIndexExpression(i); } static String default_value(const Type& type) { if (type.fName == "bool") { return "false"; } switch (type.kind()) { case Type::kScalar_Kind: return "0"; case Type::kVector_Kind: return type.name() + "(0)"; case Type::kMatrix_Kind: return type.name() + "(1)"; default: ABORT("unsupported default_value type\n"); } } static String default_value(const Variable& var) { if (var.fModifiers.fLayout.fCType == "GrColor4f") { return "GrColor4f::kIllegalConstructor"; } return default_value(var.fType); } static bool is_private(const Variable& var) { return !(var.fModifiers.fFlags & Modifiers::kUniform_Flag) && !(var.fModifiers.fFlags & Modifiers::kIn_Flag) && var.fStorage == Variable::kGlobal_Storage && var.fModifiers.fLayout.fBuiltin == -1; } void CPPCodeGenerator::writeRuntimeValue(const Type& type, const Layout& layout, const String& cppCode) { if (type.isFloat()) { this->write("%f"); fFormatArgs.push_back(cppCode); } else if (type == *fContext.fInt_Type) { this->write("%d"); fFormatArgs.push_back(cppCode); } else if (type == *fContext.fBool_Type) { this->write("%s"); fFormatArgs.push_back("(" + cppCode + " ? \"true\" : \"false\")"); } else if (type == *fContext.fFloat2_Type || type == *fContext.fHalf2_Type) { this->write(type.name() + "(%f, %f)"); fFormatArgs.push_back(cppCode + ".fX"); fFormatArgs.push_back(cppCode + ".fY"); } else if (type == *fContext.fFloat4_Type || type == *fContext.fHalf4_Type) { this->write(type.name() + "(%f, %f, %f, %f)"); if (layout.fCType == "SkPMColor") { fFormatArgs.push_back("SkGetPackedR32(" + cppCode + ") / 255.0"); fFormatArgs.push_back("SkGetPackedG32(" + cppCode + ") / 255.0"); fFormatArgs.push_back("SkGetPackedB32(" + cppCode + ") / 255.0"); fFormatArgs.push_back("SkGetPackedA32(" + cppCode + ") / 255.0"); } else if (layout.fCType == "GrColor4f") { fFormatArgs.push_back(cppCode + ".fRGBA[0]"); fFormatArgs.push_back(cppCode + ".fRGBA[1]"); fFormatArgs.push_back(cppCode + ".fRGBA[2]"); fFormatArgs.push_back(cppCode + ".fRGBA[3]"); } else { fFormatArgs.push_back(cppCode + ".left()"); fFormatArgs.push_back(cppCode + ".top()"); fFormatArgs.push_back(cppCode + ".right()"); fFormatArgs.push_back(cppCode + ".bottom()"); } } else if (type.kind() == Type::kEnum_Kind) { this->write("%d"); fFormatArgs.push_back("(int) " + cppCode); } else if (type == *fContext.fInt4_Type || type == *fContext.fShort4_Type) { this->write(type.name() + "(%d, %d, %d, %d)"); fFormatArgs.push_back(cppCode + ".left()"); fFormatArgs.push_back(cppCode + ".top()"); fFormatArgs.push_back(cppCode + ".right()"); fFormatArgs.push_back(cppCode + ".bottom()"); } else { printf("unsupported runtime value type '%s'\n", String(type.fName).c_str()); ASSERT(false); } } void CPPCodeGenerator::writeVarInitializer(const Variable& var, const Expression& value) { if (is_private(var)) { this->writeRuntimeValue(var.fType, var.fModifiers.fLayout, var.fName); } else { this->writeExpression(value, kTopLevel_Precedence); } } String CPPCodeGenerator::getSamplerHandle(const Variable& var) { int samplerCount = 0; for (const auto param : fSectionAndParameterHelper.getParameters()) { if (&var == param) { return "args.fTexSamplers[" + to_string(samplerCount) + "]"; } if (param->fType.kind() == Type::kSampler_Kind) { ++samplerCount; } } ABORT("should have found