/* Abstract Object Interface (many thanks to Jim Fulton) */ #include "Python.h" #include <ctype.h> #include "structmember.h" /* we need the offsetof() macro from there */ #include "longintrepr.h" /* Shorthands to return certain errors */ static PyObject * type_error(const char *msg, PyObject *obj) { PyErr_Format(PyExc_TypeError, msg, obj->ob_type->tp_name); return NULL; } static PyObject * null_error(void) { if (!PyErr_Occurred()) PyErr_SetString(PyExc_SystemError, "null argument to internal routine"); return NULL; } /* Operations on any object */ PyObject * PyObject_Type(PyObject *o) { PyObject *v; if (o == NULL) { return null_error(); } v = (PyObject *)o->ob_type; Py_INCREF(v); return v; } Py_ssize_t PyObject_Size(PyObject *o) { PySequenceMethods *m; if (o == NULL) { null_error(); return -1; } m = o->ob_type->tp_as_sequence; if (m && m->sq_length) return m->sq_length(o); return PyMapping_Size(o); } #undef PyObject_Length Py_ssize_t PyObject_Length(PyObject *o) { return PyObject_Size(o); } #define PyObject_Length PyObject_Size int _PyObject_HasLen(PyObject *o) { return (Py_TYPE(o)->tp_as_sequence && Py_TYPE(o)->tp_as_sequence->sq_length) || (Py_TYPE(o)->tp_as_mapping && Py_TYPE(o)->tp_as_mapping->mp_length); } /* The length hint function returns a non-negative value from o.__len__() or o.__length_hint__(). If those methods aren't found the defaultvalue is returned. If one of the calls fails with an exception other than TypeError this function returns -1. */ Py_ssize_t PyObject_LengthHint(PyObject *o, Py_ssize_t defaultvalue) { PyObject *hint, *result; Py_ssize_t res; _Py_IDENTIFIER(__length_hint__); if (_PyObject_HasLen(o)) { res = PyObject_Length(o); if (res < 0 && PyErr_Occurred()) { if (!PyErr_ExceptionMatches(PyExc_TypeError)) { return -1; } PyErr_Clear(); } else { return res; } } hint = _PyObject_LookupSpecial(o, &PyId___length_hint__); if (hint == NULL) { if (PyErr_Occurred()) { return -1; } return defaultvalue; } result = PyObject_CallFunctionObjArgs(hint, NULL); Py_DECREF(hint); if (result == NULL) { if (PyErr_ExceptionMatches(PyExc_TypeError)) { PyErr_Clear(); return defaultvalue; } return -1; } else if (result == Py_NotImplemented) { Py_DECREF(result); return defaultvalue; } if (!PyLong_Check(result)) { PyErr_Format(PyExc_TypeError, "__length_hint__ must be an integer, not %.100s", Py_TYPE(result)->tp_name); Py_DECREF(result); return -1; } res = PyLong_AsSsize_t(result); Py_DECREF(result); if (res < 0 && PyErr_Occurred()) { return -1; } if (res < 0) { PyErr_Format(PyExc_ValueError, "__length_hint__() should return >= 0"); return -1; } return res; } PyObject * PyObject_GetItem(PyObject *o, PyObject *key) { PyMappingMethods *m; if (o == NULL || key == NULL) { return null_error(); } m = o->ob_type->tp_as_mapping; if (m && m->mp_subscript) { PyObject *item = m->mp_subscript(o, key); assert((item != NULL) ^ (PyErr_Occurred() != NULL)); return item; } if (o->ob_type->tp_as_sequence) { if (PyIndex_Check(key)) { Py_ssize_t key_value; key_value = PyNumber_AsSsize_t(key, PyExc_IndexError); if (key_value == -1 && PyErr_Occurred()) return NULL; return PySequence_GetItem(o, key_value); } else if (o->ob_type->tp_as_sequence->sq_item) return type_error("sequence index must " "be integer, not '%.200s'", key); } return type_error("'%.200s' object is not subscriptable", o); } int PyObject_SetItem(PyObject *o, PyObject *key, PyObject *value) { PyMappingMethods *m; if (o == NULL || key == NULL || value == NULL) { null_error(); return -1; } m = o->ob_type->tp_as_mapping; if (m && m->mp_ass_subscript) return m->mp_ass_subscript(o, key, value); if (o->ob_type->tp_as_sequence) { if (PyIndex_Check(key)) { Py_ssize_t key_value; key_value = PyNumber_AsSsize_t(key, PyExc_IndexError); if (key_value == -1 && PyErr_Occurred()) return -1; return PySequence_SetItem(o, key_value, value); } else if (o->ob_type->tp_as_sequence->sq_ass_item) { type_error("sequence index must be " "integer, not '%.200s'", key); return -1; } } type_error("'%.200s' object does not support item assignment", o); return -1; } int PyObject_DelItem(PyObject *o, PyObject *key) { PyMappingMethods *m; if (o == NULL || key == NULL) { null_error(); return -1; } m = o->ob_type->tp_as_mapping; if (m && m->mp_ass_subscript) return m->mp_ass_subscript(o, key, (PyObject*)NULL); if (o->ob_type->tp_as_sequence) { if (PyIndex_Check(key)) { Py_ssize_t key_value; key_value = PyNumber_AsSsize_t(key, PyExc_IndexError); if (key_value == -1 && PyErr_Occurred()) return -1; return PySequence_DelItem(o, key_value); } else if (o->ob_type->tp_as_sequence->sq_ass_item) { type_error("sequence index must be " "integer, not '%.200s'", key); return -1; } } type_error("'%.200s' object does not support item deletion", o); return -1; } int PyObject_DelItemString(PyObject *o, const char *key) { PyObject *okey; int ret; if (o == NULL || key == NULL) { null_error(); return -1; } okey = PyUnicode_FromString(key); if (okey == NULL) return -1; ret = PyObject_DelItem(o, okey); Py_DECREF(okey); return ret; } /* We release the buffer right after use of this function which could cause issues later on. Don't use these functions in new code. */ int PyObject_AsCharBuffer(PyObject *obj, const char **buffer, Py_ssize_t *buffer_len) { return PyObject_AsReadBuffer(obj, (const void **)buffer, buffer_len); } int PyObject_CheckReadBuffer(PyObject *obj) { PyBufferProcs *pb = obj->ob_type->tp_as_buffer; Py_buffer view; if (pb == NULL || pb->bf_getbuffer == NULL) return 0; if ((*pb->bf_getbuffer)(obj, &view, PyBUF_SIMPLE) == -1) { PyErr_Clear(); return 0; } PyBuffer_Release(&view); return 1; } int PyObject_AsReadBuffer(PyObject *obj, const void **buffer, Py_ssize_t *buffer_len) { Py_buffer view; if (obj == NULL || buffer == NULL || buffer_len == NULL) { null_error(); return -1; } if (PyObject_GetBuffer(obj, &view, PyBUF_SIMPLE) != 0) return -1; *buffer = view.buf; *buffer_len = view.len; PyBuffer_Release(&view); return 0; } int PyObject_AsWriteBuffer(PyObject *obj, void **buffer, Py_ssize_t *buffer_len) { PyBufferProcs *pb; Py_buffer view; if (obj == NULL || buffer == NULL || buffer_len == NULL) { null_error(); return -1; } pb = obj->ob_type->tp_as_buffer; if (pb == NULL || pb->bf_getbuffer == NULL || ((*pb->bf_getbuffer)(obj, &view, PyBUF_WRITABLE) != 0)) { PyErr_SetString(PyExc_TypeError, "expected a writable bytes-like object"); return -1; } *buffer = view.buf; *buffer_len = view.len; PyBuffer_Release(&view); return 0; } /* Buffer C-API for Python 3.0 */ int PyObject_GetBuffer(PyObject *obj, Py_buffer *view, int flags) { PyBufferProcs *pb = obj->ob_type->tp_as_buffer; if (pb == NULL || pb->bf_getbuffer == NULL) { PyErr_Format(PyExc_TypeError, "a bytes-like object is required, not '%.100s'", Py_TYPE(obj)->tp_name); return -1; } return (*pb->bf_getbuffer)(obj, view, flags); } static int _IsFortranContiguous(const Py_buffer *view) { Py_ssize_t sd, dim; int i; /* 1) len = product(shape) * itemsize 2) itemsize > 0 3) len = 0 <==> exists i: shape[i] = 0 */ if (view->len == 0) return 1; if (view->strides == NULL) { /* C-contiguous by definition */ /* Trivially F-contiguous */ if (view->ndim <= 1) return 1; /* ndim > 1 implies shape != NULL */ assert(view->shape != NULL); /* Effectively 1-d */ sd = 0; for (i=0; i<view->ndim; i++) { if (view->shape[i] > 1) sd += 1; } return sd <= 1; } /* strides != NULL implies both of these */ assert(view->ndim > 0); assert(view->shape != NULL); sd = view->itemsize; for (i=0; i<view->ndim; i++) { dim = view->shape[i]; if (dim > 1 && view->strides[i] != sd) { return 0; } sd *= dim; } return 1; } static int _IsCContiguous(const Py_buffer *view) { Py_ssize_t sd, dim; int i; /* 1) len = product(shape) * itemsize 2) itemsize > 0 3) len = 0 <==> exists i: shape[i] = 0 */ if (view->len == 0) return 1; if (view->strides == NULL) return 1; /* C-contiguous by definition */ /* strides != NULL implies both of these */ assert(view->ndim > 0); assert(view->shape != NULL); sd = view->itemsize; for (i=view->ndim-1; i>=0; i--) { dim = view->shape[i]; if (dim > 1 && view->strides[i] != sd) { return 0; } sd *= dim; } return 1; } int PyBuffer_IsContiguous(const Py_buffer *view, char order) { if (view->suboffsets != NULL) return 