/* * Copyright 2011 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkDevice.h" #include "SkColorFilter.h" #include "SkDraw.h" #include "SkDrawFilter.h" #include "SkImageFilter.h" #include "SkImageFilterCache.h" #include "SkImagePriv.h" #include "SkImage_Base.h" #include "SkLatticeIter.h" #include "SkLocalMatrixShader.h" #include "SkMatrixPriv.h" #include "SkPatchUtils.h" #include "SkPathMeasure.h" #include "SkPathPriv.h" #include "SkRSXform.h" #include "SkRasterClip.h" #include "SkShader.h" #include "SkSpecialImage.h" #include "SkTLazy.h" #include "SkTextBlobRunIterator.h" #include "SkTextToPathIter.h" #include "SkUtils.h" #include "SkVertices.h" SkBaseDevice::SkBaseDevice(const SkImageInfo& info, const SkSurfaceProps& surfaceProps) : fInfo(info) , fSurfaceProps(surfaceProps) { fOrigin = {0, 0}; fCTM.reset(); } void SkBaseDevice::setOrigin(const SkMatrix& globalCTM, int x, int y) { fOrigin.set(x, y); fCTM = globalCTM; fCTM.postTranslate(SkIntToScalar(-x), SkIntToScalar(-y)); } void SkBaseDevice::setGlobalCTM(const SkMatrix& ctm) { fCTM = ctm; if (fOrigin.fX | fOrigin.fY) { fCTM.postTranslate(-SkIntToScalar(fOrigin.fX), -SkIntToScalar(fOrigin.fY)); } } bool SkBaseDevice::clipIsWideOpen() const { if (kRect_ClipType == this->onGetClipType()) { SkRegion rgn; this->onAsRgnClip(&rgn); SkASSERT(rgn.isRect()); return rgn.getBounds() == SkIRect::MakeWH(this->width(), this->height()); } else { return false; } } SkPixelGeometry SkBaseDevice::CreateInfo::AdjustGeometry(const SkImageInfo& info, TileUsage tileUsage, SkPixelGeometry geo, bool preserveLCDText) { switch (tileUsage) { case kPossible_TileUsage: // (we think) for compatibility with old clients, we assume this layer can support LCD // even though they may not have marked it as opaque... seems like we should update // our callers (reed/robertphilips). break; case kNever_TileUsage: if (!preserveLCDText) { geo = kUnknown_SkPixelGeometry; } break; } return geo; } static inline bool is_int(float x) { return x == (float) sk_float_round2int(x); } void SkBaseDevice::drawRegion(const SkRegion& region, const SkPaint& paint) { const SkMatrix& ctm = this->ctm(); bool isNonTranslate = ctm.getType() & ~(SkMatrix::kTranslate_Mask); bool complexPaint = paint.getStyle() != SkPaint::kFill_Style || paint.getMaskFilter() || paint.getPathEffect(); bool antiAlias = paint.isAntiAlias() && (!is_int(ctm.getTranslateX()) || !is_int(ctm.getTranslateY())); if (isNonTranslate || complexPaint || antiAlias) { SkPath path; region.getBoundaryPath(&path); return this->drawPath(path, paint, nullptr, false); } SkRegion::Iterator it(region); while (!it.done()) { this->drawRect(SkRect::Make(it.rect()), paint); it.next(); } } void SkBaseDevice::drawArc(const SkRect& oval, SkScalar startAngle, SkScalar sweepAngle, bool useCenter, const SkPaint& paint) { SkPath path; bool isFillNoPathEffect = SkPaint::kFill_Style == paint.getStyle() && !paint.getPathEffect(); SkPathPriv::CreateDrawArcPath(&path, oval, startAngle, sweepAngle, useCenter, isFillNoPathEffect); this->drawPath(path, paint); } void SkBaseDevice::drawDRRect(const SkRRect& outer, const SkRRect& inner, const SkPaint& paint) { SkPath path; path.addRRect(outer); path.addRRect(inner); path.setFillType(SkPath::kEvenOdd_FillType); path.setIsVolatile(true); const SkMatrix* preMatrix = nullptr; const bool pathIsMutable = true; this->drawPath(path, paint, preMatrix, pathIsMutable); } void