/*
 * Copyright © 2010 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 */

#include "brw_context.h"
#include "brw_cfg.h"
#include "brw_eu.h"
#include "brw_fs.h"
#include "brw_nir.h"
#include "brw_vec4_tes.h"
#include "main/uniforms.h"

extern "C" void
brw_mark_surface_used(struct brw_stage_prog_data *prog_data,
                      unsigned surf_index)
{
   assert(surf_index < BRW_MAX_SURFACES);

   prog_data->binding_table.size_bytes =
      MAX2(prog_data->binding_table.size_bytes, (surf_index + 1) * 4);
}

enum brw_reg_type
brw_type_for_base_type(const struct glsl_type *type)
{
   switch (type->base_type) {
   case GLSL_TYPE_FLOAT:
      return BRW_REGISTER_TYPE_F;
   case GLSL_TYPE_INT:
   case GLSL_TYPE_BOOL:
   case GLSL_TYPE_SUBROUTINE:
      return BRW_REGISTER_TYPE_D;
   case GLSL_TYPE_UINT:
      return BRW_REGISTER_TYPE_UD;
   case GLSL_TYPE_ARRAY:
      return brw_type_for_base_type(type->fields.array);
   case GLSL_TYPE_STRUCT:
   case GLSL_TYPE_SAMPLER:
   case GLSL_TYPE_ATOMIC_UINT:
      /* These should be overridden with the type of the member when
       * dereferenced into.  BRW_REGISTER_TYPE_UD seems like a likely
       * way to trip up if we don't.
       */
      return BRW_REGISTER_TYPE_UD;
   case GLSL_TYPE_IMAGE:
      return BRW_REGISTER_TYPE_UD;
   case GLSL_TYPE_DOUBLE:
      return BRW_REGISTER_TYPE_DF;
   case GLSL_TYPE_VOID:
   case GLSL_TYPE_ERROR:
   case GLSL_TYPE_INTERFACE:
   case GLSL_TYPE_FUNCTION:
      unreachable("not reached");
   }

   return BRW_REGISTER_TYPE_F;
}

enum brw_conditional_mod
brw_conditional_for_comparison(unsigned int op)
{
   switch (op) {
   case ir_binop_less:
      return BRW_CONDITIONAL_L;
   case ir_binop_greater:
      return BRW_CONDITIONAL_G;
   case ir_binop_lequal:
      return BRW_CONDITIONAL_LE;
   case ir_binop_gequal:
      return BRW_CONDITIONAL_GE;
   case ir_binop_equal:
   case ir_binop_all_equal: /* same as equal for scalars */
      return BRW_CONDITIONAL_Z;
   case ir_binop_nequal:
   case ir_binop_any_nequal: /* same as nequal for scalars */
      return BRW_CONDITIONAL_NZ;
   default:
      unreachable("not reached: bad operation for comparison");
   }
}

uint32_t
brw_math_function(enum opcode op)
{
   switch (op) {
   case SHADER_OPCODE_RCP:
      return BRW_MATH_FUNCTION_INV;
   case SHADER_OPCODE_RSQ:
      return BRW_MATH_FUNCTION_RSQ;
   case SHADER_OPCODE_SQRT:
      return BRW_MATH_FUNCTION_SQRT;
   case SHADER_OPCODE_EXP2:
      return BRW_MATH_FUNCTION_EXP;
   case SHADER_OPCODE_LOG2:
      return BRW_MATH_FUNCTION_LOG;
   case SHADER_OPCODE_POW:
      return BRW_MATH_FUNCTION_POW;
   case SHADER_OPCODE_SIN:
      return BRW_MATH_FUNCTION_SIN;
   case SHADER_OPCODE_COS:
      return BRW_MATH_FUNCTION_COS;
   case SHADER_OPCODE_INT_QUOTIENT:
      return BRW_MATH_FUNCTION_INT_DIV_QUOTIENT;
   case SHADER_OPCODE_INT_REMAINDER:
      return BRW_MATH_FUNCTION_INT_DIV_REMAINDER;
   default:
      unreachable("not reached: unknown math function");
   }
}

bool
brw_texture_offset(int *offsets, unsigned num_components, uint32_t *offset_bits)
{
   if (!offsets) return false;  /* nonconstant offset; caller will handle it. */

   /* offset out of bounds; caller will handle it. */
   for (unsigned i = 0; i < num_components; i++)
      if (offsets[i] > 7 || offsets[i] < -8)
         return false;