0; if (order == 'C') return _IsCContiguous(view); else if (order == 'F') return _IsFortranContiguous(view); else if (order == 'A') return (_IsCContiguous(view) || _IsFortranContiguous(view)); return 0; } void* PyBuffer_GetPointer(Py_buffer *view, Py_ssize_t *indices) { char* pointer; int i; pointer = (char *)view->buf; for (i = 0; i < view->ndim; i++) { pointer += view->strides[i]*indices[i]; if ((view->suboffsets != NULL) && (view->suboffsets[i] >= 0)) { pointer = *((char**)pointer) + view->suboffsets[i]; } } return (void*)pointer; } void _Py_add_one_to_index_F(int nd, Py_ssize_t *index, const Py_ssize_t *shape) { int k; for (k=0; k<nd; k++) { if (index[k] < shape[k]-1) { index[k]++; break; } else { index[k] = 0; } } } void _Py_add_one_to_index_C(int nd, Py_ssize_t *index, const Py_ssize_t *shape) { int k; for (k=nd-1; k>=0; k--) { if (index[k] < shape[k]-1) { index[k]++; break; } else { index[k] = 0; } } } int PyBuffer_FromContiguous(Py_buffer *view, void *buf, Py_ssize_t len, char fort) { int k; void (*addone)(int, Py_ssize_t *, const Py_ssize_t *); Py_ssize_t *indices, elements; char *src, *ptr; if (len > view->len) { len = view->len; } if (PyBuffer_IsContiguous(view, fort)) { /* simplest copy is all that is needed */ memcpy(view->buf, buf, len); return 0; } /* Otherwise a more elaborate scheme is needed */ /* view->ndim <= 64 */ indices = (Py_ssize_t *)PyMem_Malloc(sizeof(Py_ssize_t)*(view->ndim)); if (indices == NULL) { PyErr_NoMemory(); return -1; } for (k=0; k<view->ndim;k++) { indices[k] = 0; } if (fort == 'F') { addone = _Py_add_one_to_index_F; } else { addone = _Py_add_one_to_index_C; } src = buf; /* XXX : This is not going to be the fastest code in the world several optimizations are possible. */ elements = len / view->itemsize; while (elements--) { ptr = PyBuffer_GetPointer(view, indices); memcpy(ptr, src, view->itemsize); src += view->itemsize; addone(view->ndim, indices, view->shape); } PyMem_Free(indices); return 0; } int PyObject_CopyData(PyObject *dest, PyObject *src) { Py_buffer view_dest, view_src; int k; Py_ssize_t *indices, elements; char *dptr, *sptr; if (!PyObject_CheckBuffer(dest) || !PyObject_CheckBuffer(src)) { PyErr_SetString(PyExc_TypeError, "both destination and source must be "\ "bytes-like objects"); return -1; } if (PyObject_GetBuffer(dest, &view_dest, PyBUF_FULL) != 0) return -1; if (PyObject_GetBuffer(src, &view_src, PyBUF_FULL_RO) != 0) { PyBuffer_Release(&view_dest); return -1; } if (view_dest.len < view_src.len) { PyErr_SetString(PyExc_BufferError, "destination is too small to receive data from source"); PyBuffer_Release(&view_dest); PyBuffer_Release(&view_src); return -1; } if ((PyBuffer_IsContiguous(&view_dest, 'C') && PyBuffer_IsContiguous(&view_src, 'C')) || (PyBuffer_IsContiguous(&view_dest, 'F') && PyBuffer_IsContiguous(&view_src, 'F'))) { /* simplest copy is all that is needed */ memcpy(view_dest.buf, view_src.buf, view_src.len); PyBuffer_Release(&view_dest); PyBuffer_Release(&view_src); return 0; } /* Otherwise a more elaborate copy scheme is needed */ /* XXX(nnorwitz): need to check for overflow! */ indices = (Py_ssize_t *)PyMem_Malloc(sizeof(Py_ssize_t)*view_src.ndim); if (indices == NULL) { PyErr_NoMemory(); PyBuffer_Release(&view_dest); PyBuffer_Release(&view_src); return -1; } for (k=0; k<view_src.ndim;k++) { indices[k] = 0; } elements = 1; for (k=0; k<view_src.ndim; k++) { /* XXX(nnorwitz): can this overflow? */ elements *= view_src.shape[k]; } while (elements--) { _Py_add_one_to_index_C(view_src.ndim, indices, view_src.shape); dptr = PyBuffer_GetPointer(&view_dest, indices); sptr = PyBuffer_GetPointer(&view_src, indices); memcpy(dptr, sptr, view_src.itemsize); } PyMem_Free(indices); PyBuffer_Release(&view_dest); PyBuffer_Release(&view_src); return 0; } void PyBuffer_FillContiguousStrides(int nd, Py_ssize_t *shape, Py_ssize_t *strides, int itemsize, char fort) { int k; Py_ssize_t sd; sd = itemsize; if (fort == 'F') { for (k=0; k<nd; k++) { strides[k] = sd; sd *= shape[k]; } } else { for (k=nd-1; k>=0; k--) { strides[k] = sd; sd *= shape[k]; } } return; } int PyBuffer_FillInfo(Py_buffer *view, PyObject *obj, void *buf, Py_ssize_t len, int readonly, int flags) { if (view == NULL) { PyErr_SetString(PyExc_BufferError, "PyBuffer_FillInfo: view==NULL argument is obsolete"); return -1; } if (((flags & PyBUF_WRITABLE) == PyBUF_WRITABLE) && (readonly == 1)) { PyErr_SetString(PyExc_BufferError, "Object is not writable."); return -1; } view->obj = obj; if (obj) Py_INCREF(obj); view->buf = buf; view->len = len; view->readonly = readonly; view->itemsize = 1; view->format = NULL; if ((flags & PyBUF_FORMAT) == PyBUF_FORMAT) view->format = "B"; view->ndim = 1; view->shape = NULL; if ((flags & PyBUF_ND) == PyBUF_ND) view->shape = &(view->len); view->strides = NULL; if ((flags & PyBUF_STRIDES) == PyBUF_STRIDES) view->strides = &(view->itemsize); view->suboffsets = NULL; view->internal = NULL; return 0; } void PyBuffer_Release(Py_buffer *view) { PyObject *obj = view->obj; PyBufferProcs *pb; if (obj == NULL) return; pb = Py_TYPE(obj)->tp_as_buffer; if (pb && pb->bf_releasebuffer) pb->bf_releasebuffer(obj, view); view->obj = NULL; Py_DECREF(obj); } PyObject * PyObject_Format(PyObject *obj, PyObject *format_spec) { PyObject *meth; PyObject *empty = NULL; PyObject *result = NULL; _Py_IDENTIFIER(__format__); if (format_spec != NULL && !PyUnicode_Check(format_spec)) { PyErr_Format(PyExc_SystemError, "Format specifier must be a string, not %.200s", Py_TYPE(format_spec)->tp_name); return NULL; } /* Fast path for common types. */ if (format_spec == NULL || PyUnicode_GET_LENGTH(format_spec) == 0) { if (PyUnicode_CheckExact(obj)) { Py_INCREF(obj); return obj; } if (PyLong_CheckExact(obj)) { return PyObject_Str(obj); } } /* If no format_spec is provided, use an empty string */ if (format_spec == NULL) { empty = PyUnicode_New(0, 0); format_spec = empty; } /* Find the (unbound!) __format__ method */ meth = _PyObject_LookupSpecial(obj, &PyId___format__); if (meth == NULL) { if (!PyErr_Occurred()) PyErr_Format(PyExc_TypeError, "Type %.100s doesn't define __format__", Py_TYPE(obj)->tp_name); goto done; } /* And call it. */ result = PyObject_CallFunctionObjArgs(meth, format_spec, NULL); Py_DECREF(meth); if (result && !PyUnicode_Check(result)) { PyErr_Format(PyExc_TypeError, "__format__ must return a str, not %.200s", Py_TYPE(result)->tp_name); Py_DECREF(result); result = NULL; goto done; } done: Py_XDECREF(empty); return result; } /* Operations on numbers */ int PyNumber_Check(PyObject *o) { return o && o->ob_type->tp_as_number && (o->ob_type->tp_as_number->nb_int || o->ob_type->tp_as_number->nb_float); } /* Binary operators */ #define NB_SLOT(x) offsetof(PyNumberMethods, x) #define NB_BINOP(nb_methods, slot) \ (*(binaryfunc*)(& ((char*)nb_methods)[slot])) #define NB_TERNOP(nb_methods, slot) \ (*(ternaryfunc*)(& ((char*)nb_methods)[slot])) /* Calling scheme used for binary operations: Order operations are tried until either a valid result or error: w.op(v,w)[*], v.op(v,w), w.op(v,w) [*] only when v->ob_type != w->ob_type && w->ob_type is a subclass of v->ob_type */ static PyObject * binary_op1(PyObject *v, PyObject *w, const int op_slot) { PyObject *x; binaryfunc slotv = NULL; binaryfunc slotw = NULL; if (v->ob_type->tp_as_number != NULL) slotv = NB_BINOP(v->ob_type->tp_as_number, op_slot); if (w->ob_type != v->ob_type && w->ob_type->tp_as_number != NULL) { slotw = NB_BINOP(w->ob_type->tp_as_number, op_slot); if (slotw == slotv) slotw = NULL; } if (slotv) { if (slotw && PyType_IsSubtype(w->ob_type, v->ob_type)) { x = slotw(v, w); if (x != Py_NotImplemented) return x; Py_DECREF(x); /* can't do it */ slotw = NULL; } x = slotv(v, w); if (x != Py_NotImplemented) return x; Py_DECREF(x); /* can't do it */ } if (slotw) { x = slotw(v, w); if (x != Py_NotImplemented) return x; Py_DECREF(x); /* can't do it */ } Py_RETURN_NOTIMPLEMENTED; } static PyObject * binop_type_error(PyObject *v, PyObject *w, const char *op_name) { PyErr_Format(PyExc_TypeError, "unsupported operand type(s) for %.100s: " "'%.100s' and '%.100s'", op_name, v->ob_type->tp_name, w->ob_type->tp_name); return NULL; } static PyObject * binary_op(PyObject *v, PyObject *w, const int op_slot, const char *op_name) { PyObject *result = binary_op1(v, w, op_slot); if (result == Py_NotImplemented) { Py_DECREF(result); return binop_type_error(v, w, op_name); } return result; } /* Calling scheme used for ternary operations: Order operations are tried until either a valid result or error: v.op(v,w,z), w.op(v,w,z), z.op(v,w,z) */ static PyObject * ternary_op(PyObject *v, PyObject *w, PyObject *z, const int op_slot, const char *op_name) { PyNumberMethods *mv, *mw, *mz; PyObject *x = NULL; ternaryfunc slotv = NULL; ternaryfunc slotw = NULL; ternaryfunc slotz = NULL; mv = v->ob_type->tp_as_number; mw = w->ob_type->tp_as_number; if (mv != NULL) slotv = NB_TERNOP(mv, op_slot); if (w->ob_type != v->ob_type && mw != NULL) { slotw = NB_TERNOP(mw, op_slot); if (slotw == slotv) slotw = NULL; } if (slotv) { if (slotw && PyType_IsSubtype(w->ob_type, v->ob_type)) { x = slotw(v, w, z); if (x != Py_NotImplemented) return x; Py_DECREF(x); /* can't do it */ slotw = NULL; } x = slotv(v, w, z); if (x != Py_NotImplemented) return x; Py_DECREF(x); /* can't do it */ } if (slotw) { x = slotw(v, w, z); if (x != Py_NotImplemented) return x; Py_DECREF(x); /* can't do it */ } mz = z->ob_type->tp_as_number; if (mz != NULL) { slotz = NB_TERNOP(mz, op_slot); if (slotz == slotv || slotz == slotw) slotz = NULL; if (slotz) { x = slotz(v, w, z); if (x != Py_NotImplemented) return x; Py_DECREF(x); /* can't do it */ } } if (z == Py_None) PyErr_Format( PyExc_TypeError, "unsupported operand type(s) for ** or pow(): " "'%.100s' and '%.100s'", v->ob_type->tp_name, w->ob_type->tp_name); else PyErr_Format( PyExc_TypeError, "unsupported operand type(s) for pow(): " "'%.100s', '%.100s', '%.100s'", v->ob_type->tp_name, w->ob_type->tp_name, z->ob_type->tp_name); return NULL; } #define BINARY_FUNC(func, op, op_name) \ PyObject * \ func(PyObject *v, PyObject *w) { \ return binary_op(v, w, NB_SLOT(op), op_name); \ } BINARY_FUNC(PyNumber_Or, nb_or, "|") BINARY_FUNC(PyNumber_Xor, nb_xor, "^") BINARY_FUNC(PyNumber_And, nb_and, "&") BINARY_FUNC(PyNumber_Lshift, nb_lshift, "<<") BINARY_FUNC(PyNumber_Rshift, nb_rshift, ">>") BINARY_FUNC(PyNumber_Subtract, nb_subtract, "-") BINARY_FUNC(PyNumber_Divmod, nb_divmod, "divmod()") PyObject * PyNumber_Add(PyObject *v, PyObject *w) { PyObject *result = binary_op1(v, w, NB_SLOT(nb_add)); if (result == Py_NotImplemented) { PySequenceMethods *m = v->ob_type->tp_as_sequence; Py_DECREF(result); if (m && m->sq_concat) { return (*m->sq_concat)(v, w); } result = binop_type_error(v, w, "+"); } return result; } static PyObject * sequence_repeat(ssizeargfunc repeatfunc, PyObject *seq, PyObject *n) { Py_ssize_t count; if (PyIndex_Check(n)) { count = PyNumber_AsSsize_t(n, PyExc_OverflowError); if (count == -1 && PyErr_Occurred()) return NULL; } else { return type_error("can't multiply sequence by " "non-int of type '%.200s'", n); } return (*repeatfunc)(seq, count); } PyObject * PyNumber_Multiply(PyObject *v, PyObject *w) { PyObject *result = binary_op1(v, w, NB_SLOT(nb_multiply)); if (result == Py_NotImplemented) { PySequenceMethods *mv = v->ob_type->tp_as_sequence; PySequenceMethods *mw = w->ob_type->tp_as_sequence; Py_DECREF(result); if (mv && mv->sq_repeat) { return sequence_repeat(mv->sq_repeat, v, w); } else if (mw && mw->sq_repeat) { return sequence_repeat(mw->sq_repeat, w, v); } result = binop_type_error(v, w, "*"); } return result; } PyObject * PyNumber_MatrixMultiply(PyObject *v, PyObject *w) { return binary_op(v, w, NB_SLOT(nb_matrix_multiply), "@"); } PyObject * PyNumber_FloorDivide(PyObject *v, PyObject *w) { return binary_op(v, w, NB_SLOT(nb_floor_divide), "//"); } PyObject * PyNumber_TrueDivide(PyObject *v, PyObject *w) { return binary_op(v, w, NB_SLOT(nb_true_divide), "/"); } PyObject * PyNumber_Remainder(PyObject *v, PyObject *w) { return binary_op(v, w, NB_SLOT(nb_remainder), "%"); } PyObject * PyNumber_Power(PyObject *v, PyObject *w, PyObject *z) { return ternary_op(v, w, z, NB_SLOT(nb_power), "** or pow()"); } /* Binary in-place operators */ /* The in-place operators are defined to fall back to the 'normal', non in-place operations, if the in-place methods are not in place. - If the left hand object has the appropriate struct members, and they are filled, call the appropriate function and return the result. No coercion is done on the arguments; the left-hand object is the one the operation is performed on, and it's up to the function to deal with the right-hand object. - Otherwise, in-place modification is not supported. Handle it exactly as a non in-place operation of the same kind. */ static PyObject * binary_iop1(PyObject *v, PyObject *w, const int iop_slot, const int op_slot) { PyNumberMethods *mv = v->ob_type->tp_as_number; if (mv != NULL) { binaryfunc slot = NB_BINOP(mv, iop_slot); if (slot) { PyObject *x = (slot)(v, w); if (x != Py_NotImplemented) { return x; } Py_DECREF(x); } } return binary_op1(v, w, op_slot); } static PyObject * binary_iop(PyObject *v, PyObject *w, const int iop_slot, const int op_slot, const char *op_name) { PyObject *result = binary_iop1(v, w, iop_slot, op_slot); if (result == Py_NotImplemented) { Py_DECREF(result); return binop_type_error(v, w, op_name); } return result; } #define INPLACE_BINOP(func, iop, op, op_name) \ PyObject * \ func(PyObject *v, PyObject *w) { \ return binary_iop(v, w, NB_SLOT(iop), NB_SLOT(op), op_name); \ } INPLACE_BINOP(PyNumber_InPlaceOr, nb_inplace_or, nb_or, "|=") INPLACE_BINOP(PyNumber_InPlaceXor, nb_inplace_xor, nb_xor, "^=") INPLACE_BINOP(PyNumber_InPlaceAnd, nb_inplace_and, nb_and, "&=") INPLACE_BINOP(PyNumber_InPlaceLshift, nb_inplace_lshift, nb_lshift, "<<=") INPLACE_BINOP(PyNumber_InPlaceRshift, nb_inplace_rshift, nb_rshift, ">>=") INPLACE_BINOP(PyNumber_InPlaceSubtract, nb_inplace_subtract, nb_subtract, "-=") INPLACE_BINOP(PyNumber_InMatrixMultiply, nb_inplace_matrix_multiply, nb_matrix_multiply, "@=") PyObject * PyNumber_InPlaceFloorDivide(PyObject *v, PyObject *w) { return binary_iop(v, w, NB_SLOT(nb_inplace_floor_divide), NB_SLOT(nb_floor_divide), "//="); } PyObject * PyNumber_InPlaceTrueDivide(PyObject *v, PyObject *w) { return binary_iop(v, w, NB_SLOT(nb_inplace_true_divide), NB_SLOT(nb_true_divide), "/="); } PyObject * PyNumber_InPlaceAdd(PyObject *v, PyObject *w) { PyObject *result = binary_iop1(v, w, NB_SLOT(nb_inplace_add), NB_SLOT(nb_add)); if (result == Py_NotImplemented) { PySequenceMethods *m = v->ob_type->tp_as_sequence; Py_DECREF(result); if (m != NULL) { binaryfunc f = NULL; f = m->sq_inplace_concat; if (f == NULL) f = m->sq_concat; if (f != NULL) return (*f)(v, w); } result = binop_type_error(v, w, "+="); } return result; } PyObject * PyNumber_InPlaceMultiply(PyObject *v, PyObject *w) { PyObject *result = binary_iop1(v, w, NB_SLOT(nb_inplace_multiply), NB_SLOT(nb_multiply)); if (result == Py_NotImplemented) { ssizeargfunc f = NULL; PySequenceMethods *mv = v->ob_type->tp_as_sequence; PySequenceMethods *mw = w->ob_type->tp_as_sequence; Py_DECREF(result); if (mv != NULL) { f = mv->sq_inplace_repeat; if (f == NULL) f = mv->sq_repeat; if (f != NULL) return sequence_repeat(f, v, w); } else if (mw != NULL) { /* Note that the right hand operand should not be * mutated in this case so sq_inplace_repeat is not * used. */ if (mw->sq_repeat) return sequence_repeat(mw->sq_repeat, w, v); } result = binop_type_error(v, w, "*="); } return result; } PyObject * PyNumber_InPlaceMatrixMultiply(PyObject *v, PyObject *w) { return binary_iop(v, w, NB_SLOT(nb_inplace_matrix_multiply), NB_SLOT(nb_matrix_multiply), "@="); } PyObject * PyNumber_InPlaceRemainder(PyObject *v, PyObject *w) { return binary_iop(v, w, NB_SLOT(nb_inplace_remainder), NB_SLOT(nb_remainder), "%="); } PyObject * PyNumber_InPlacePower(PyObject *v, PyObject *w, PyObject *z) { if (v->ob_type->tp_as_number && v->ob_type->tp_as_number->nb_inplace_power != NULL) { return ternary_op(v, w, z, NB_SLOT(nb_inplace_power), "**="); } else { return ternary_op(v, w, z, NB_SLOT(nb_power), "**="); } } /* Unary operators and functions */ PyObject * PyNumber_Negative(PyObject *o) { PyNumberMethods *m; if (o == NULL) { return null_error(); } m = o->ob_type->tp_as_number; if (m && m->nb_negative) return (*m->nb_negative)(o); return type_error("bad operand type for unary -: '%.200s'", o); } PyObject * PyNumber_Positive(PyObject *o) { PyNumberMethods *m; if (o == NULL) { return null_error(); } m = o->ob_type->tp_as_number; if (m && m->nb_positive) return (*m->nb_positive)(o); return type_error("bad operand type for unary +: '%.200s'", o); } PyObject * PyNumber_Invert(PyObject *o) { PyNumberMethods *m; if (o == NULL) { return null_error(); } m = o->ob_type->tp_as_number; if (m && m->nb_invert) return (*m->nb_invert)(o); return type_error("bad operand type for unary ~: '%.200s'", o); } PyObject * PyNumber_Absolute(PyObject *o) { PyNumberMethods *m; if (o == NULL) { return null_error(); } m = o->ob_type->tp_as_number; if (m && m->nb_absolute) return m->nb_absolute(o); return type_error("bad operand type for abs(): '%.200s'", o); } /* Return a Python int from the object item. Raise TypeError if the result is not an int or if the object cannot be interpreted as an index. */ PyObject * PyNumber_Index(PyObject *item) { PyObject *result = NULL; if (item == NULL) { return null_error(); } if (PyLong_Check(item)) { Py_INCREF(item); return item; } if (!PyIndex_Check(item)) { PyErr_Format(PyExc_TypeError, "'%.200s' object cannot be interpreted " "as an integer", item->ob_type->tp_name); return NULL; } result = item->ob_type->tp_as_number->nb_index(item); if (!result || PyLong_CheckExact(result)) return result; if (!PyLong_Check(result)) { PyErr_Format(PyExc_TypeError, "__index__ returned non-int (type %.200s)", result->ob_type->tp_name); Py_DECREF(result); return NULL; } /* Issue #17576: warn if 'result' not of exact type int. */ if (PyErr_WarnFormat(PyExc_DeprecationWarning, 1, "__index__ returned non-int (type %.200s). " "The ability to return an instance of a strict subclass of int " "is deprecated, and may be removed in a future version of Python.", result->ob_type->tp_name)) { Py_DECREF(result); return NULL; } return result; } /* Return an error on Overflow only if err is not NULL*/ Py_ssize_t PyNumber_AsSsize_t(PyObject *item, PyObject *err) { Py_ssize_t result; PyObject *runerr; PyObject *value = PyNumber_Index(item); if (value == NULL) return -1; /* We're done if PyLong_AsSsize_t() returns without error. */ result = PyLong_AsSsize_t(value); if (result != -1 || !(runerr = PyErr_Occurred())) goto finish; /* Error handling code -- only manage OverflowError differently */ if (!PyErr_GivenExceptionMatches(runerr, PyExc_OverflowError)) goto finish; PyErr_Clear(); /* If no error-handling desired then the default clipping is sufficient. */ if (!err) { assert(PyLong_Check(value)); /* Whether or not it is less than or equal to zero is determined by the sign of ob_size */ if (_PyLong_Sign(value) < 0) result = PY_SSIZE_T_MIN; else result = PY_SSIZE_T_MAX; } else { /* Otherwise replace the error with caller's error object. */ PyErr_Format(err, "cannot fit '%.200s' into an index-sized integer", item->ob_type->tp_name); } finish: Py_DECREF(value); return result; } PyObject * PyNumber_Long(PyObject *o) { PyObject *result; PyNumberMethods *m; PyObject *trunc_func; Py_buffer view; _Py_IDENTIFIER(__trunc__); if (o == NULL) { return null_error(); } if (PyLong_CheckExact(o)) { Py_INCREF(o); return o; } m = o->ob_type->tp_as_number; if (m && m->nb_int) { /* This should include subclasses of int */ result = (PyObject *)_PyLong_FromNbInt(o); if (result != NULL && !PyLong_CheckExact(result)) { Py_SETREF(result, _PyLong_Copy((PyLongObject *)result)); } return result; } trunc_func = _PyObject_LookupSpecial(o, &PyId___trunc__); if (trunc_func) { result = PyEval_CallObject(trunc_func, NULL); Py_DECREF(trunc_func); if (result == NULL || PyLong_CheckExact(result)) { return result; } if (PyLong_Check(result)) { Py_SETREF(result, _PyLong_Copy((PyLongObject *)result)); return result; } /* __trunc__ is specified to return an Integral type, but int() needs to return an int. */ m = result->ob_type->tp_as_number; if (m == NULL || m->nb_int == NULL) { PyErr_Format( PyExc_TypeError, "__trunc__ returned non-Integral (type %.200s)", result->ob_type->tp_name); Py_DECREF(result); return NULL; } Py_SETREF(result, (PyObject *)_PyLong_FromNbInt(result)); if (result != NULL && !PyLong_CheckExact(result)) { Py_SETREF(result, _PyLong_Copy((PyLongObject *)result)); } return result; } if (PyErr_Occurred()) return NULL; if (PyUnicode_Check(o)) /* The below check is done in PyLong_FromUnicode(). */ return PyLong_FromUnicodeObject(o, 10); if (PyBytes_Check(o)) /* need to do extra error checking that PyLong_FromString() * doesn't do. In particular int('9\x005') must raise an * exception, not truncate at the null. */ return _PyLong_FromBytes(PyBytes_AS_STRING(o), PyBytes_GET_SIZE(o), 10); if (PyByteArray_Check(o)) return _PyLong_FromBytes(PyByteArray_AS_STRING(o), PyByteArray_GET_SIZE(o), 10); if (PyObject_GetBuffer(o, &view, PyBUF_SIMPLE) == 0) { PyObject *bytes; /* Copy to NUL-terminated buffer. */ bytes = PyBytes_FromStringAndSize((const char *)view.buf, view.len); if (bytes == NULL) { PyBuffer_Release(&view); return NULL; } result = _PyLong_FromBytes(PyBytes_AS_STRING(bytes), PyBytes_GET_SIZE(bytes), 10); Py_DECREF(bytes); PyBuffer_Release(&view); return result; } return type_error("int() argument must be a string, a bytes-like object " "or a number, not '%.200s'", o); } PyObject * PyNumber_Float(PyObject *o) { PyNumberMethods *m; if (o == NULL) { return null_error(); } if (PyFloat_CheckExact(o)) { Py_INCREF(o); return o; } m = o->ob_type->tp_as_number; if (m && m->nb_float) { /* This should include subclasses of float */ PyObject *res = m->nb_float(o); double val; if (!res || PyFloat_CheckExact(res)) { return res; } if (!PyFloat_Check(res)) { PyErr_Format(PyExc_TypeError, "%.50s.__float__ returned non-float (type %.50s)", o->ob_type->tp_name, res->ob_type->tp_name); Py_DECREF(res); return NULL; } /* Issue #26983: warn if 'res' not of exact type float. */ if (PyErr_WarnFormat(PyExc_DeprecationWarning, 1, "%.50s.__float__ returned non-float (type %.50s). " "The ability to return an instance of a strict subclass of float " "is deprecated, and may be removed in a future version of Python.", o->ob_type->tp_name, res->ob_type->tp_name)) { Py_DECREF(res); return NULL; } val = PyFloat_AS_DOUBLE(res); Py_DECREF(res); return PyFloat_FromDouble(val); } if (PyFloat_Check(o)) { /* A float subclass with nb_float == NULL */ return PyFloat_FromDouble(PyFloat_AS_DOUBLE(o)); } return PyFloat_FromString(o); } PyObject * PyNumber_ToBase(PyObject *n, int base) { PyObject *res = NULL; PyObject *index = PyNumber_Index(n); if (!index) return NULL; if (PyLong_Check(index)) res = _PyLong_Format(index, base); else /* It should not be possible to get here, as PyNumber_Index already has a check for the same condition */ PyErr_SetString(PyExc_ValueError, "PyNumber_ToBase: index not int"); Py_DECREF(index); return res; } /* Operations on sequences */ int PySequence_Check(PyObject *s) { if (PyDict_Check(s)) return 0; return s != NULL && s->ob_type->tp_as_sequence && s->ob_type->tp_as_sequence->sq_item != NULL; } Py_ssize_t PySequence_Size(PyObject *s) { PySequenceMethods *m; if (s == NULL) { null_error(); return -1; } m = s->ob_type->tp_as_sequence; if (m && m->sq_length) return m->sq_length(s); type_error("object of type '%.200s' has no len()", s); return -1; } #undef PySequence_Length Py_ssize_t PySequence_Length(PyObject *s) { return PySequence_Size(s); } #define PySequence_Length PySequence_Size PyObject * PySequence_Concat(PyObject *s, PyObject *o) { PySequenceMethods *m; if (s == NULL || o == NULL) { return null_error(); } m = s->ob_type->tp_as_sequence; if (m && m->sq_concat) return m->sq_concat(s, o); /* Instances of user classes defining an __add__() method only have an nb_add slot, not an sq_concat slot. So we fall back to nb_add if both arguments appear to be sequences. */ if (PySequence_Check(s) && PySequence_Check(o)) { PyObject *result = binary_op1(s, o, NB_SLOT(nb_add)); if (result != Py_NotImplemented) return result; Py_DECREF(result); } return type_error("'%.200s' object can't be concatenated", s); } PyObject * PySequence_Repeat(PyObject *o, Py_ssize_t count) { PySequenceMethods *m; if (o == NULL) { return null_error(); } m = o->ob_type->tp_as_sequence; if (m && m->sq_repeat) return m->sq_repeat(o, count); /* Instances of user classes defining a __mul__() method only have an nb_multiply slot, not an sq_repeat slot. so we fall back to nb_multiply if o appears to be a sequence. */ if (PySequence_Check(o)) { PyObject *n, *result; n = PyLong_FromSsize_t(count); if (n == NULL) return NULL; result = binary_op1(o, n, NB_SLOT(nb_multiply)); Py_DECREF(n); if (result != Py_NotImplemented) return result; Py_DECREF(result); } return type_error("'%.200s' object can't be repeated", o); } PyObject * PySequence_InPlaceConcat(PyObject *s, PyObject *o) { PySequenceMethods *m; if (s == NULL || o == NULL) { return null_error(); } m = s->ob_type->tp_as_sequence; if (m && m->sq_inplace_concat) return m->sq_inplace_concat(s, o); if (m && m->sq_concat) return m->sq_concat(s, o); if (PySequence_Check(s) && PySequence_Check(o)) { PyObject *result = binary_iop1(s, o, NB_SLOT(nb_inplace_add), NB_SLOT(nb_add)); if (result != Py_NotImplemented) return result; Py_DECREF(result); } return type_error("'%.200s' object can't be concatenated", s); } PyObject * PySequence_InPlaceRepeat(PyObject *o, Py_ssize_t count) { PySequenceMethods *m; if (o == NULL) { return null_error(); } m = o->ob_type->tp_as_sequence; if (m && m->sq_inplace_repeat) return m->sq_inplace_repeat(o, count); if (m && m->sq_repeat) return m->sq_repeat(o, count); if (PySequence_Check(o)) { PyObject *n, *result; n = PyLong_FromSsize_t(count); if (n == NULL) return NULL; result = binary_iop1(o, n, NB_SLOT(nb_inplace_multiply), NB_SLOT(nb_multiply)); Py_DECREF(n); if (result != Py_NotImplemented) return result; Py_DECREF(result); } return type_error("'%.200s' object can't be repeated", o); } PyObject * PySequence_GetItem(PyObject *s, Py_ssize_t i) { PySequenceMethods *m; if (s == NULL) { return null_error(); } m = s->ob_type->tp_as_sequence; if (m && m->sq_item) { if (i < 0) { if (m->sq_length) { Py_ssize_t l = (*m->sq_length)(s); if (l < 0) { assert(PyErr_Occurred()); return NULL; } i += l; } } return m->sq_item(s, i); } return type_error("'%.200s' object does not support indexing", s); } PyObject * PySequence_GetSlice(PyObject *s, Py_ssize_t i1, Py_ssize_t i2) { PyMappingMethods *mp; if (!s) { return null_error(); } mp = s->ob_type->tp_as_mapping; if (mp && mp->mp_subscript) { PyObject *res; PyObject *slice = _PySlice_FromIndices(i1, i2); if (!slice) return NULL; res = mp->mp_subscript(s, slice); Py_DECREF(slice); return res; } return type_error("'%.200s' object is unsliceable", s); } int PySequence_SetItem(PyObject *s, Py_ssize_t i, PyObject *o) { PySequenceMethods *m; if (s == NULL) { null_error(); return -1; } m = s->ob_type->tp_as_sequence; if (m && m->sq_ass_item) { if (i < 0) { if (m->sq_length) { Py_ssize_t l = (*m->sq_length)(s); if (l < 0) return -1; i += l; } } return m->sq_ass_item(s, i, o); } type_error("'%.200s' object does not support item assignment", s); return -1; } int PySequence_DelItem(PyObject *s, Py_ssize_t i) { PySequenceMethods *m; if (s == NULL) { null_error(); return -1; } m = s->ob_type->tp_as_sequence; if (m && m->sq_ass_item) { if (i < 0) { if (m->sq_length) { Py_ssize_t l = (*m->sq_length)(s); if (l < 0) return -1; i += l; } } return m->sq_ass_item(s, i, (PyObject *)NULL); } type_error("'%.200s' object doesn't support item deletion", s); return -1; } int PySequence_SetSlice(PyObject *s, Py_ssize_t i1, Py_ssize_t i2, PyObject *o) { PyMappingMethods *mp; if (s == NULL) { null_error(); return -1; } mp = s->ob_type->tp_as_mapping; if (mp && mp->mp_ass_subscript) { int res; PyObject *slice = _PySlice_FromIndices(i1, i2); if (!slice) return -1; res = mp->mp_ass_subscript(s, slice, o); Py_DECREF(slice); return res; } type_error("'%.200s' object doesn't support slice assignment", s); return -1; } int PySequence_DelSlice(PyObject *s, Py_ssize_t i1, Py_ssize_t i2) { PyMappingMethods *mp; if (s == NULL) { null_error(); return -1; } mp = s->ob_type->tp_as_mapping; if (mp && mp->mp_ass_subscript) { int res; PyObject *slice = _PySlice_FromIndices(i1, i2); if (!slice) return -1; res = mp->mp_ass_subscript(s, slice, NULL); Py_DECREF(slice); return res; } type_error("'%.200s' object doesn't support slice deletion", s); return -1; } PyObject * PySequence_Tuple(PyObject *v) { PyObject *it; /* iter(v) */ Py_ssize_t n; /* guess for result tuple size */ PyObject *result = NULL; Py_ssize_t j; if (v == NULL) { return null_error(); } /* Special-case the common tuple and list cases, for efficiency. */ if (PyTuple_CheckExact(v)) { /* Note that we can't know whether it's safe to return a tuple *subclass* instance as-is, hence the restriction to exact tuples here. In contrast, lists always make a copy, so there's no need for exactness below. */ Py_INCREF(v); return v; } if (PyList_CheckExact(v)) return PyList_AsTuple(v); /* Get iterator. */ it = PyObject_GetIter(v); if (it == NULL) return NULL; /* Guess result size and allocate space. */ n = PyObject_LengthHint(v, 10); if (n == -1) goto Fail; result = PyTuple_New(n); if (result == NULL) goto Fail; /* Fill the tuple. */ for (j = 0; ; ++j) { PyObject *item = PyIter_Next(it); if (item == NULL) { if (PyErr_Occurred()) goto Fail; break; } if (j >= n) { size_t newn = (size_t)n; /* The over-allocation strategy can grow a bit faster than for lists because unlike lists the over-allocation isn't permanent -- we reclaim the excess before the end of this routine. So, grow by ten and then add 25%. */ newn += 10u; newn += newn >> 2; if (newn > PY_SSIZE_T_MAX) { /* Check for overflow */ PyErr_NoMemory(); Py_DECREF(item); goto Fail; } n = (Py_ssize_t)newn; if (_PyTuple_Resize(&result, n) != 0) { Py_DECREF(item); goto Fail; } } PyTuple_SET_ITEM(result, j, item); } /* Cut tuple back if guess was too large. */ if (j < n && _PyTuple_Resize(&result, j) != 0) goto Fail; Py_DECREF(it); return result; Fail: Py_XDECREF(result); Py_DECREF(it); return NULL; } PyObject * PySequence_List(PyObject *v) { PyObject *result; /* result list */ PyObject *rv; /* return value from PyList_Extend */ if (v == NULL) { return null_error(); } result = PyList_New(0); if (result == NULL) return NULL; rv = _PyList_Extend((PyListObject *)result, v); if (rv == NULL) { Py_DECREF(result); return NULL; } Py_DECREF(rv); return result; } PyObject * PySequence_Fast(PyObject *v, const char *m) { PyObject *it; if (v == NULL) { return null_error(); } if (PyList_CheckExact(v) || PyTuple_CheckExact(v)) { Py_INCREF(v); return v; } it = PyObject_GetIter(v); if (it == NULL) { if (PyErr_ExceptionMatches(PyExc_TypeError)) PyErr_SetString(PyExc_TypeError, m); return NULL; } v = PySequence_List(it); Py_DECREF(it); return v; } /* Iterate over seq. Result depends on the operation: PY_ITERSEARCH_COUNT: -1 if error, else # of times obj appears in seq. PY_ITERSEARCH_INDEX: 0-based index of first occurrence of obj in seq; set ValueError and return -1 if none found; also return -1 on error. Py_ITERSEARCH_CONTAINS: return 1 if obj in seq, else 0; -1 on error. */ Py_ssize_t _PySequence_IterSearch(PyObject *seq, PyObject *obj, int operation) { Py_ssize_t n; int wrapped; /* for PY_ITERSEARCH_INDEX, true iff n wrapped around */ PyObject *it; /* iter(seq) */ if (seq == NULL || obj == NULL) { null_error(); return -1; } it = PyObject_GetIter(seq); if (it == NULL) { type_error("argument of type '%.200s' is not iterable", seq); return -1; } n = wrapped = 0; for (;;) { int cmp; PyObject *item = PyIter_Next(it); if (item == NULL) { if (PyErr_Occurred()) goto Fail; break; } cmp = PyObject_RichCompareBool(obj, item, Py_EQ); Py_DECREF(item); if (cmp < 0) goto Fail; if (cmp > 0) { switch (operation) { case PY_ITERSEARCH_COUNT: if (n == PY_SSIZE_T_MAX) { PyErr_SetString(PyExc_OverflowError, "count exceeds C integer size"); goto Fail; } ++n; break; case PY_ITERSEARCH_INDEX: if (wrapped) { PyErr_SetString(PyExc_OverflowError, "index exceeds C integer size"); goto Fail; } goto Done; case PY_ITERSEARCH_CONTAINS: n = 1; goto Done; default: assert(!"unknown operation"); } } if (operation == PY_ITERSEARCH_INDEX) { if (n == PY_SSIZE_T_MAX) wrapped = 1; ++n; } } if (operation != PY_ITERSEARCH_INDEX) goto Done; PyErr_SetString(PyExc_ValueError, "sequence.index(x): x