/* * Copyright © 2013 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. */ /** * \file brw_vec4_tes.cpp * * Tessellaton evaluation shader specific code derived from the vec4_visitor class. */ #include "brw_vec4_tes.h" #include "brw_cfg.h" namespace brw { vec4_tes_visitor::vec4_tes_visitor(const struct brw_compiler *compiler, void *log_data, const struct brw_tes_prog_key *key, struct brw_tes_prog_data *prog_data, const nir_shader *shader, void *mem_ctx, int shader_time_index) : vec4_visitor(compiler, log_data, &key->tex, &prog_data->base, shader, mem_ctx, false, shader_time_index) { } dst_reg * vec4_tes_visitor::make_reg_for_system_value(int location) { return NULL; } void vec4_tes_visitor::nir_setup_system_value_intrinsic(nir_intrinsic_instr *instr) { switch (instr->intrinsic) { case nir_intrinsic_load_tess_level_outer: case nir_intrinsic_load_tess_level_inner: break; default: vec4_visitor::nir_setup_system_value_intrinsic(instr); } } void vec4_tes_visitor::setup_payload() { int reg = 0; /* The payload always contains important data in r0 and r1, which contains * the URB handles that are passed on to the URB write at the end * of the thread. */ reg += 2; reg = setup_uniforms(reg); foreach_block_and_inst(block, vec4_instruction, inst, cfg) { for (int i = 0; i < 3; i++) { if (inst->src[i].file != ATTR) continue; bool is_64bit = type_sz(inst->src[i].type) == 8; unsigned slot = inst->src[i].nr + inst->src[i].offset / 16; struct brw_reg grf = brw_vec4_grf(reg + slot / 2, 4 * (slot % 2)); grf = stride(grf, 0, is_64bit ? 2 : 4, 1); grf.swizzle = inst->src[i].swizzle; grf.type = inst->src[i].type; grf.abs = inst->src[i].abs; grf.negate = inst->src[i].negate; /* For 64-bit attributes we can end up with components XY in the * second half of a register and components ZW in the first half * of the next. Fix it up here. */ if (is_64bit && grf.subnr > 0) { /* We can't do swizzles that mix XY and ZW channels in this case. * Such cases should have been handled by the scalarization pass. */ assert((brw_mask_for_swizzle(grf.swizzle) & 0x3) ^ (brw_mask_for_swizzle(grf.swizzle) & 0xc)); if (brw_mask_for_swizzle(grf.swizzle) & 0xc) { grf.subnr = 0; grf.nr++; grf.swizzle -= BRW_SWIZZLE_ZZZZ; } } inst->src[i] = grf; } } reg += 8 * prog_data->urb_read_length; this->first_non_payload_grf = reg; } void vec4_tes_visitor::emit_prolog() { input_read_header = src_reg(this, glsl_type::uvec4_type); emit(TES_OPCODE_CREATE_INPUT_READ_HEADER, dst_reg(input_read_header)); this->current_annotation = NULL; } void vec4_tes_visitor::emit_urb_write_header(int mrf) { /* No need to do anything for DS; an implied write to this MRF will be * performed by VS_OPCODE_URB_WRITE. */ (void) mrf; } vec4_instruction * vec4_tes_visitor::emit_urb_write_opcode(bool complete) { /* For DS, the URB writes end the thread. */ if (complete) { if (INTEL_DEBUG & DEBUG_SHADER_TIME) emit_shader_time_end(); } vec4_instruction *inst = emit(VS_OPCODE_URB_WRITE); inst->urb_write_flags = complete ? BRW_URB_WRITE_EOT_COMPLETE : BRW_URB_WRITE_NO_FLAGS; return inst; } void vec4_tes_visitor::nir_emit_intrinsic(nir_intrinsic_instr *instr) { const struct brw_tes_prog_data *tes_prog_data = (const struct brw_tes_prog_data *) prog_data; switch (instr->intrinsic) { case nir_intrinsic_load_tess_coord: /* gl_TessCoord is part of the payload in g1 channels 0-2 and 4-6. */ emit(MOV(get_nir_dest(instr->dest, BRW_REGISTER_TYPE_F), src_reg(brw_vec8_grf(1, 0)))); break; case nir_intrinsic_load_tess_level_outer: if (tes_prog_data->domain == BRW_TESS_DOMAIN_ISOLINE) { emit(MOV(get_nir_dest(instr->dest, BRW_REGISTER_TYPE_F), swizzle(src_reg(ATTR, 1, glsl_type::vec4_type), BRW_SWIZZLE_ZWZW))); } else { emit(MOV(get_nir_dest(instr->dest, BRW_REGISTER_TYPE_F), swizzle(src_reg(ATTR, 1, glsl_type::vec4_type), BRW_SWIZZLE_WZYX))); } break; case nir_intrinsic_load_tess_level_inner: if (tes_prog_data->domain == BRW_TESS_DOMAIN_QUAD) { emit(MOV(get_nir_dest(instr->dest, BRW_REGISTER_TYPE_F), swizzle(src_reg(ATTR, 0, glsl_type::vec4_type), BRW_SWIZZLE_WZYX))); } else { emit(MOV(get_nir_dest(instr->dest, BRW_REGISTER_TYPE_F), src_reg(ATTR, 1, glsl_type::float_type))); } break; case nir_intrinsic_load_primitive_id: emit(TES_OPCODE_GET_PRIMITIVE_ID, get_nir_dest(instr->dest, BRW_REGISTER_TYPE_UD)); break; case nir_intrinsic_load_input: case nir_intrinsic_load_per_vertex_input: { src_reg indirect_offset = get_indirect_offset(instr); unsigned imm_offset = instr->const_index[0]; src_reg header = input_read_header; bool is_64bit = nir_dest_bit_size(instr->dest) == 64; unsigned first_component = nir_intrinsic_component(instr); if (is_64bit) first_component /= 2; if (indirect_offset.file != BAD_FILE) { header = src_reg(this, glsl_type::uvec4_type); emit(TES_OPCODE_ADD_INDIRECT_URB_OFFSET, dst_reg(header), input_read_header, indirect_offset); } else { /* Arbitrarily only push up to 24 vec4 slots worth of data, * which is 12 registers (since each holds 2 vec4 slots). */ const unsigned max_push_slots = 24; if (imm_offset < max_push_slots) { const glsl_type *src_glsl_type = is_64bit ? glsl_type::dvec4_type : glsl_type::ivec4_type; src_reg src = src_reg(ATTR, imm_offset, src_glsl_type); src.swizzle = BRW_SWZ_COMP_INPUT(first_component); const brw_reg_type dst_reg_type = is_64bit ? BRW_REGISTER_TYPE_DF : BRW_REGISTER_TYPE_D; emit(MOV(get_nir_dest(instr->dest, dst_reg_type), src)); prog_data->urb_read_length = MAX2(prog_data->urb_read_length, DIV_ROUND_UP(imm_offset + (is_64bit ? 2 : 1), 2)); break; } } if (!is_64bit) { dst_reg temp(this, glsl_type::ivec4_type); vec4_instruction *read = emit(VEC4_OPCODE_URB_READ, temp, src_reg(header)); read->offset = imm_offset; read->urb_write_flags = BRW_URB_WRITE_PER_SLOT_OFFSET; src_reg src = src_reg(temp); src.swizzle = BRW_SWZ_COMP_INPUT(first_component); /* Copy to target. We might end up with some funky writemasks landing * in here, but we really don't want them in the above pseudo-ops. */ dst_reg dst = get_nir_dest(instr->dest, BRW_REGISTER_TYPE_D); dst.writemask = brw_writemask_for_size(instr->num_components); emit(MOV(dst, src)); } else { /* For 64-bit we need to load twice as many 32-bit components, and for * dvec3/4 we need to emit 2 URB Read messages */ dst_reg temp(this, glsl_type::dvec4_type); dst_reg temp_d = retype(temp, BRW_REGISTER_TYPE_D); vec4_instruction *read = emit(VEC4_OPCODE_URB_READ, temp_d, src_reg(header)); read->offset = imm_offset; read->urb_write_flags = BRW_URB_WRITE_PER_SLOT_OFFSET; if (instr->num_components > 2) { read = emit(VEC4_OPCODE_URB_READ, byte_offset(temp_d, REG_SIZE), src_reg(header)); read->offset = imm_offset + 1; read->urb_write_flags = BRW_URB_WRITE_PER_SLOT_OFFSET; } src_reg temp_as_src = src_reg(temp); temp_as_src.swizzle = BRW_SWZ_COMP_INPUT(first_component); dst_reg shuffled(this, glsl_type::dvec4_type); shuffle_64bit_data(shuffled, temp_as_src, false); dst_reg dst = get_nir_dest(instr->dest, BRW_REGISTER_TYPE_DF); dst.writemask = brw_writemask_for_size(instr->num_components); emit(MOV(dst, src_reg(shuffled))); } break; } default: vec4_visitor::nir_emit_intrinsic(instr); } } void vec4_tes_visitor::emit_thread_end() { /* For DS, we always end the thread by emitting a single vertex. * emit_urb_write_opcode() will take care of setting the eot flag on the * SEND instruction. */ emit_vertex(); } } /* namespace brw */