   /* Combine all three offsets into a single unsigned dword:
    *
    *    bits 11:8 - U Offset (X component)
    *    bits  7:4 - V Offset (Y component)
    *    bits  3:0 - R Offset (Z component)
    */
   *offset_bits = 0;
   for (unsigned i = 0; i < num_components; i++) {
      const unsigned shift = 4 * (2 - i);
      *offset_bits |= (offsets[i] << shift) & (0xF << shift);
   }
   return true;
}

const char *
brw_instruction_name(const struct gen_device_info *devinfo, enum opcode op)
{
   switch (op) {
   case BRW_OPCODE_ILLEGAL ... BRW_OPCODE_NOP:
      /* The DO instruction doesn't exist on Gen6+, but we use it to mark the
       * start of a loop in the IR.
       */
      if (devinfo->gen >= 6 && op == BRW_OPCODE_DO)
         return "do";

      assert(brw_opcode_desc(devinfo, op)->name);
      return brw_opcode_desc(devinfo, op)->name;
   case FS_OPCODE_FB_WRITE:
      return "fb_write";
   case FS_OPCODE_FB_WRITE_LOGICAL:
      return "fb_write_logical";
   case FS_OPCODE_REP_FB_WRITE:
      return "rep_fb_write";
   case FS_OPCODE_FB_READ:
      return "fb_read";
   case FS_OPCODE_FB_READ_LOGICAL:
      return "fb_read_logical";

   case SHADER_OPCODE_RCP:
      return "rcp";
   case SHADER_OPCODE_RSQ:
      return "rsq";
   case SHADER_OPCODE_SQRT:
      return "sqrt";
   case SHADER_OPCODE_EXP2:
      return "exp2";
   case SHADER_OPCODE_LOG2:
      return "log2";
   case SHADER_OPCODE_POW:
      return "pow";
   case SHADER_OPCODE_INT_QUOTIENT:
      return "int_quot";
   case SHADER_OPCODE_INT_REMAINDER:
      return "int_rem";
   case SHADER_OPCODE_SIN:
      return "sin";
   case SHADER_OPCODE_COS:
      return "cos";

   case SHADER_OPCODE_TEX:
      return "tex";
   case SHADER_OPCODE_TEX_LOGICAL:
      return "tex_logical";
   case SHADER_OPCODE_TXD:
      return "txd";
   case SHADER_OPCODE_TXD_LOGICAL:
      return "txd_logical";
   case SHADER_OPCODE_TXF:
      return "txf";
   case SHADER_OPCODE_TXF_LOGICAL:
      return "txf_logical";
   case SHADER_OPCODE_TXF_LZ:
      return "txf_lz";
   case SHADER_OPCODE_TXL:
      return "txl";
   case SHADER_OPCODE_TXL_LOGICAL:
      return "txl_logical";
   case SHADER_OPCODE_TXL_LZ:
      return "txl_lz";
   case SHADER_OPCODE_TXS:
      return "txs";
   case SHADER_OPCODE_TXS_LOGICAL:
      return "txs_logical";
   case FS_OPCODE_TXB:
      return "txb";
   case FS_OPCODE_TXB_LOGICAL:
      return "txb_logical";
   case SHADER_OPCODE_TXF_CMS:
      return "txf_cms";
   case SHADER_OPCODE_TXF_CMS_LOGICAL:
      return "txf_cms_logical";
   case SHADER_OPCODE_TXF_CMS_W:
      return "txf_cms_w";
   case SHADER_OPCODE_TXF_CMS_W_LOGICAL:
      return "txf_cms_w_logical";
   case SHADER_OPCODE_TXF_UMS:
      return "txf_ums";
   case SHADER_OPCODE_TXF_UMS_LOGICAL:
      return "txf_ums_logical";
   case SHADER_OPCODE_TXF_MCS:
      return "txf_mcs";
   case SHADER_OPCODE_TXF_MCS_LOGICAL:
      return "txf_mcs_logical";
   case SHADER_OPCODE_LOD:
      return "lod";
   case SHADER_OPCODE_LOD_LOGICAL:
      return "lod_logical";
   case SHADER_OPCODE_TG4:
      return "tg4";
   case SHADER_OPCODE_TG4_LOGICAL:
      return "tg4_logical";
   case SHADER_OPCODE_TG4_OFFSET:
      return "tg4_offset";
   case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
      return "tg4_offset_logical";
   case SHADER_OPCODE_SAMPLEINFO:
      return "sampleinfo";
   case SHADER_OPCODE_SAMPLEINFO_LOGICAL:
      return "sampleinfo_logical";