SkBaseDevice::drawPatch(const SkPoint cubics[12], const SkColor colors[4], const SkPoint texCoords[4], SkBlendMode bmode, bool interpColorsLinearly, const SkPaint& paint) { SkISize lod = SkPatchUtils::GetLevelOfDetail(cubics, &this->ctm()); auto vertices = SkPatchUtils::MakeVertices(cubics, colors, texCoords, lod.width(), lod.height(), interpColorsLinearly); if (vertices) { this->drawVertices(vertices.get(), bmode, paint); } } void SkBaseDevice::drawTextBlob(const SkTextBlob* blob, SkScalar x, SkScalar y, const SkPaint &paint, SkDrawFilter* drawFilter) { SkPaint runPaint = paint; SkTextBlobRunIterator it(blob); for (;!it.done(); it.next()) { size_t textLen = it.glyphCount() * sizeof(uint16_t); const SkPoint& offset = it.offset(); // applyFontToPaint() always overwrites the exact same attributes, // so it is safe to not re-seed the paint for this reason. it.applyFontToPaint(&runPaint); if (drawFilter && !drawFilter->filter(&runPaint, SkDrawFilter::kText_Type)) { // A false return from filter() means we should abort the current draw. runPaint = paint; continue; } runPaint.setFlags(this->filterTextFlags(runPaint)); switch (it.positioning()) { case SkTextBlob::kDefault_Positioning: this->drawText(it.glyphs(), textLen, x + offset.x(), y + offset.y(), runPaint); break; case SkTextBlob::kHorizontal_Positioning: this->drawPosText(it.glyphs(), textLen, it.pos(), 1, SkPoint::Make(x, y + offset.y()), runPaint); break; case SkTextBlob::kFull_Positioning: this->drawPosText(it.glyphs(), textLen, it.pos(), 2, SkPoint::Make(x, y), runPaint); break; default: SK_ABORT("unhandled positioning mode"); } if (drawFilter) { // A draw filter may change the paint arbitrarily, so we must re-seed in this case. runPaint = paint; } } } void SkBaseDevice::drawImage(const SkImage* image, SkScalar x, SkScalar y, const SkPaint& paint) { SkBitmap bm; if (as_IB(image)->getROPixels(&bm, this->imageInfo().colorSpace())) { this->drawBitmap(bm, x, y, paint); } } void SkBaseDevice::drawImageRect(const SkImage* image, const SkRect* src, const SkRect& dst, const SkPaint& paint, SkCanvas::SrcRectConstraint constraint) { SkBitmap bm; if (as_IB(image)->getROPixels(&bm, this->imageInfo().colorSpace())) { this->drawBitmapRect(bm, src, dst, paint, constraint); } } void SkBaseDevice::drawImageNine(const SkImage* image, const SkIRect& center, const SkRect& dst, const SkPaint& paint) { SkLatticeIter iter(image->width(), image->height(), center, dst); SkRect srcR, dstR; while (iter.next(&srcR, &dstR)) { this->drawImageRect(image, &srcR, dstR, paint, SkCanvas::kStrict_SrcRectConstraint); } } void SkBaseDevice::drawBitmapNine(const SkBitmap& bitmap, const SkIRect& center, const SkRect& dst, const SkPaint& paint) { SkLatticeIter iter(bitmap.width(), bitmap.height(), center, dst); SkRect srcR, dstR; while (iter.next(&srcR, &dstR)) { this->drawBitmapRect(bitmap, &srcR, dstR, paint, SkCanvas::kStrict_SrcRectConstraint); } } void SkBaseDevice::drawImageLattice(const SkImage* image, const SkCanvas::Lattice& lattice, const SkRect& dst, const SkPaint& paint) { SkLatticeIter iter(lattice, dst); SkRect srcR, dstR; SkColor c; bool isFixedColor = false; const SkImageInfo info = SkImageInfo::Make(1, 1, kBGRA_8888_SkColorType, kUnpremul_SkAlphaType); while (iter.next(&srcR, &dstR, &isFixedColor, &c)) { if (isFixedColor || (srcR.width() <= 1.0f && srcR.height() <= 