/* * Copyright 2015 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "GrTestUtils.h" #include "GrColorSpaceInfo.h" #include "GrProcessorUnitTest.h" #include "GrStyle.h" #include "SkDashPathPriv.h" #include "SkMakeUnique.h" #include "SkMatrix.h" #include "SkPath.h" #include "SkRectPriv.h" #include "SkRRect.h" #if GR_TEST_UTILS static const SkMatrix& test_matrix(SkRandom* random, bool includeNonPerspective, bool includePerspective) { static SkMatrix gMatrices[5]; static const int kPerspectiveCount = 1; static bool gOnce; if (!gOnce) { gOnce = true; gMatrices[0].reset(); gMatrices[1].setTranslate(SkIntToScalar(-100), SkIntToScalar(100)); gMatrices[2].setRotate(SkIntToScalar(17)); gMatrices[3].setRotate(SkIntToScalar(185)); gMatrices[3].postTranslate(SkIntToScalar(66), SkIntToScalar(-33)); gMatrices[3].postScale(SkIntToScalar(2), SK_ScalarHalf); // Perspective matrices gMatrices[4].setRotate(SkIntToScalar(215)); gMatrices[4].set(SkMatrix::kMPersp0, 0.00013f); gMatrices[4].set(SkMatrix::kMPersp1, -0.000039f); } uint32_t count = static_cast<uint32_t>(SK_ARRAY_COUNT(gMatrices)); if (includeNonPerspective && includePerspective) { return gMatrices[random->nextULessThan(count)]; } else if (!includeNonPerspective) { return gMatrices[count - 1 - random->nextULessThan(kPerspectiveCount)]; } else { SkASSERT(includeNonPerspective && !includePerspective); return gMatrices[random->nextULessThan(count - kPerspectiveCount)]; } } namespace GrTest { const SkMatrix& TestMatrix(SkRandom* random) { return test_matrix(random, true, true); } const SkMatrix& TestMatrixPreservesRightAngles(SkRandom* random) { static SkMatrix gMatrices[5]; static bool gOnce; if (!gOnce) { gOnce = true; // identity gMatrices[0].reset(); // translation gMatrices[1].setTranslate(SkIntToScalar(-100), SkIntToScalar(100)); // scale gMatrices[2].setScale(SkIntToScalar(17), SkIntToScalar(17)); // scale + translation gMatrices[3].setScale(SkIntToScalar(-17), SkIntToScalar(-17)); gMatrices[3].postTranslate(SkIntToScalar(66), SkIntToScalar(-33)); // orthogonal basis vectors gMatrices[4].reset(); gMatrices[4].setScale(SkIntToScalar(-1), SkIntToScalar(-1)); gMatrices[4].setRotate(47); for (size_t i = 0; i < SK_ARRAY_COUNT(gMatrices); i++) { SkASSERT(gMatrices[i].preservesRightAngles()); } } return gMatrices[random->nextULessThan(static_cast<uint32_t>(SK_ARRAY_COUNT(gMatrices)))]; } const SkMatrix& TestMatrixRectStaysRect(SkRandom* random) { static SkMatrix gMatrices[6]; static bool gOnce; if (!gOnce) { gOnce = true; // identity gMatrices[0].reset(); // translation gMatrices[1].setTranslate(SkIntToScalar(-100), SkIntToScalar(100)); // scale gMatrices[2].setScale(SkIntToScalar(17), SkIntToScalar(17)); // scale + translation gMatrices[3].setScale(SkIntToScalar(-17), SkIntToScalar(-17)); gMatrices[3].postTranslate(SkIntToScalar(66), SkIntToScalar(-33)); // reflection gMatrices[4].setScale(SkIntToScalar(-1), SkIntToScalar(-1)); // 90 degress rotation gMatrices[5].setRotate(90); for (size_t i = 0; i < SK_ARRAY_COUNT(gMatrices); i++) { SkASSERT(gMatrices[i].rectStaysRect()); } } return gMatrices[random->nextULessThan(static_cast<uint32_t>(SK_ARRAY_COUNT(gMatrices)))]; } const SkMatrix& TestMatrixInvertible(SkRandom* random) { return test_matrix(random, true, false); } const SkMatrix& TestMatrixPerspective(SkRandom* random) { return test_matrix(random, false, true); } void TestWrapModes(SkRandom* random, GrSamplerState::WrapMode wrapModes[2]) { static const GrSamplerState::WrapMode kWrapModes[] = { GrSamplerState::WrapMode::kClamp, GrSamplerState::WrapMode::kRepeat, GrSamplerState::WrapMode::kMirrorRepeat, }; wrapModes[0] = kWrapModes[random->nextULessThan(SK_ARRAY_COUNT(kWrapModes))]; wrapModes[1] = kWrapModes[random->nextULessThan(SK_ARRAY_COUNT(kWrapModes))]; } const