   case SHADER_OPCODE_SHADER_TIME_ADD:
      return "shader_time_add";

   case SHADER_OPCODE_UNTYPED_ATOMIC:
      return "untyped_atomic";
   case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
      return "untyped_atomic_logical";
   case SHADER_OPCODE_UNTYPED_SURFACE_READ:
      return "untyped_surface_read";
   case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
      return "untyped_surface_read_logical";
   case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
      return "untyped_surface_write";
   case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
      return "untyped_surface_write_logical";
   case SHADER_OPCODE_TYPED_ATOMIC:
      return "typed_atomic";
   case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL:
      return "typed_atomic_logical";
   case SHADER_OPCODE_TYPED_SURFACE_READ:
      return "typed_surface_read";
   case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
      return "typed_surface_read_logical";
   case SHADER_OPCODE_TYPED_SURFACE_WRITE:
      return "typed_surface_write";
   case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
      return "typed_surface_write_logical";
   case SHADER_OPCODE_MEMORY_FENCE:
      return "memory_fence";

   case SHADER_OPCODE_LOAD_PAYLOAD:
      return "load_payload";
   case FS_OPCODE_PACK:
      return "pack";

   case SHADER_OPCODE_GEN4_SCRATCH_READ:
      return "gen4_scratch_read";
   case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
      return "gen4_scratch_write";
   case SHADER_OPCODE_GEN7_SCRATCH_READ:
      return "gen7_scratch_read";
   case SHADER_OPCODE_URB_WRITE_SIMD8:
      return "gen8_urb_write_simd8";
   case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
      return "gen8_urb_write_simd8_per_slot";
   case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
      return "gen8_urb_write_simd8_masked";
   case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
      return "gen8_urb_write_simd8_masked_per_slot";
   case SHADER_OPCODE_URB_READ_SIMD8:
      return "urb_read_simd8";
   case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
      return "urb_read_simd8_per_slot";

   case SHADER_OPCODE_FIND_LIVE_CHANNEL:
      return "find_live_channel";
   case SHADER_OPCODE_BROADCAST:
      return "broadcast";

   case VEC4_OPCODE_MOV_BYTES:
      return "mov_bytes";
   case VEC4_OPCODE_PACK_BYTES:
      return "pack_bytes";
   case VEC4_OPCODE_UNPACK_UNIFORM:
      return "unpack_uniform";
   case VEC4_OPCODE_FROM_DOUBLE:
      return "double_to_single";
   case VEC4_OPCODE_TO_DOUBLE:
      return "single_to_double";
   case VEC4_OPCODE_PICK_LOW_32BIT:
      return "pick_low_32bit";
   case VEC4_OPCODE_PICK_HIGH_32BIT:
      return "pick_high_32bit";
   case VEC4_OPCODE_SET_LOW_32BIT:
      return "set_low_32bit";
   case VEC4_OPCODE_SET_HIGH_32BIT:
      return "set_high_32bit";

   case FS_OPCODE_DDX_COARSE:
      return "ddx_coarse";
   case FS_OPCODE_DDX_FINE:
      return "ddx_fine";
   case FS_OPCODE_DDY_COARSE:
      return "ddy_coarse";
   case FS_OPCODE_DDY_FINE:
      return "ddy_fine";

   case FS_OPCODE_CINTERP:
      return "cinterp";
   case FS_OPCODE_LINTERP:
      return "linterp";

   case FS_OPCODE_PIXEL_X:
      return "pixel_x";
   case FS_OPCODE_PIXEL_Y:
      return "pixel_y";

   case FS_OPCODE_GET_BUFFER_SIZE:
      return "fs_get_buffer_size";

   case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
      return "uniform_pull_const";
   case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7:
      return "uniform_pull_const_gen7";
   case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN4:
      return "varying_pull_const_gen4";
   case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN7:
      return "varying_pull_const_gen7";
   case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_LOGICAL:
      return "varying_pull_const_logical";

   case FS_OPCODE_MOV_DISPATCH_TO_FLAGS:
      return "mov_dispatch_to_flags";
   case FS_OPCODE_DISCARD_JUMP:
      return "discard_jump";