not in sequence"); /* fall into failure code */ Fail: n = -1; /* fall through */ Done: Py_DECREF(it); return n; } /* Return # of times o appears in s. */ Py_ssize_t PySequence_Count(PyObject *s, PyObject *o) { return _PySequence_IterSearch(s, o, PY_ITERSEARCH_COUNT); } /* Return -1 if error; 1 if ob in seq; 0 if ob not in seq. * Use sq_contains if possible, else defer to _PySequence_IterSearch(). */ int PySequence_Contains(PyObject *seq, PyObject *ob) { Py_ssize_t result; PySequenceMethods *sqm = seq->ob_type->tp_as_sequence; if (sqm != NULL && sqm->sq_contains != NULL) return (*sqm->sq_contains)(seq, ob); result = _PySequence_IterSearch(seq, ob, PY_ITERSEARCH_CONTAINS); return Py_SAFE_DOWNCAST(result, Py_ssize_t, int); } /* Backwards compatibility */ #undef PySequence_In int PySequence_In(PyObject *w, PyObject *v) { return PySequence_Contains(w, v); } Py_ssize_t PySequence_Index(PyObject *s, PyObject *o) { return _PySequence_IterSearch(s, o, PY_ITERSEARCH_INDEX); } /* Operations on mappings */ int PyMapping_Check(PyObject *o) { return o && o->ob_type->tp_as_mapping && o->ob_type->tp_as_mapping->mp_subscript; } Py_ssize_t PyMapping_Size(PyObject *o) { PyMappingMethods *m; if (o == NULL) { null_error(); return -1; } m = o->ob_type->tp_as_mapping; if (m && m->mp_length) return m->mp_length(o); type_error("object of type '%.200s' has no len()", o); return -1; } #undef PyMapping_Length Py_ssize_t PyMapping_Length(PyObject *o) { return PyMapping_Size(o); } #define PyMapping_Length PyMapping_Size PyObject * PyMapping_GetItemString(PyObject *o, const char *key) { PyObject *okey, *r; if (key == NULL) { return null_error(); } okey = PyUnicode_FromString(key); if (okey == NULL) return NULL; r = PyObject_GetItem(o, okey); Py_DECREF(okey); return r; } int PyMapping_SetItemString(PyObject *o, const char *key, PyObject *value) { PyObject *okey; int r; if (key == NULL) { null_error(); return -1; } okey = PyUnicode_FromString(key); if (okey == NULL) return -1; r = PyObject_SetItem(o, okey, value); Py_DECREF(okey); return r; } int PyMapping_HasKeyString(PyObject *o, const char *key) { PyObject *v; v = PyMapping_GetItemString(o, key); if (v) { Py_DECREF(v); return 1; } PyErr_Clear(); return 0; } int PyMapping_HasKey(PyObject *o, PyObject *key) { PyObject *v; v = PyObject_GetItem(o, key); if (v) { Py_DECREF(v); return 1; } PyErr_Clear(); return 0; } PyObject * PyMapping_Keys(PyObject *o) { PyObject *keys; PyObject *fast; _Py_IDENTIFIER(keys); if (PyDict_CheckExact(o)) return PyDict_Keys(o); keys = _PyObject_CallMethodId(o, &PyId_keys, NULL); if (keys == NULL) return NULL; fast = PySequence_Fast(keys, "o.keys() are not iterable"); Py_DECREF(keys); return fast; } PyObject * PyMapping_Items(PyObject *o) { PyObject *items; PyObject *fast; _Py_IDENTIFIER(items); if (PyDict_CheckExact(o)) return PyDict_Items(o); items = _PyObject_CallMethodId(o, &PyId_items, NULL); if (items == NULL) return NULL; fast = PySequence_Fast(items, "o.items() are not iterable"); Py_DECREF(items); return fast; } PyObject * PyMapping_Values(PyObject *o) { PyObject *values; PyObject *fast; _Py_IDENTIFIER(values); if (PyDict_CheckExact(o)) return PyDict_Values(o); values = _PyObject_CallMethodId(o, &PyId_values, NULL); if (values == NULL) return NULL; fast = PySequence_Fast(values, "o.values() are not iterable"); Py_DECREF(values); return fast; } /* Operations on callable objects */ /* XXX PyCallable_Check() is in object.c */ PyObject * PyObject_CallObject(PyObject *o, PyObject *a) { return PyEval_CallObjectWithKeywords(o, a, NULL); } PyObject* _Py_CheckFunctionResult(PyObject *func, PyObject *result, const char *where) { int err_occurred = (PyErr_Occurred() != NULL); assert((func != NULL) ^ (where != NULL)); if (result == NULL) { if (!err_occurred) { if (func) PyErr_Format(PyExc_SystemError, "%R returned NULL without setting an error", func); else PyErr_Format(PyExc_SystemError, "%s returned NULL without setting an error", where); #ifdef Py_DEBUG /* Ensure that the bug is caught in debug mode */ Py_FatalError("a function returned NULL without setting an error"); #endif return NULL; } } else { if (err_occurred) { Py_DECREF(result); if (func) { _PyErr_FormatFromCause(PyExc_SystemError, "%R returned a result with an error set", func); } else { _PyErr_FormatFromCause(PyExc_SystemError, "%s returned a result with an error set", where); } #ifdef Py_DEBUG /* Ensure that the bug is caught in debug mode */ Py_FatalError("a function returned a result with an error set"); #endif return NULL; } } return result; } PyObject * PyObject_Call(PyObject *func, PyObject *args, PyObject *kwargs) { ternaryfunc call; PyObject *result; /* PyObject_Call() must not be called with an exception set, because it may clear it (directly or indirectly) and so the caller loses its exception */ assert(!PyErr_Occurred()); assert(PyTuple_Check(args)); assert(kwargs == NULL || PyDict_Check(kwargs)); call = func->ob_type->tp_call; if (call == NULL) { PyErr_Format(PyExc_TypeError, "'%.200s' object is not callable", func->ob_type->tp_name); return NULL; } if (Py_EnterRecursiveCall(" while calling a Python object")) return NULL; result = (*call)(func, args, kwargs); Py_LeaveRecursiveCall(); return _Py_CheckFunctionResult(func, result, NULL); } PyObject* _PyStack_AsTuple(PyObject **stack, Py_ssize_t nargs) { PyObject *args; Py_ssize_t i; args = PyTuple_New(nargs); if (args == NULL) { return NULL; } for (i=0; i < nargs; i++) { PyObject *item = stack[i]; Py_INCREF(item); PyTuple_SET_ITEM(args, i, item); } return args; } PyObject * _PyObject_FastCallDict(PyObject *func, PyObject **args, Py_ssize_t nargs, PyObject *kwargs) { ternaryfunc call; PyObject *result = NULL; /* _PyObject_FastCallDict() must not be called with an exception set, because it may clear it (directly or indirectly) and so the caller loses its exception */ assert(!PyErr_Occurred()); assert(func != NULL); assert(nargs >= 0); assert(nargs == 0 || args != NULL); assert(kwargs == NULL || PyDict_Check(kwargs)); if (Py_EnterRecursiveCall(" while calling a Python object")) { return NULL; } if (PyFunction_Check(func)) { result = _PyFunction_FastCallDict(func, args, nargs, kwargs); } else if (PyCFunction_Check(func)) { result = _PyCFunction_FastCallDict(func, args, nargs, kwargs); } else { PyObject *tuple; /* Slow-path: build a temporary tuple */ call = func->ob_type->tp_call; if (call == NULL) { PyErr_Format(PyExc_TypeError, "'%.200s' object is not callable", func->ob_type->tp_name); goto exit; } tuple = _PyStack_AsTuple(args, nargs); if (tuple == NULL) { goto exit; } result = (*call)(func, tuple, kwargs); Py_DECREF(tuple); result = _Py_CheckFunctionResult(func, result, NULL); } exit: Py_LeaveRecursiveCall(); return result; } /* Positional arguments are obj followed by args. */ PyObject * _PyObject_Call_Prepend(PyObject *func, PyObject *obj, PyObject *args, PyObject *kwargs) { PyObject *small_stack[8]; PyObject **stack; Py_ssize_t argcount; PyObject *result; assert(PyTuple_Check(args)); argcount = PyTuple_GET_SIZE(args); if (argcount + 1 <= (Py_ssize_t)Py_ARRAY_LENGTH(small_stack)) { stack = small_stack; } else { stack = PyMem_Malloc((argcount + 1) * sizeof(PyObject *)); if (stack == NULL) { PyErr_NoMemory(); return NULL; } } /* use borrowed references */ stack[0] = obj; memcpy(&stack[1], &PyTuple_GET_ITEM(args, 0), argcount * sizeof(PyObject *)); result = _PyObject_FastCallDict(func, stack, argcount + 1, kwargs); if (stack != small_stack) { PyMem_Free(stack); } return result; } PyObject * _PyStack_AsDict(PyObject **values, PyObject *kwnames) { Py_ssize_t nkwargs = PyTuple_GET_SIZE(kwnames); PyObject *kwdict; Py_ssize_t i; kwdict = PyDict_New(); if (kwdict == NULL) { return NULL; } for (i = 0; i < nkwargs; i++) { PyObject *key = PyTuple_GET_ITEM(kwnames, i); PyObject *value = *values++; assert(PyUnicode_CheckExact(key)); assert(PyDict_GetItem(kwdict, key) == NULL); if (PyDict_SetItem(kwdict, key, value)) { Py_DECREF(kwdict); return NULL; } } return kwdict; } PyObject ** _PyStack_UnpackDict(PyObject **args, Py_ssize_t nargs, PyObject *kwargs, PyObject **p_kwnames, PyObject *func) { PyObject **stack, **kwstack; Py_ssize_t nkwargs; Py_ssize_t pos, i; PyObject *key, *value; PyObject *kwnames; assert(nargs >= 0); assert(kwargs == NULL || PyDict_CheckExact(kwargs)); nkwargs = (kwargs != NULL) ? PyDict_Size(kwargs) : 0; if (!nkwargs) { *p_kwnames = NULL; return args; } if ((size_t)nargs > PY_SSIZE_T_MAX / sizeof(stack[0]) - (size_t)nkwargs) { PyErr_NoMemory(); return NULL; } stack = PyMem_Malloc((nargs + nkwargs) * sizeof(stack[0])); if (stack == NULL) { PyErr_NoMemory(); return NULL; } kwnames = PyTuple_New(nkwargs); if (kwnames == NULL) { PyMem_Free(stack); return NULL; } /* Copy position arguments (borrowed references) */ memcpy(stack, args, nargs * sizeof(stack[0])); kwstack = stack + nargs; pos = i = 0; /* This loop doesn't support lookup function mutating the dictionary to change its size. It's a deliberate choice for speed, this function is called in the performance critical hot code. */ while (PyDict_Next(kwargs, &pos, &key, &value)) { Py_INCREF(key); PyTuple_SET_ITEM(kwnames, i, key); /* The stack contains borrowed references */ kwstack[i] = value; i++; } *p_kwnames = kwnames; return stack; } PyObject * _PyObject_FastCallKeywords(PyObject *func, PyObject **stack, Py_ssize_t nargs, PyObject *kwnames) { PyObject *kwdict, *result; Py_ssize_t nkwargs = (kwnames == NULL) ? 