sampler in parameters\n"); } void CPPCodeGenerator::writeIntLiteral(const IntLiteral& i) { this->write(to_string((int32_t) i.fValue)); } void CPPCodeGenerator::writeSwizzle(const Swizzle& swizzle) { if (fCPPMode) { ASSERT(swizzle.fComponents.size() == 1); // no support for multiple swizzle components yet this->writeExpression(*swizzle.fBase, kPostfix_Precedence); switch (swizzle.fComponents[0]) { case 0: this->write(".left()"); break; case 1: this->write(".top()"); break; case 2: this->write(".right()"); break; case 3: this->write(".bottom()"); break; } } else { INHERITED::writeSwizzle(swizzle); } } void CPPCodeGenerator::writeVariableReference(const VariableReference& ref) { if (fCPPMode) { this->write(ref.fVariable.fName); return; } switch (ref.fVariable.fModifiers.fLayout.fBuiltin) { case SK_INCOLOR_BUILTIN: this->write("%s"); fFormatArgs.push_back(String("args.fInputColor ? args.fInputColor : \"half4(1)\"")); break; case SK_OUTCOLOR_BUILTIN: this->write("%s"); fFormatArgs.push_back(String("args.fOutputColor")); break; default: if (ref.fVariable.fType.kind() == Type::kSampler_Kind) { this->write("%s"); fFormatArgs.push_back("fragBuilder->getProgramBuilder()->samplerVariable(" + this->getSamplerHandle(ref.fVariable) + ").c_str()"); return; } if (ref.fVariable.fModifiers.fFlags & Modifiers::kUniform_Flag) { this->write("%s"); String name = ref.fVariable.fName; String var = String::printf("args.fUniformHandler->getUniformCStr(%sVar)", HCodeGenerator::FieldName(name.c_str()).c_str()); String code; if (ref.fVariable.fModifiers.fLayout.fWhen.size()) { code = String::printf("%sVar.isValid() ? %s : \"%s\"", HCodeGenerator::FieldName(name.c_str()).c_str(), var.c_str(), default_value(ref.fVariable.fType).c_str()); } else { code = var; } fFormatArgs.push_back(code); } else if (SectionAndParameterHelper::IsParameter(ref.fVariable)) { String name(ref.fVariable.fName); this->writeRuntimeValue(ref.fVariable.fType, ref.fVariable.fModifiers.fLayout, String::printf("_outer.%s()", name.c_str()).c_str()); } else { this->write(ref.fVariable.fName); } } } void CPPCodeGenerator::writeIfStatement(const IfStatement& s) { if (s.fIsStatic) { this->write("@"); } INHERITED::writeIfStatement(s); } void CPPCodeGenerator::writeSwitchStatement(const SwitchStatement& s) { if (s.fIsStatic) { this->write("@"); } INHERITED::writeSwitchStatement(s); } void CPPCodeGenerator::writeFunctionCall(const FunctionCall& c) { if (c.fFunction.fBuiltin && c.fFunction.fName == "process") { ASSERT(c.fArguments.size() == 1); ASSERT(Expression::kVariableReference_Kind == c.fArguments[0]->fKind); int index = 0; bool found = false; for (const auto& p : fProgram.fElements) { if (ProgramElement::kVar_Kind == p->fKind) { const VarDeclarations* decls = (const VarDeclarations*) p.get(); for (const auto& raw : decls->fVars) { VarDeclaration& decl = (VarDeclaration&) *raw; if (decl.fVar == &((VariableReference&) *c.fArguments[0]).fVariable) { found = true; } else if (decl.fVar->fType == *fContext.fFragmentProcessor_Type) { ++index; } } } if (found) { break; } } ASSERT(found); String childName = "_child" + to_string(index); fExtraEmitCodeCode += " SkString " + childName + "(\"" + childName + "\");\n" + " this->emitChild(" + to_string(index) + ", &" + childName + ", args);\n"; this->write("%s"); fFormatArgs.push_back(childName + ".c_str()"); return; } INHERITED::writeFunctionCall(c); if (c.fFunction.fBuiltin && c.fFunction.fName == "texture") { this->write(".