   case FS_OPCODE_SET_SAMPLE_ID:
      return "set_sample_id";

   case FS_OPCODE_PACK_HALF_2x16_SPLIT:
      return "pack_half_2x16_split";
   case FS_OPCODE_UNPACK_HALF_2x16_SPLIT_X:
      return "unpack_half_2x16_split_x";
   case FS_OPCODE_UNPACK_HALF_2x16_SPLIT_Y:
      return "unpack_half_2x16_split_y";

   case FS_OPCODE_PLACEHOLDER_HALT:
      return "placeholder_halt";

   case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
      return "interp_sample";
   case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
      return "interp_shared_offset";
   case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
      return "interp_per_slot_offset";

   case VS_OPCODE_URB_WRITE:
      return "vs_urb_write";
   case VS_OPCODE_PULL_CONSTANT_LOAD:
      return "pull_constant_load";
   case VS_OPCODE_PULL_CONSTANT_LOAD_GEN7:
      return "pull_constant_load_gen7";

   case VS_OPCODE_SET_SIMD4X2_HEADER_GEN9:
      return "set_simd4x2_header_gen9";

   case VS_OPCODE_GET_BUFFER_SIZE:
      return "vs_get_buffer_size";

   case VS_OPCODE_UNPACK_FLAGS_SIMD4X2:
      return "unpack_flags_simd4x2";

   case GS_OPCODE_URB_WRITE:
      return "gs_urb_write";
   case GS_OPCODE_URB_WRITE_ALLOCATE:
      return "gs_urb_write_allocate";
   case GS_OPCODE_THREAD_END:
      return "gs_thread_end";
   case GS_OPCODE_SET_WRITE_OFFSET:
      return "set_write_offset";
   case GS_OPCODE_SET_VERTEX_COUNT:
      return "set_vertex_count";
   case GS_OPCODE_SET_DWORD_2:
      return "set_dword_2";
   case GS_OPCODE_PREPARE_CHANNEL_MASKS:
      return "prepare_channel_masks";
   case GS_OPCODE_SET_CHANNEL_MASKS:
      return "set_channel_masks";
   case GS_OPCODE_GET_INSTANCE_ID:
      return "get_instance_id";
   case GS_OPCODE_FF_SYNC:
      return "ff_sync";
   case GS_OPCODE_SET_PRIMITIVE_ID:
      return "set_primitive_id";
   case GS_OPCODE_SVB_WRITE:
      return "gs_svb_write";
   case GS_OPCODE_SVB_SET_DST_INDEX:
      return "gs_svb_set_dst_index";
   case GS_OPCODE_FF_SYNC_SET_PRIMITIVES:
      return "gs_ff_sync_set_primitives";
   case CS_OPCODE_CS_TERMINATE:
      return "cs_terminate";
   case SHADER_OPCODE_BARRIER:
      return "barrier";
   case SHADER_OPCODE_MULH:
      return "mulh";
   case SHADER_OPCODE_MOV_INDIRECT:
      return "mov_indirect";

   case VEC4_OPCODE_URB_READ:
      return "urb_read";
   case TCS_OPCODE_GET_INSTANCE_ID:
      return "tcs_get_instance_id";
   case TCS_OPCODE_URB_WRITE:
      return "tcs_urb_write";
   case TCS_OPCODE_SET_INPUT_URB_OFFSETS:
      return "tcs_set_input_urb_offsets";
   case TCS_OPCODE_SET_OUTPUT_URB_OFFSETS:
      return "tcs_set_output_urb_offsets";
   case TCS_OPCODE_GET_PRIMITIVE_ID:
      return "tcs_get_primitive_id";
   case TCS_OPCODE_CREATE_BARRIER_HEADER:
      return "tcs_create_barrier_header";
   case TCS_OPCODE_SRC0_010_IS_ZERO:
      return "tcs_src0<0,1,0>_is_zero";
   case TCS_OPCODE_RELEASE_INPUT:
      return "tcs_release_input";
   case TCS_OPCODE_THREAD_END:
      return "tcs_thread_end";
   case TES_OPCODE_CREATE_INPUT_READ_HEADER:
      return "tes_create_input_read_header";
   case TES_OPCODE_ADD_INDIRECT_URB_OFFSET:
      return "tes_add_indirect_urb_offset";
   case TES_OPCODE_GET_PRIMITIVE_ID:
      return "tes_get_primitive_id";
   }

   unreachable("not reached");
}

bool
brw_saturate_immediate(enum brw_reg_type type, struct brw_reg *reg)
{
   union {
      unsigned ud;
      int d;
      float f;
      double df;
   } imm, sat_imm = { 0 };

   const unsigned size = type_sz(type);