1.0f && image->readPixels(info, &c, 4, srcR.fLeft, srcR.fTop))) { // Fast draw with drawRect, if this is a patch containing a single color // or if this is a patch containing a single pixel. if (0 != c || !paint.isSrcOver()) { SkPaint paintCopy(paint); int alpha = SkAlphaMul(SkColorGetA(c), SkAlpha255To256(paint.getAlpha())); paintCopy.setColor(SkColorSetA(c, alpha)); this->drawRect(dstR, paintCopy); } } else { this->drawImageRect(image, &srcR, dstR, paint, SkCanvas::kStrict_SrcRectConstraint); } } } void SkBaseDevice::drawBitmapLattice(const SkBitmap& bitmap, const SkCanvas::Lattice& lattice, const SkRect& dst, const SkPaint& paint) { SkLatticeIter iter(lattice, dst); SkRect srcR, dstR; while (iter.next(&srcR, &dstR)) { this->drawBitmapRect(bitmap, &srcR, dstR, paint, SkCanvas::kStrict_SrcRectConstraint); } } static SkPoint* quad_to_tris(SkPoint tris[6], const SkPoint quad[4]) { tris[0] = quad[0]; tris[1] = quad[1]; tris[2] = quad[2]; tris[3] = quad[0]; tris[4] = quad[2]; tris[5] = quad[3]; return tris + 6; } void SkBaseDevice::drawAtlas(const SkImage* atlas, const SkRSXform xform[], const SkRect tex[], const SkColor colors[], int quadCount, SkBlendMode mode, const SkPaint& paint) { const int triCount = quadCount << 1; const int vertexCount = triCount * 3; uint32_t flags = SkVertices::kHasTexCoords_BuilderFlag; if (colors) { flags |= SkVertices::kHasColors_BuilderFlag; } SkVertices::Builder builder(SkVertices::kTriangles_VertexMode, vertexCount, 0, flags); SkPoint* vPos = builder.positions(); SkPoint* vTex = builder.texCoords(); SkColor* vCol = builder.colors(); for (int i = 0; i < quadCount; ++i) { SkPoint tmp[4]; xform[i].toQuad(tex[i].width(), tex[i].height(), tmp); vPos = quad_to_tris(vPos, tmp); tex[i].toQuad(tmp); vTex = quad_to_tris(vTex, tmp); if (colors) { sk_memset32(vCol, colors[i], 6); vCol += 6; } } SkPaint p(paint); p.setShader(atlas->makeShader()); this->drawVertices(builder.detach().get(), mode, p); } /////////////////////////////////////////////////////////////////////////////////////////////////// void SkBaseDevice::drawSpecial(SkSpecialImage*, int x, int y, const SkPaint&, SkImage*, const SkMatrix&) {} sk_sp<SkSpecialImage> SkBaseDevice::makeSpecial(const SkBitmap&) { return nullptr; } sk_sp<SkSpecialImage> SkBaseDevice::makeSpecial(const SkImage*) { return nullptr; } sk_sp<SkSpecialImage> SkBaseDevice::snapSpecial() { return nullptr; } /////////////////////////////////////////////////////////////////////////////////////////////////// bool SkBaseDevice::readPixels(const SkPixmap& pm, int x, int y) { return this->onReadPixels(pm, x, y); } bool SkBaseDevice::writePixels(const SkPixmap& pm, int x, int y) { return this->onWritePixels(pm, x, y); } bool SkBaseDevice::onWritePixels(const SkPixmap&, int, int) { return false; } bool SkBaseDevice::onReadPixels(const SkPixmap&, int x, int y) { return false; } bool SkBaseDevice::accessPixels(SkPixmap* pmap) { SkPixmap tempStorage; if (nullptr == pmap) { pmap = &tempStorage; } return this->onAccessPixels(pmap); } bool SkBaseDevice::peekPixels(SkPixmap* pmap) { SkPixmap tempStorage; if (nullptr == pmap) { pmap = &tempStorage; } return this->onPeekPixels(pmap); } ////////////////////////////////////////////////////////////////////////////////////////// static void morphpoints(SkPoint dst[], const SkPoint src[], int count, SkPathMeasure& meas, const