%s"); ASSERT(c.fArguments.size() >= 1); ASSERT(c.fArguments[0]->fKind == Expression::kVariableReference_Kind); String sampler = this->getSamplerHandle(((VariableReference&) *c.fArguments[0]).fVariable); fFormatArgs.push_back("fragBuilder->getProgramBuilder()->samplerSwizzle(" + sampler + ").c_str()"); } } void CPPCodeGenerator::writeFunction(const FunctionDefinition& f) { if (f.fDeclaration.fName == "main") { fFunctionHeader = ""; OutputStream* oldOut = fOut; StringStream buffer; fOut = &buffer; for (const auto& s : ((Block&) *f.fBody).fStatements) { this->writeStatement(*s); this->writeLine(); } fOut = oldOut; this->write(fFunctionHeader); this->write(buffer.str()); } else { INHERITED::writeFunction(f); } } void CPPCodeGenerator::writeSetting(const Setting& s) { static constexpr const char* kPrefix = "sk_Args."; if (!strncmp(s.fName.c_str(), kPrefix, strlen(kPrefix))) { const char* name = s.fName.c_str() + strlen(kPrefix); this->writeRuntimeValue(s.fType, Layout(), HCodeGenerator::FieldName(name).c_str()); } else { this->write(s.fName.c_str()); } } bool CPPCodeGenerator::writeSection(const char* name, const char* prefix) { const Section* s = fSectionAndParameterHelper.getSection(name); if (s) { this->writef("%s%s", prefix, s->fText.c_str()); return true; } return false; } void CPPCodeGenerator::writeProgramElement(const ProgramElement& p) { if (p.fKind == ProgramElement::kSection_Kind) { return; } if (p.fKind == ProgramElement::kVar_Kind) { const VarDeclarations& decls = (const VarDeclarations&) p; if (!decls.fVars.size()) { return; } const Variable& var = *((VarDeclaration&) *decls.fVars[0]).fVar; if (var.fModifiers.fFlags & (Modifiers::kIn_Flag | Modifiers::kUniform_Flag) || -1 != var.fModifiers.fLayout.fBuiltin) { return; } } INHERITED::writeProgramElement(p); } void CPPCodeGenerator::addUniform(const Variable& var) { if (!needs_uniform_var(var)) { return; } const char* precision; if (var.fModifiers.fFlags & Modifiers::kHighp_Flag) { precision = "kHigh_GrSLPrecision"; } else if (var.fModifiers.fFlags & Modifiers::kMediump_Flag) { precision = "kMedium_GrSLPrecision"; } else if (var.fModifiers.fFlags & Modifiers::kLowp_Flag) { precision = "kLow_GrSLPrecision"; } else { precision = "kDefault_GrSLPrecision"; } const char* type; if (var.fType == *fContext.fFloat_Type) { type = "kFloat_GrSLType"; } else if (var.fType == *fContext.fHalf_Type) { type = "kHalf_GrSLType"; } else if (var.fType == *fContext.fFloat2_Type) { type = "kFloat2_GrSLType"; } else if (var.fType == *fContext.fHalf2_Type) { type = "kHalf2_GrSLType"; } else if (var.fType == *fContext.fFloat4_Type) { type = "kFloat4_GrSLType"; } else if (var.fType == *fContext.fHalf4_Type) { type = "kHalf4_GrSLType"; } else if (var.fType == *fContext.fFloat4x4_Type) { type = "kFloat4x4_GrSLType"; } else if (var.fType == *fContext.fHalf4x4_Type) { type = "kHalf4x4_GrSLType"; } else { ABORT("unsupported uniform type: %s %s;\n", String(var.fType.fName).c_str(), String(var.fName).c_str()); } if (var.fModifiers.fLayout.fWhen.size()) { this->writef(" if (%s) {\n ", var.fModifiers.fLayout.fWhen.c_str()); } String name(var.fName); this->writef(" %sVar = args.fUniformHandler->addUniform(kFragment_GrShaderFlag, %s, " "%s, \"%s\");\n", HCodeGenerator::FieldName(name.c_str()).c_str(), type, precision, name.c_str()); if (var.fModifiers.fLayout.fWhen.size()) { this->write(" }\n"); } } void CPPCodeGenerator::writePrivateVars() { for (const auto& p : fProgram.fElements) { if (ProgramElement::kVar_Kind == p->fKind) { const VarDeclarations* decls = (const VarDeclarations*) p.get(); for (const auto& raw : decls->fVars) { VarDeclaration& decl = (VarDeclaration&) *raw; if (is_private(*decl.fVar)) { if (decl.fVar->fType == *fContext.fFragmentProcessor_Type) { fErrors.error(decl.fOffset, "fragmentProcessor variables must be declared 'in'"); return; } this->writef("%s %s = %s;\n", HCodeGenerator::FieldType(fContext, decl.fVar->fType, decl.fVar->fModifiers.fLayout).c_str(), String(decl.fVar->fName).c_str(), default_value(*decl.fVar).c_str()); } } } } } void CPPCodeGenerator::writePrivateVarValues() { for (const auto& p : fProgram.fElements) { if (ProgramElement::kVar_Kind == p->fKind) { const VarDeclarations* decls = (const VarDeclarations*) p.get(); for (const auto& raw : decls->fVars) { VarDeclaration& decl = (VarDeclaration&) *raw; if (is_private(*decl.fVar) && decl.fValue) { this->writef("%s = ", String(decl.fVar->fName).c_str()); fCPPMode = true; this->writeExpression(*decl.fValue, kAssignment_Precedence); fCPPMode = false; this->write(";\n"); } } } } } static bool is_accessible(const Variable& var) { return Type::kSampler_Kind != var.fType.kind() && Type::kOther_Kind != var.fType.kind(); } void CPPCodeGenerator::writeCodeAppend(const String& code) { // codeAppendf can only handle appending 1024 bytes at a time, so we need to break the string // into chunks. Unfortunately we can't tell exactly how long the string is going to end up, // because printf escape sequences get replaced by strings of unknown length, but keeping the // format string below 512 bytes is probably safe. static constexpr size_t maxChunkSize = 512; size_t start = 0; size_t index = 0; size_t argStart = 0; size_t argCount; while (index < code.size()) { argCount = 0; this->write(" fragBuilder->codeAppendf(\""); while (index < code.size() && index < start + maxChunkSize) { if ('%' == code[index]) { if (index == start + maxChunkSize - 1 || index == code.size() - 1) { break; } if (code[index + 1] != '%') { ++argCount; } } else if ('\\' == code[index] && index == start + maxChunkSize - 1) { // avoid splitting an escape sequence that happens to fall across a chunk boundary break; } ++index; } fOut->write(code.c_str() + start, index - start); this->write("\""); for (size_t i = argStart; i < argStart + argCount; ++i) { this->writef(", %s", fFormatArgs[i].c_str()); } this->write(");\n"); argStart += argCount; start = index; } } bool CPPCodeGenerator::writeEmitCode(std::vector<const Variable*>& uniforms) { this->write(" void emitCode(EmitArgs& args) override {\n" " GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder;\n"); this->writef(" const %s& _outer = args.fFp.cast<%s>();\n" " (void) _outer;\n", fFullName.c_str(), fFullName.c_str()); for (const auto& p : fProgram.fElements) { if (ProgramElement::kVar_Kind == p->fKind) { const VarDeclarations* decls = (const VarDeclarations*) p.get(); for (const auto& raw : decls->fVars) { VarDeclaration& decl = (VarDeclaration&) *raw; String nameString(decl.fVar->fName); const char* name = nameString.c_str(); if (SectionAndParameterHelper::IsParameter(*decl.fVar) && is_accessible(*decl.fVar)) { this->writef(" auto %s = _outer.