   /* We want to either do a 32-bit or 64-bit data copy, the type is otherwise
    * irrelevant, so just check the size of the type and copy from/to an
    * appropriately sized field.
    */
   if (size < 8)
      imm.ud = reg->ud;
   else
      imm.df = reg->df;

   switch (type) {
   case BRW_REGISTER_TYPE_UD:
   case BRW_REGISTER_TYPE_D:
   case BRW_REGISTER_TYPE_UW:
   case BRW_REGISTER_TYPE_W:
   case BRW_REGISTER_TYPE_UQ:
   case BRW_REGISTER_TYPE_Q:
      /* Nothing to do. */
      return false;
   case BRW_REGISTER_TYPE_F:
      sat_imm.f = CLAMP(imm.f, 0.0f, 1.0f);
      break;
   case BRW_REGISTER_TYPE_DF:
      sat_imm.df = CLAMP(imm.df, 0.0, 1.0);
      break;
   case BRW_REGISTER_TYPE_UB:
   case BRW_REGISTER_TYPE_B:
      unreachable("no UB/B immediates");
   case BRW_REGISTER_TYPE_V:
   case BRW_REGISTER_TYPE_UV:
   case BRW_REGISTER_TYPE_VF:
      unreachable("unimplemented: saturate vector immediate");
   case BRW_REGISTER_TYPE_HF:
      unreachable("unimplemented: saturate HF immediate");
   }

   if (size < 8) {
      if (imm.ud != sat_imm.ud) {
         reg->ud = sat_imm.ud;
         return true;
      }
   } else {
      if (imm.df != sat_imm.df) {
         reg->df = sat_imm.df;
         return true;
      }
   }
   return false;
}

bool
brw_negate_immediate(enum brw_reg_type type, struct brw_reg *reg)
{
   switch (type) {
   case BRW_REGISTER_TYPE_D:
   case BRW_REGISTER_TYPE_UD:
      reg->d = -reg->d;
      return true;
   case BRW_REGISTER_TYPE_W:
   case BRW_REGISTER_TYPE_UW:
      reg->d = -(int16_t)reg->ud;
      return true;
   case BRW_REGISTER_TYPE_F:
      reg->f = -reg->f;
      return true;
   case BRW_REGISTER_TYPE_VF:
      reg->ud ^= 0x80808080;
      return true;
   case BRW_REGISTER_TYPE_DF:
      reg->df = -reg->df;
      return true;
   case BRW_REGISTER_TYPE_UB:
   case BRW_REGISTER_TYPE_B:
      unreachable("no UB/B immediates");
   case BRW_REGISTER_TYPE_UV:
   case BRW_REGISTER_TYPE_V:
      assert(!"unimplemented: negate UV/V immediate");
   case BRW_REGISTER_TYPE_UQ:
   case BRW_REGISTER_TYPE_Q:
      assert(!"unimplemented: negate UQ/Q immediate");
   case BRW_REGISTER_TYPE_HF:
      assert(!"unimplemented: negate HF immediate");
   }

   return false;
}

bool
brw_abs_immediate(enum brw_reg_type type, struct brw_reg *reg)
{
   switch (type) {
   case BRW_REGISTER_TYPE_D:
      reg->d = abs(reg->d);
      return true;
   case BRW_REGISTER_TYPE_W:
      reg->d = abs((int16_t)reg->ud);
      return true;
   case BRW_REGISTER_TYPE_F:
      reg->f = fabsf(reg->f);
      return true;
   case BRW_REGISTER_TYPE_DF:
      reg->df = fabs(reg->df);
      return true;
   case BRW_REGISTER_TYPE_VF:
      reg->ud &= ~0x80808080;
      return true;
   case BRW_REGISTER_TYPE_UB:
   case BRW_REGISTER_TYPE_B:
      unreachable("no UB/B immediates");
   case BRW_REGISTER_TYPE_UQ:
   case BRW_REGISTER_TYPE_UD:
   case BRW_REGISTER_TYPE_UW:
   case BRW_REGISTER_TYPE_UV:
      /* Presumably the absolute value modifier on an unsigned source is a
       * nop, but it would be nice to confirm.
       */
      assert(!"unimplemented: abs unsigned immediate");
   case BRW_REGISTER_TYPE_V:
      assert(!"unimplemented: abs V immediate");
   case BRW_REGISTER_TYPE_Q:
      assert(!"unimplemented: abs Q immediate");
   case BRW_REGISTER_TYPE_HF:
      assert(!"unimplemented: abs HF immediate");
   }