SkRect& TestRect(SkRandom* random) { static SkRect gRects[7]; static bool gOnce; if (!gOnce) { gOnce = true; gRects[0] = SkRect::MakeWH(1.f, 1.f); gRects[1] = SkRect::MakeWH(1.0f, 256.0f); gRects[2] = SkRect::MakeWH(256.0f, 1.0f); gRects[3] = SkRectPriv::MakeLargest(); gRects[4] = SkRect::MakeLTRB(-65535.0f, -65535.0f, 65535.0f, 65535.0f); gRects[5] = SkRect::MakeLTRB(-10.0f, -10.0f, 10.0f, 10.0f); } return gRects[random->nextULessThan(static_cast<uint32_t>(SK_ARRAY_COUNT(gRects)))]; } // Just some simple rects for code which expects its input very sanitized const SkRect& TestSquare(SkRandom* random) { static SkRect gRects[2]; static bool gOnce; if (!gOnce) { gOnce = true; gRects[0] = SkRect::MakeWH(128.f, 128.f); gRects[1] = SkRect::MakeWH(256.0f, 256.0f); } return gRects[random->nextULessThan(static_cast<uint32_t>(SK_ARRAY_COUNT(gRects)))]; } const SkRRect& TestRRectSimple(SkRandom* random) { static SkRRect gRRect[2]; static bool gOnce; if (!gOnce) { gOnce = true; SkRect rectangle = SkRect::MakeWH(10.f, 20.f); // true round rect with circular corners gRRect[0].setRectXY(rectangle, 1.f, 1.f); // true round rect with elliptical corners gRRect[1].setRectXY(rectangle, 2.0f, 1.0f); for (size_t i = 0; i < SK_ARRAY_COUNT(gRRect); i++) { SkASSERT(gRRect[i].isSimple()); } } return gRRect[random->nextULessThan(static_cast<uint32_t>(SK_ARRAY_COUNT(gRRect)))]; } const SkPath& TestPath(SkRandom* random) { static SkPath gPath[7]; static bool gOnce; if (!gOnce) { gOnce = true; // line gPath[0].moveTo(0.f, 0.f); gPath[0].lineTo(10.f, 10.f); // quad gPath[1].moveTo(0.f, 0.f); gPath[1].quadTo(10.f, 10.f, 20.f, 20.f); // conic gPath[2].moveTo(0.f, 0.f); gPath[2].conicTo(10.f, 10.f, 20.f, 20.f, 1.f); // cubic gPath[3].moveTo(0.f, 0.f); gPath[3].cubicTo(10.f, 10.f, 20.f, 20.f, 30.f, 30.f); // all three gPath[4].moveTo(0.f, 0.f); gPath[4].lineTo(10.f, 10.f); gPath[4].quadTo(10.f, 10.f, 20.f, 20.f); gPath[4].conicTo(10.f, 10.f, 20.f, 20.f, 1.f); gPath[4].cubicTo(10.f, 10.f, 20.f, 20.f, 30.f, 30.f); // convex gPath[5].moveTo(0.0f, 0.0f); gPath[5].lineTo(10.0f, 0.0f); gPath[5].lineTo(10.0f, 10.0f); gPath[5].lineTo(0.0f, 10.0f); gPath[5].close(); // concave gPath[6].moveTo(0.0f, 0.0f); gPath[6].lineTo(5.0f, 5.0f); gPath[6].lineTo(10.0f, 0.0f); gPath[6].lineTo(10.0f, 10.0f); gPath[6].lineTo(0.0f, 10.0f); gPath[6].close(); } return gPath[random->nextULessThan(static_cast<uint32_t>(SK_ARRAY_COUNT(gPath)))]; } const SkPath& TestPathConvex(SkRandom* random) { static SkPath gPath[3]; static bool gOnce; if (!gOnce) { gOnce = true; // narrow rect gPath[0].moveTo(-1.5f, -50.0f); gPath[0].lineTo(-1.5f, -50.0f); gPath[0].lineTo( 1.5f, -50.0f); gPath[0].lineTo( 1.5f, 50.0f); gPath[0].lineTo(-1.5f, 50.0f); // degenerate gPath[1].moveTo(-0.025f, -0.025f); gPath[1].lineTo(-0.025f, -0.025f); gPath[1].lineTo( 0.025f, -0.025f); gPath[1].lineTo( 0.025f, 0.025f); gPath[1].lineTo(-0.025f, 0.025f); // clipped triangle gPath[2].moveTo(-10.0f, -50.0f); gPath[2].lineTo(-10.0f, -50.0f); gPath[2].lineTo( 10.0f, -50.0f); gPath[2].lineTo( 50.0f, 31.0f); gPath[2].lineTo( 40.0f, 50.0f); gPath[2].lineTo(-40.0f, 50.0f); gPath[2].lineTo(-50.0f, 31.0f); for (size_t i = 0; i < SK_ARRAY_COUNT(gPath); i++) { SkASSERT(SkPath::kConvex_Convexity == gPath[i].getConvexity()); } } return gPath[random->nextULessThan(static_cast<uint32_t>(SK_ARRAY_COUNT(gPath)))]; } static void randomize_stroke_rec(SkStrokeRec* rec, SkRandom* random) { bool strokeAndFill = random->nextBool(); SkScalar strokeWidth = random->nextBool() ? 