SkMatrix& matrix) { SkMatrixPriv::MapXYProc proc = SkMatrixPriv::GetMapXYProc(matrix); for (int i = 0; i < count; i++) { SkPoint pos; SkVector tangent; proc(matrix, src[i].fX, src[i].fY, &pos); SkScalar sx = pos.fX; SkScalar sy = pos.fY; if (!meas.getPosTan(sx, &pos, &tangent)) { // set to 0 if the measure failed, so that we just set dst == pos tangent.set(0, 0); } /* This is the old way (that explains our approach but is way too slow SkMatrix matrix; SkPoint pt; pt.set(sx, sy); matrix.setSinCos(tangent.fY, tangent.fX); matrix.preTranslate(-sx, 0); matrix.postTranslate(pos.fX, pos.fY); matrix.mapPoints(&dst[i], &pt, 1); */ dst[i].set(pos.fX - tangent.fY * sy, pos.fY + tangent.fX * sy); } } /* TODO Need differentially more subdivisions when the follow-path is curvy. Not sure how to determine that, but we need it. I guess a cheap answer is let the caller tell us, but that seems like a cop-out. Another answer is to get Rob Johnson to figure it out. */ static void morphpath(SkPath* dst, const SkPath& src, SkPathMeasure& meas, const SkMatrix& matrix) { SkPath::Iter iter(src, false); SkPoint srcP[4], dstP[3]; SkPath::Verb verb; while ((verb = iter.next(srcP)) != SkPath::kDone_Verb) { switch (verb) { case SkPath::kMove_Verb: morphpoints(dstP, srcP, 1, meas, matrix); dst->moveTo(dstP[0]); break; case SkPath::kLine_Verb: // turn lines into quads to look bendy srcP[0].fX = SkScalarAve(srcP[0].fX, srcP[1].fX); srcP[0].fY = SkScalarAve(srcP[0].fY, srcP[1].fY); morphpoints(dstP, srcP, 2, meas, matrix); dst->quadTo(dstP[0], dstP[1]); break; case SkPath::kQuad_Verb: morphpoints(dstP, &srcP[1], 2, meas, matrix); dst->quadTo(dstP[0], dstP[1]); break; case SkPath::kConic_Verb: morphpoints(dstP, &srcP[1], 2, meas, matrix); dst->conicTo(dstP[0], dstP[1], iter.conicWeight()); break; case SkPath::kCubic_Verb: morphpoints(dstP, &srcP[1], 3, meas, matrix); dst->cubicTo(dstP[0], dstP[1], dstP[2]); break; case SkPath::kClose_Verb: dst->close(); break; default: SkDEBUGFAIL("unknown verb"); break; } } } void SkBaseDevice::drawTextOnPath(const void* text, size_t byteLength, const SkPath& follow, const SkMatrix* matrix, const SkPaint& paint) { SkASSERT(byteLength == 0 || text != nullptr); // nothing to draw if (text == nullptr || byteLength == 0) { return; } SkTextToPathIter iter((const char*)text, byteLength, paint, true); SkPathMeasure meas(follow, false); SkScalar hOffset = 0; // need to measure first if (paint.getTextAlign() != SkPaint::kLeft_Align) { SkScalar pathLen = meas.getLength(); if (paint.getTextAlign() == SkPaint::kCenter_Align) { pathLen = SkScalarHalf(pathLen); } hOffset += pathLen; } const SkPath* iterPath; SkScalar xpos; SkMatrix scaledMatrix; SkScalar scale = iter.getPathScale(); scaledMatrix.setScale(scale, scale); while (iter.next(&iterPath, &xpos)) { if (iterPath) { SkPath tmp; SkMatrix m(scaledMatrix); tmp.setIsVolatile(true); m.postTranslate(xpos + hOffset, 0); if (matrix) { m.postConcat(*matrix); } morphpath(&tmp, *iterPath, meas, m); this->drawPath(tmp, iter.getPaint(), nullptr, true); } } } #include "SkUtils.h" typedef int (*CountTextProc)(const char* text); static int count_utf16(const char* text) { const uint16_t* prev = (uint16_t*)text; (void)SkUTF16_NextUnichar(&prev); return SkToInt((const char*)prev - text); } static int return_4(const char* text) { return 4; } static int return_2(const char* text) { return 2; } void