%s();\n" " (void) %s;\n", name, name, name); } } } } this->writePrivateVarValues(); for (const auto u : uniforms) { this->addUniform(*u); } this->writeSection(EMIT_CODE_SECTION); OutputStream* old = fOut; StringStream mainBuffer; fOut = &mainBuffer; bool result = INHERITED::generateCode(); fOut = old; this->writef("%s", fExtraEmitCodeCode.c_str()); this->writeCodeAppend(mainBuffer.str()); this->write(" }\n"); return result; } void CPPCodeGenerator::writeSetData(std::vector<const Variable*>& uniforms) { const char* fullName = fFullName.c_str(); const Section* section = fSectionAndParameterHelper.getSection(SET_DATA_SECTION); const char* pdman = section ? section->fArgument.c_str() : "pdman"; this->writef(" void onSetData(const GrGLSLProgramDataManager& %s, " "const GrFragmentProcessor& _proc) override {\n", pdman); bool wroteProcessor = false; for (const auto u : uniforms) { if (u->fModifiers.fFlags & Modifiers::kIn_Flag) { if (!wroteProcessor) { this->writef(" const %s& _outer = _proc.cast<%s>();\n", fullName, fullName); wroteProcessor = true; this->writef(" {\n"); } String nameString(u->fName); const char* name = nameString.c_str(); if (u->fType == *fContext.fFloat4_Type || u->fType == *fContext.fHalf4_Type) { this->writef(" const SkRect %sValue = _outer.%s();\n" " %s.set4fv(%sVar, 1, (float*) &%sValue);\n", name, name, pdman, HCodeGenerator::FieldName(name).c_str(), name); } else if (u->fType == *fContext.fFloat4x4_Type || u->fType == *fContext.fHalf4x4_Type) { this->writef(" float %sValue[16];\n" " _outer.%s().asColMajorf(%sValue);\n" " %s.setMatrix4f(%sVar, %sValue);\n", name, name, name, pdman, HCodeGenerator::FieldName(name).c_str(), name); } else if (u->fType == *fContext.fFragmentProcessor_Type) { // do nothing } else { this->writef(" %s.set1f(%sVar, _outer.%s());\n", pdman, HCodeGenerator::FieldName(name).c_str(), name); } } } if (wroteProcessor) { this->writef(" }\n"); } if (section) { int samplerIndex = 0; for (const auto& p : fProgram.fElements) { if (ProgramElement::kVar_Kind == p->fKind) { const VarDeclarations* decls = (const VarDeclarations*) p.get(); for (const auto& raw : decls->fVars) { VarDeclaration& decl = (VarDeclaration&) *raw; String nameString(decl.fVar->fName); const char* name = nameString.c_str(); if (decl.fVar->fType.kind() == Type::kSampler_Kind) { this->writef(" GrSurfaceProxy& %sProxy = " "*_outer.textureSampler(%d).proxy();\n", name, samplerIndex); this->writef(" GrTexture& %s = *%sProxy.priv().peekTexture();\n", name, name); this->writef(" (void) %s;\n", name); ++samplerIndex; } else if (needs_uniform_var(*decl.fVar)) { this->writef(" UniformHandle& %s = %sVar;\n" " (void) %s;\n", name, HCodeGenerator::FieldName(name).c_str(), name); } else if (SectionAndParameterHelper::IsParameter(*decl.fVar) && decl.fVar->fType != *fContext.fFragmentProcessor_Type) { if (!wroteProcessor) { this->writef(" const %s& _outer = _proc.cast<%s>();\n", fullName, fullName); wroteProcessor = true; } this->writef(" auto %s = _outer.