0.f : 1.f; rec->setStrokeStyle(strokeWidth, strokeAndFill); SkPaint::Cap cap = SkPaint::Cap(random->nextULessThan(SkPaint::kCapCount)); SkPaint::Join join = SkPaint::Join(random->nextULessThan(SkPaint::kJoinCount)); SkScalar miterLimit = random->nextRangeScalar(1.f, 5.f); rec->setStrokeParams(cap, join, miterLimit); } SkStrokeRec TestStrokeRec(SkRandom* random) { SkStrokeRec::InitStyle style = SkStrokeRec::InitStyle(random->nextULessThan(SkStrokeRec::kFill_InitStyle + 1)); SkStrokeRec rec(style); randomize_stroke_rec(&rec, random); return rec; } void TestStyle(SkRandom* random, GrStyle* style) { SkStrokeRec::InitStyle initStyle = SkStrokeRec::InitStyle(random->nextULessThan(SkStrokeRec::kFill_InitStyle + 1)); SkStrokeRec stroke(initStyle); randomize_stroke_rec(&stroke, random); sk_sp<SkPathEffect> pe; if (random->nextBool()) { int cnt = random->nextRangeU(1, 50) * 2; std::unique_ptr<SkScalar[]> intervals(new SkScalar[cnt]); SkScalar sum = 0; for (int i = 0; i < cnt; i++) { intervals[i] = random->nextRangeScalar(SkDoubleToScalar(0.01), SkDoubleToScalar(10.0)); sum += intervals[i]; } SkScalar phase = random->nextRangeScalar(0, sum); pe = TestDashPathEffect::Make(intervals.get(), cnt, phase); } *style = GrStyle(stroke, std::move(pe)); } TestDashPathEffect::TestDashPathEffect(const SkScalar* intervals, int count, SkScalar phase) { fCount = count; fIntervals.reset(count); memcpy(fIntervals.get(), intervals, count * sizeof(SkScalar)); SkDashPath::CalcDashParameters(phase, intervals, count, &fInitialDashLength, &fInitialDashIndex, &fIntervalLength, &fPhase); } bool TestDashPathEffect::filterPath(SkPath* dst, const SkPath& src, SkStrokeRec* rec, const SkRect* cullRect) const { return SkDashPath::InternalFilter(dst, src, rec, cullRect, fIntervals.get(), fCount, fInitialDashLength, fInitialDashIndex, fIntervalLength); } SkPathEffect::DashType TestDashPathEffect::asADash(DashInfo* info) const { if (info) { if (info->fCount >= fCount && info->fIntervals) { memcpy(info->fIntervals, fIntervals.get(), fCount * sizeof(SkScalar)); } info->fCount = fCount; info->fPhase = fPhase; } return kDash_DashType; } sk_sp<SkColorSpace> TestColorSpace(SkRandom* random) { static sk_sp<SkColorSpace> gColorSpaces[3]; static bool gOnce; if (!gOnce) { gOnce = true; // No color space (legacy mode) gColorSpaces[0] = nullptr; // sRGB or color-spin sRGB gColorSpaces[1] = SkColorSpace::MakeSRGB(); gColorSpaces[2] = SkColorSpace::MakeSRGB()->makeColorSpin(); } return gColorSpaces[random->nextULessThan(static_cast<uint32_t>(SK_ARRAY_COUNT(gColorSpaces)))]; } sk_sp<GrColorSpaceXform> TestColorXform(SkRandom* random) { static sk_sp<GrColorSpaceXform> gXforms[3]; static bool gOnce; if (!gOnce) { gOnce = true; sk_sp<SkColorSpace> srgb = SkColorSpace::MakeSRGB(); sk_sp<SkColorSpace> spin = SkColorSpace::MakeSRGB()->makeColorSpin(); // No gamut change gXforms[0] = nullptr; // To different gamut (with automatic transfer function) gXforms[1] = GrColorSpaceXform::Make(srgb.get(), kSRGBA_8888_GrPixelConfig, spin.get()); // To different gamut (with manual transfer function) gXforms[2] = GrColorSpaceXform::Make(spin.get(), kRGBA_8888_GrPixelConfig, srgb.get()); } return gXforms[random->nextULessThan(static_cast<uint32_t>(SK_ARRAY_COUNT(gXforms)))]; } TestAsFPArgs::TestAsFPArgs(GrProcessorTestData* d) : fViewMatrixStorage(TestMatrix(d->fRandom)) , fColorSpaceInfoStorage(skstd::make_unique<GrColorSpaceInfo>(TestColorSpace(d->fRandom), kRGBA_8888_GrPixelConfig)) , fArgs(d->context(), &fViewMatrixStorage, nullptr, kNone_SkFilterQuality, fColorSpaceInfoStorage.get()) {} TestAsFPArgs::~TestAsFPArgs() {} } // namespace GrTest #endif