SkBaseDevice::drawTextRSXform(const void* text, size_t len, const SkRSXform xform[], const SkPaint& paint) { CountTextProc proc = nullptr; switch (paint.getTextEncoding()) { case SkPaint::kUTF8_TextEncoding: proc = SkUTF8_CountUTF8Bytes; break; case SkPaint::kUTF16_TextEncoding: proc = count_utf16; break; case SkPaint::kUTF32_TextEncoding: proc = return_4; break; case SkPaint::kGlyphID_TextEncoding: proc = return_2; break; } SkPaint localPaint(paint); SkShader* shader = paint.getShader(); SkMatrix localM, currM; const void* stopText = (const char*)text + len; while ((const char*)text < (const char*)stopText) { localM.setRSXform(*xform++); currM.setConcat(this->ctm(), localM); SkAutoDeviceCTMRestore adc(this, currM); // We want to rotate each glyph by the rsxform, but we don't want to rotate "space" // (i.e. the shader that cares about the ctm) so we have to undo our little ctm trick // with a localmatrixshader so that the shader draws as if there was no change to the ctm. if (shader) { SkMatrix inverse; SkAssertResult(localM.invert(&inverse)); localPaint.setShader(shader->makeWithLocalMatrix(inverse)); } int subLen = proc((const char*)text); this->drawText(text, subLen, 0, 0, localPaint); text = (const char*)text + subLen; } } ////////////////////////////////////////////////////////////////////////////////////////// uint32_t SkBaseDevice::filterTextFlags(const SkPaint& paint) const { uint32_t flags = paint.getFlags(); if (!paint.isLCDRenderText() || !paint.isAntiAlias()) { return flags; } if (kUnknown_SkPixelGeometry == fSurfaceProps.pixelGeometry() || this->onShouldDisableLCD(paint)) { flags &= ~SkPaint::kLCDRenderText_Flag; flags |= SkPaint::kGenA8FromLCD_Flag; } return flags; } sk_sp<SkSurface> SkBaseDevice::makeSurface(SkImageInfo const&, SkSurfaceProps const&) { return nullptr; } ////////////////////////////////////////////////////////////////////////////////////////// void SkBaseDevice::LogDrawScaleFactor(const SkMatrix& matrix, SkFilterQuality filterQuality) { #if SK_HISTOGRAMS_ENABLED enum ScaleFactor { kUpscale_ScaleFactor, kNoScale_ScaleFactor, kDownscale_ScaleFactor, kLargeDownscale_ScaleFactor, kLast_ScaleFactor = kLargeDownscale_ScaleFactor }; float rawScaleFactor = matrix.getMinScale(); ScaleFactor scaleFactor; if (rawScaleFactor < 0.5f) { scaleFactor = kLargeDownscale_ScaleFactor; } else if (rawScaleFactor < 1.0f) { scaleFactor = kDownscale_ScaleFactor; } else if (rawScaleFactor > 1.0f) { scaleFactor = kUpscale_ScaleFactor; } else { scaleFactor = kNoScale_ScaleFactor; } switch (filterQuality) { case kNone_SkFilterQuality: SK_HISTOGRAM_ENUMERATION("DrawScaleFactor.NoneFilterQuality", scaleFactor, kLast_ScaleFactor + 1); break; case kLow_SkFilterQuality: SK_HISTOGRAM_ENUMERATION("DrawScaleFactor.LowFilterQuality", scaleFactor, kLast_ScaleFactor + 1); break; case kMedium_SkFilterQuality: SK_HISTOGRAM_ENUMERATION("DrawScaleFactor.MediumFilterQuality", scaleFactor, kLast_ScaleFactor + 1); break; case kHigh_SkFilterQuality: SK_HISTOGRAM_ENUMERATION("DrawScaleFactor.HighFilterQuality", scaleFactor, kLast_ScaleFactor + 1); break; } // Also log filter quality independent scale factor. SK_HISTOGRAM_ENUMERATION("DrawScaleFactor.AnyFilterQuality", scaleFactor, kLast_ScaleFactor + 1); // Also log an overall histogram of filter quality. SK_HISTOGRAM_ENUMERATION("FilterQuality", filterQuality, kLast_SkFilterQuality + 1); #endif }