0 : PyTuple_GET_SIZE(kwnames); assert(nargs >= 0); assert(kwnames == NULL || PyTuple_CheckExact(kwnames)); assert((nargs == 0 && nkwargs == 0) || stack != NULL); /* kwnames must only contains str strings, no subclass, and all keys must be unique: these are implemented in Python/ceval.c and _PyArg_ParseStack(). */ if (PyFunction_Check(func)) { return _PyFunction_FastCallKeywords(func, stack, nargs, kwnames); } if (PyCFunction_Check(func)) { return _PyCFunction_FastCallKeywords(func, stack, nargs, kwnames); } if (nkwargs > 0) { kwdict = _PyStack_AsDict(stack + nargs, kwnames); if (kwdict == NULL) { return NULL; } } else { kwdict = NULL; } result = _PyObject_FastCallDict(func, stack, nargs, kwdict); Py_XDECREF(kwdict); return result; } static PyObject* call_function_tail(PyObject *callable, PyObject *args) { PyObject *result; assert(args != NULL); if (!PyTuple_Check(args)) { result = _PyObject_CallArg1(callable, args); } else { result = PyObject_Call(callable, args, NULL); } return result; } PyObject * PyObject_CallFunction(PyObject *callable, const char *format, ...) { va_list va; PyObject *args, *result; if (callable == NULL) { return null_error(); } if (!format || !*format) { return _PyObject_CallNoArg(callable); } va_start(va, format); args = Py_VaBuildValue(format, va); va_end(va); if (args == NULL) { return NULL; } result = call_function_tail(callable, args); Py_DECREF(args); return result; } PyObject * _PyObject_CallFunction_SizeT(PyObject *callable, const char *format, ...) { va_list va; PyObject *args, *result; if (callable == NULL) { return null_error(); } if (!format || !*format) { return _PyObject_CallNoArg(callable); } va_start(va, format); args = _Py_VaBuildValue_SizeT(format, va); va_end(va); if (args == NULL) { return NULL; } result = call_function_tail(callable, args); Py_DECREF(args); return result; } static PyObject* callmethod(PyObject* func, const char *format, va_list va, int is_size_t) { PyObject *args, *result; assert(func != NULL); if (!PyCallable_Check(func)) { type_error("attribute of type '%.200s' is not callable", func); return NULL; } if (!format || !*format) { return _PyObject_CallNoArg(func); } if (is_size_t) { args = _Py_VaBuildValue_SizeT(format, va); } else { args = Py_VaBuildValue(format, va); } if (args == NULL) { return NULL; } result = call_function_tail(func, args); Py_DECREF(args); return result; } PyObject * PyObject_CallMethod(PyObject *o, const char *name, const char *format, ...) { va_list va; PyObject *func = NULL; PyObject *retval = NULL; if (o == NULL || name == NULL) { return null_error(); } func = PyObject_GetAttrString(o, name); if (func == NULL) return NULL; va_start(va, format); retval = callmethod(func, format, va, 0); va_end(va); Py_DECREF(func); return retval; } PyObject * _PyObject_CallMethodId(PyObject *o, _Py_Identifier *name, const char *format, ...) { va_list va; PyObject *func = NULL; PyObject *retval = NULL; if (o == NULL || name == NULL) { return null_error(); } func = _PyObject_GetAttrId(o, name); if (func == NULL) return NULL; va_start(va, format); retval = callmethod(func, format, va, 0); va_end(va); Py_DECREF(func); return retval; } PyObject * _PyObject_CallMethod_SizeT(PyObject *o, const char *name, const char *format, ...) { va_list va; PyObject *func = NULL; PyObject *retval; if (o == NULL || name == NULL) { return null_error(); } func = PyObject_GetAttrString(o, name); if (func == NULL) return NULL; va_start(va, format); retval = callmethod(func, format, va, 1); va_end(va); Py_DECREF(func); return retval; } PyObject * _PyObject_CallMethodId_SizeT(PyObject *o, _Py_Identifier *name, const char *format, ...) { va_list va; PyObject *func = NULL; PyObject *retval; if (o == NULL || name == NULL) { return null_error(); } func = _PyObject_GetAttrId(o, name); if (func == NULL) { return NULL; } va_start(va, format); retval = callmethod(func, format, va, 1); va_end(va); Py_DECREF(func); return retval; } static PyObject ** objargs_mkstack(PyObject **small_stack, Py_ssize_t small_stack_size, va_list va, Py_ssize_t *p_nargs) { Py_ssize_t i, n; va_list countva; PyObject **stack; /* Count the number of arguments */ va_copy(countva, va); n = 0; while (1) { PyObject *arg = va_arg(countva, PyObject *); if (arg == NULL) { break; } n++; } *p_nargs = n; /* Copy arguments */ if (n <= small_stack_size) { stack = small_stack; } else { stack = PyMem_Malloc(n * sizeof(stack[0])); if (stack == NULL) { va_end(countva); PyErr_NoMemory(); return NULL; } } for (i = 0; i < n; ++i) { stack[i] = va_arg(va, PyObject *); } va_end(countva); return stack; } PyObject * PyObject_CallMethodObjArgs(PyObject *callable, PyObject *name, ...) { PyObject *small_stack[5]; PyObject **stack; Py_ssize_t nargs; PyObject *result; va_list vargs; if (callable == NULL || name == NULL) { return null_error(); } callable = PyObject_GetAttr(callable, name); if (callable == NULL) return NULL; /* count the args */ va_start(vargs, name); stack = objargs_mkstack(small_stack, Py_ARRAY_LENGTH(small_stack), vargs, &nargs); va_end(vargs); if (stack == NULL) { Py_DECREF(callable); return NULL; } result = _PyObject_FastCall(callable, stack, nargs); Py_DECREF(callable); if (stack != small_stack) { PyMem_Free(stack); } return result; } PyObject * _PyObject_CallMethodIdObjArgs(PyObject *callable, struct _Py_Identifier *name, ...) { PyObject *small_stack[5]; PyObject **stack; Py_ssize_t nargs; PyObject *result; va_list vargs; if (callable == NULL || name == NULL) { return null_error(); } callable = _PyObject_GetAttrId(callable, name); if (callable == NULL) return NULL; /* count the args */ va_start(vargs, name); stack = objargs_mkstack(small_stack, Py_ARRAY_LENGTH(small_stack), vargs, &nargs); va_end(vargs); if (stack == NULL) { Py_DECREF(callable); return NULL; } result = _PyObject_FastCall(callable, stack, nargs); Py_DECREF(callable); if (stack != small_stack) { PyMem_Free(stack); } return result; } PyObject * PyObject_CallFunctionObjArgs(PyObject *callable, ...) { PyObject *small_stack[5]; PyObject **stack; Py_ssize_t nargs; PyObject *result; va_list vargs; if (callable == NULL) { return null_error(); } /* count the args */ va_start(vargs, callable); stack = objargs_mkstack(small_stack, Py_ARRAY_LENGTH(small_stack), vargs, &nargs); va_end(vargs); if (stack == NULL) { return NULL; } result = _PyObject_FastCall(callable, stack, nargs); if (stack != small_stack) { PyMem_Free(stack); } return result; } /* isinstance(), issubclass() */ /* abstract_get_bases() has logically 4 return states: * * 1. getattr(cls, '__bases__') could raise an AttributeError * 2. getattr(cls, '__bases__') could raise some other exception * 3. getattr(cls, '__bases__') could return a tuple * 4. getattr(cls, '__bases__') could return something other than a tuple * * Only state #3 is a non-error state and only it returns a non-NULL object * (it returns the retrieved tuple). * * Any raised AttributeErrors are masked by clearing the exception and * returning NULL. If an