%s();\n" " (void) %s;\n", name, name, name); } } } } this->writeSection(SET_DATA_SECTION); } this->write(" }\n"); } void CPPCodeGenerator::writeClone() { if (!this->writeSection(CLONE_SECTION)) { if (fSectionAndParameterHelper.getSection(FIELDS_SECTION)) { fErrors.error(0, "fragment processors with custom @fields must also have a custom" "@clone"); } this->writef("%s::%s(const %s& src)\n" ": INHERITED(k%s_ClassID, src.optimizationFlags())", fFullName.c_str(), fFullName.c_str(), fFullName.c_str(), fFullName.c_str()); for (const auto& param : fSectionAndParameterHelper.getParameters()) { if (param->fType == *fContext.fFragmentProcessor_Type) { continue; } String fieldName = HCodeGenerator::FieldName(String(param->fName).c_str()); this->writef("\n, %s(src.%s)", fieldName.c_str(), fieldName.c_str()); } for (const Section* s : fSectionAndParameterHelper.getSections(COORD_TRANSFORM_SECTION)) { String fieldName = HCodeGenerator::FieldName(s->fArgument.c_str()); this->writef("\n, %sCoordTransform(src.%sCoordTransform)", fieldName.c_str(), fieldName.c_str()); } this->writef(" {\n"); int childCount = 0; for (const auto& param : fSectionAndParameterHelper.getParameters()) { if (param->fType.kind() == Type::kSampler_Kind) { this->writef(" this->addTextureSampler(&%s);\n", HCodeGenerator::FieldName(String(param->fName).c_str()).c_str()); } else if (param->fType == *fContext.fFragmentProcessor_Type) { this->writef(" this->registerChildProcessor(src.childProcessor(%d).clone());" "\n", childCount++); } } for (const Section* s : fSectionAndParameterHelper.getSections(COORD_TRANSFORM_SECTION)) { String field = HCodeGenerator::FieldName(s->fArgument.c_str()); this->writef(" this->addCoordTransform(&%sCoordTransform);\n", field.c_str()); } this->write("}\n"); this->writef("std::unique_ptr<GrFragmentProcessor> %s::clone() const {\n", fFullName.c_str()); this->writef(" return std::unique_ptr<GrFragmentProcessor>(new %s(*this));\n", fFullName.c_str()); this->write("}\n"); } } void CPPCodeGenerator::writeTest() { const Section* test = fSectionAndParameterHelper.getSection(TEST_CODE_SECTION); if (test) { this->writef( "GR_DEFINE_FRAGMENT_PROCESSOR_TEST(%s);\n" "#if GR_TEST_UTILS\n" "std::unique_ptr<GrFragmentProcessor> %s::TestCreate(GrProcessorTestData* %s) {\n", fFullName.c_str(), fFullName.c_str(), test->fArgument.c_str()); this->writeSection(TEST_CODE_SECTION); this->write("}\n" "#endif\n"); } } void CPPCodeGenerator::writeGetKey() { this->writef("void %s::onGetGLSLProcessorKey(const GrShaderCaps& caps, " "GrProcessorKeyBuilder* b) const {\n", fFullName.c_str()); for (const auto& param : fSectionAndParameterHelper.getParameters()) { String nameString(param->fName); const char* name = nameString.c_str(); if (param->fModifiers.fLayout.fKey != Layout::kNo_Key && (param->fModifiers.fFlags & Modifiers::kUniform_Flag)) { fErrors.error(param->fOffset, "layout(key) may not be specified on uniforms"); } switch (param->fModifiers.fLayout.fKey) { case Layout::kKey_Key: if (param->fType == *fContext.fFloat4x4_Type) { ABORT("no automatic key handling for float4x4\n"); } else if (param->fType == *fContext.fFloat2_Type) { this->writef(" b->add32(%s.fX);\n", HCodeGenerator::FieldName(name).c_str()); this->writef(" b->add32(%s.fY);\n", HCodeGenerator::FieldName(name).c_str()); } else if (param->fType == *fContext.fFloat4_Type) { this->writef(" b->add32(%s.x());\n", HCodeGenerator::FieldName(name).c_str()); this->writef(" b->add32(%s.y());\n", HCodeGenerator::FieldName(name).c_str()); this->writef(" b->add32(%s.width());\n", HCodeGenerator::FieldName(name).c_str()); this->writef(" b->add32(%s.height());\n", HCodeGenerator::FieldName(name).c_str()); } else { this->writef(" b->add32((int32_t) %s);\n", HCodeGenerator::FieldName(name).c_str()); } break; case Layout::kIdentity_Key: if (param->fType.kind() != Type::kMatrix_Kind) { fErrors.error(param->fOffset, "layout(key=identity) requires matrix type"); } this->writef(" b->add32(%s.isIdentity() ? 1 : 0);\n", HCodeGenerator::FieldName(name).c_str()); break; case Layout::kNo_Key: break; } } this->write("}\n"); } bool CPPCodeGenerator::generateCode() { std::vector<const Variable*> uniforms; for (const auto& p : fProgram.fElements) { if (ProgramElement::kVar_Kind == p->fKind) { const VarDeclarations* decls = (const VarDeclarations*) p.get(); for (const auto& raw : decls->fVars) { VarDeclaration& decl = (VarDeclaration&) *raw; if ((decl.fVar->fModifiers.fFlags & Modifiers::kUniform_Flag) && decl.fVar->fType.kind() != Type::kSampler_Kind) { uniforms.push_back(decl.fVar); } } } } const char* baseName = fName.c_str(); const char* fullName = fFullName.c_str(); this->writef("%s\n", HCodeGenerator::GetHeader(fProgram, fErrors).c_str()); this->writef(kFragmentProcessorHeader, fullName); this->writef("#include \"%s.h\"\n" "#if SK_SUPPORT_GPU\n", fullName); this->writeSection(CPP_SECTION); this->writef("#include \"glsl/GrGLSLFragmentProcessor.h\"\n" "#include \"glsl/GrGLSLFragmentShaderBuilder.h\"\n" "#include \"glsl/GrGLSLProgramBuilder.h\"\n" "#include \"GrTexture.h\"\n" "#include \"SkSLCPP.h\"\n" "#include \"SkSLUtil.h\"\n" "class GrGLSL%s : public GrGLSLFragmentProcessor {\n" "public:\n" " GrGLSL%s() {}\n", baseName, baseName); bool result = this->writeEmitCode(uniforms); this->write("private:\n"); this->writeSetData(uniforms); this->writePrivateVars(); for (const auto& u : uniforms) { if (needs_uniform_var(*u) && !(u->fModifiers.fFlags & Modifiers::kIn_Flag)) { this->writef(" UniformHandle %sVar;\n", HCodeGenerator::FieldName(String(u->fName).c_str()).c_str()); } } for (const auto& param : fSectionAndParameterHelper.getParameters()) { if (needs_uniform_var(*param)) { this->writef(" UniformHandle %sVar;\n", HCodeGenerator::FieldName(String(param->fName).c_str()).c_str()); } } this->writef("};\n" "GrGLSLFragmentProcessor* %s::onCreateGLSLInstance() const {\n" " return new GrGLSL%s();\n" "}\n", fullName, baseName); this->writeGetKey(); this->writef("bool %s::onIsEqual(const GrFragmentProcessor& other) const {\n" " const %s& that = other.cast<%s>();\n" " (void) that;\n", fullName, fullName, fullName); for (const auto& param : fSectionAndParameterHelper.getParameters()) { if (param->fType == *fContext.fFragmentProcessor_Type) { continue; } String nameString(param->fName); const char* name = nameString.c_str(); this->writef(" if (%s != that.%s) return false;\n", HCodeGenerator::FieldName(name).c_str(), HCodeGenerator::FieldName(name).c_str()); } this->write(" return true;\n" "}\n"); this->writeClone(); this->writeTest(); this->writeSection(CPP_END_SECTION); this->write("#endif\n"); result &= 0 == fErrors.errorCount(); return result; } } // namespace