object other than a tuple comes out of __bases__, * then again, the return value is NULL. So yes, these two situations * produce exactly the same results: NULL is returned and no error is set. * * If some exception other than AttributeError is raised, then NULL is also * returned, but the exception is not cleared. That's because we want the * exception to be propagated along. * * Callers are expected to test for PyErr_Occurred() when the return value * is NULL to decide whether a valid exception should be propagated or not. * When there's no exception to propagate, it's customary for the caller to * set a TypeError. */ static PyObject * abstract_get_bases(PyObject *cls) { _Py_IDENTIFIER(__bases__); PyObject *bases; Py_ALLOW_RECURSION bases = _PyObject_GetAttrId(cls, &PyId___bases__); Py_END_ALLOW_RECURSION if (bases == NULL) { if (PyErr_ExceptionMatches(PyExc_AttributeError)) PyErr_Clear(); return NULL; } if (!PyTuple_Check(bases)) { Py_DECREF(bases); return NULL; } return bases; } static int abstract_issubclass(PyObject *derived, PyObject *cls) { PyObject *bases = NULL; Py_ssize_t i, n; int r = 0; while (1) { if (derived == cls) return 1; bases = abstract_get_bases(derived); if (bases == NULL) { if (PyErr_Occurred()) return -1; return 0; } n = PyTuple_GET_SIZE(bases); if (n == 0) { Py_DECREF(bases); return 0; } /* Avoid recursivity in the single inheritance case */ if (n == 1) { derived = PyTuple_GET_ITEM(bases, 0); Py_DECREF(bases); continue; } for (i = 0; i < n; i++) { r = abstract_issubclass(PyTuple_GET_ITEM(bases, i), cls); if (r != 0) break; } Py_DECREF(bases); return r; } } static int check_class(PyObject *cls, const char *error) { PyObject *bases = abstract_get_bases(cls); if (bases == NULL) { /* Do not mask errors. */ if (!PyErr_Occurred()) PyErr_SetString(PyExc_TypeError, error); return 0; } Py_DECREF(bases); return -1; } static int recursive_isinstance(PyObject *inst, PyObject *cls) { PyObject *icls; int retval = 0; _Py_IDENTIFIER(__class__); if (PyType_Check(cls)) { retval = PyObject_TypeCheck(inst, (PyTypeObject *)cls); if (retval == 0) { PyObject *c = _PyObject_GetAttrId(inst, &PyId___class__); if (c == NULL) { if (PyErr_ExceptionMatches(PyExc_AttributeError)) PyErr_Clear(); else retval = -1; } else { if (c != (PyObject *)(inst->ob_type) && PyType_Check(c)) retval = PyType_IsSubtype( (PyTypeObject *)c, (PyTypeObject *)cls); Py_DECREF(c); } } } else { if (!check_class(cls, "isinstance() arg 2 must be a type or tuple of types")) return -1; icls = _PyObject_GetAttrId(inst, &PyId___class__); if (icls == NULL) { if (PyErr_ExceptionMatches(PyExc_AttributeError)) PyErr_Clear(); else retval = -1; } else { retval = abstract_issubclass(icls, cls); Py_DECREF(icls); } } return retval; } int PyObject_IsInstance(PyObject *inst, PyObject *cls) { _Py_IDENTIFIER(__instancecheck__); PyObject *checker; /* Quick test for an exact match */ if (Py_TYPE(inst) == (PyTypeObject *)cls) return 1; /* We know what type's __instancecheck__ does. */ if (PyType_CheckExact(cls)) { return recursive_isinstance(inst, cls); } if (PyTuple_Check(cls)) { Py_ssize_t i; Py_ssize_t n; int r = 0; if (Py_EnterRecursiveCall(" in __instancecheck__")) return -1; n = PyTuple_GET_SIZE(cls); for (i = 0; i < n; ++i) { PyObject *item = PyTuple_GET_ITEM(cls, i); r = PyObject_IsInstance(inst, item); if (r != 0) /* either found it, or got an error */ break; } Py_LeaveRecursiveCall(); return r; } checker = _PyObject_LookupSpecial(cls, &PyId___instancecheck__); if (checker != NULL) { PyObject *res; int ok = -1; if (Py_EnterRecursiveCall(" in __instancecheck__")) { Py_DECREF(checker); return ok; } res = PyObject_CallFunctionObjArgs(checker, inst, NULL); Py_LeaveRecursiveCall(); Py_DECREF(checker); if (res != NULL) { ok = PyObject_IsTrue(res); Py_DECREF(res); } return ok; } else if (PyErr_Occurred()) return -1; /* Probably never reached anymore. */ return recursive_isinstance(inst, cls); } static int recursive_issubclass(PyObject *derived, PyObject *cls) { if (PyType_Check(cls) && PyType_Check(derived)) { /* Fast path (non-recursive) */ return PyType_IsSubtype((PyTypeObject *)derived, (PyTypeObject *)cls); } if (!check_class(derived, "issubclass() arg 1 must be a class")) return -1; if (!check_class(cls, "issubclass() arg 2 must be a class" " or tuple of classes")) return -1; return abstract_issubclass(derived, cls); } int PyObject_IsSubclass(PyObject *derived, PyObject *cls) { _Py_IDENTIFIER(__subclasscheck__); PyObject *checker; /* We know what type's __subclasscheck__ does. */ if (PyType_CheckExact(cls)) { /* Quick test for an exact match */ if (derived == cls) return 1; return recursive_issubclass(derived, cls); } if (PyTuple_Check(cls)) { Py_ssize_t i; Py_ssize_t n; int r = 0; if (Py_EnterRecursiveCall(" in __subclasscheck__")) return -1; n = PyTuple_GET_SIZE(cls); for (i = 0; i < n; ++i) { PyObject *item = PyTuple_GET_ITEM(cls, i); r = PyObject_IsSubclass(derived, item); if (r != 0) /* either found it, or got an error */ break; } Py_LeaveRecursiveCall(); return r; } checker = _PyObject_LookupSpecial(cls, &PyId___subclasscheck__); if (checker != NULL) { PyObject *res; int ok = -1; if (Py_EnterRecursiveCall(" in __subclasscheck__")) { Py_DECREF(checker); return ok; } res = PyObject_CallFunctionObjArgs(checker, derived, NULL); Py_LeaveRecursiveCall(); Py_DECREF(checker); if (res != NULL) { ok = PyObject_IsTrue(res); Py_DECREF(res); } return ok; } else if (PyErr_Occurred()) return -1; /* Probably never reached anymore. */ return recursive_issubclass(derived, cls); } int _PyObject_RealIsInstance(PyObject *inst, PyObject *cls) { return recursive_isinstance(inst, cls); } int _PyObject_RealIsSubclass(PyObject *derived, PyObject *cls) { return recursive_issubclass(derived, cls); } PyObject * PyObject_GetIter(PyObject *o) { PyTypeObject *t = o->ob_type; getiterfunc f = NULL; f = t->tp_iter; if (f == NULL) { if (PySequence_Check(o)) return PySeqIter_New(o); return type_error("'%.200s' object is not iterable", o); } else { PyObject *res = (*f)(o); if (res != NULL && !PyIter_Check(res)) { PyErr_Format(PyExc_TypeError, "iter() returned non-iterator " "of type '%.100s'", res->ob_type->tp_name); Py_DECREF(res); res = NULL; } return res; } } /* Return next item. * If an error occurs, return NULL. PyErr_Occurred() will be true. * If the iteration terminates normally, return NULL and clear the * PyExc_StopIteration exception (if it was set). PyErr_Occurred() * will be false. * Else return the next object. PyErr_Occurred() will be false. */ PyObject * PyIter_Next(PyObject *iter) { PyObject *result; result = (*iter->ob_type->tp_iternext)(iter); if (result == NULL && PyErr_Occurred() && PyErr_ExceptionMatches(PyExc_StopIteration)) PyErr_Clear(); return result; } /* * Flatten a sequence of bytes() objects into a C array of * NULL terminated string pointers with a NULL char* terminating the array. * (ie: an argv or env list) * * Memory allocated for the returned list is allocated using PyMem_Malloc() * and MUST be freed by _Py_FreeCharPArray(). */ char *const * _PySequence_BytesToCharpArray(PyObject* self) { char **array; Py_ssize_t i, argc; PyObject *item = NULL; Py_ssize_t size; argc = PySequence_Size(self); if (argc == -1) return NULL; assert(argc >= 0); if ((size_t)argc > (PY_SSIZE_T_MAX-sizeof(char *)) / sizeof(char *)) { PyErr_NoMemory(); return NULL; } array = PyMem_Malloc((argc + 1) * sizeof(char *)); if (array == NULL) { PyErr_NoMemory(); return NULL; } for (i = 0; i < argc; ++i) { char *data; item = PySequence_GetItem(self, i); if (item == NULL) { /* NULL terminate before freeing. */ array[i] = NULL; goto fail; } data = PyBytes_AsString(item); if (data == NULL) { /* NULL terminate before freeing. */ array[i] = NULL; goto fail; } size = PyBytes_GET_SIZE(item) + 1; array[i] = PyMem_Malloc(size); if (!array[i]) { PyErr_NoMemory(); goto fail; } memcpy(array[i], data, size); Py_DECREF(item); } array[argc] = NULL; return array; fail: Py_XDECREF(item); _Py_FreeCharPArray(array); return NULL; } /* Free's a NULL terminated char** array of C strings. */ void _Py_FreeCharPArray(char *const array[]) { Py_ssize_t i; for (i = 0; array[i] != NULL; ++i) { PyMem_Free(array[i]); } PyMem_Free((void*)array); }