   return false;
}

/**
 * Get the appropriate atomic op for an image atomic intrinsic.
 */
unsigned
get_atomic_counter_op(nir_intrinsic_op op)
{
   switch (op) {
   case nir_intrinsic_atomic_counter_inc:
      return BRW_AOP_INC;
   case nir_intrinsic_atomic_counter_dec:
      return BRW_AOP_PREDEC;
   case nir_intrinsic_atomic_counter_add:
      return BRW_AOP_ADD;
   case nir_intrinsic_atomic_counter_min:
      return BRW_AOP_UMIN;
   case nir_intrinsic_atomic_counter_max:
      return BRW_AOP_UMAX;
   case nir_intrinsic_atomic_counter_and:
      return BRW_AOP_AND;
   case nir_intrinsic_atomic_counter_or:
      return BRW_AOP_OR;
   case nir_intrinsic_atomic_counter_xor:
      return BRW_AOP_XOR;
   case nir_intrinsic_atomic_counter_exchange:
      return BRW_AOP_MOV;
   case nir_intrinsic_atomic_counter_comp_swap:
      return BRW_AOP_CMPWR;
   default:
      unreachable("Not reachable.");
   }
}

backend_shader::backend_shader(const struct brw_compiler *compiler,
                               void *log_data,
                               void *mem_ctx,
                               const nir_shader *shader,
                               struct brw_stage_prog_data *stage_prog_data)
   : compiler(compiler),
     log_data(log_data),
     devinfo(compiler->devinfo),
     nir(shader),
     stage_prog_data(stage_prog_data),
     mem_ctx(mem_ctx),
     cfg(NULL),
     stage(shader->stage)
{
   debug_enabled = INTEL_DEBUG & intel_debug_flag_for_shader_stage(stage);
   stage_name = _mesa_shader_stage_to_string(stage);
   stage_abbrev = _mesa_shader_stage_to_abbrev(stage);
}

bool
backend_reg::equals(const backend_reg &r) const
{
   return brw_regs_equal(this, &r) && offset == r.offset;
}

bool
backend_reg::is_zero() const
{
   if (file != IMM)
      return false;

   switch (type) {
   case BRW_REGISTER_TYPE_F:
      return f == 0;
   case BRW_REGISTER_TYPE_DF:
      return df == 0;
   case BRW_REGISTER_TYPE_D:
   case BRW_REGISTER_TYPE_UD:
      return d == 0;
   default:
      return false;
   }
}

bool
backend_reg::is_one() const
{
   if (file != IMM)
      return false;

   switch (type) {
   case BRW_REGISTER_TYPE_F:
      return f == 1.0f;
   case BRW_REGISTER_TYPE_DF:
      return df == 1.0;
   case BRW_REGISTER_TYPE_D:
   case BRW_REGISTER_TYPE_UD:
      return d == 1;
   default:
      return false;
   }
}

bool
backend_reg::is_negative_one() const
{
   if (file != IMM)
      return false;

   switch (type) {
   case BRW_REGISTER_TYPE_F:
      return f == -1.0;
   case BRW_REGISTER_TYPE_DF:
      return df == -1.0;
   case BRW_REGISTER_TYPE_D:
      return d == -1;
   default:
      return false;
   }
}

bool
backend_reg::is_null() const
{
   return file == ARF && nr == BRW_ARF_NULL;
}


bool
backend_reg::is_accumulator() const
{
   return file == ARF && nr == BRW_ARF_ACCUMULATOR;
}

bool
backend_instruction::is_commutative() const
{
   switch (opcode) {
   case BRW_OPCODE_AND:
   case BRW_OPCODE_OR:
   case BRW_OPCODE_XOR:
   case BRW_OPCODE_ADD:
   case BRW_OPCODE_MUL:
   case SHADER_OPCODE_MULH:
      return true;
   case BRW_OPCODE_SEL:
      /* MIN and MAX are commutative. */
      if (conditional_mod == BRW_CONDITIONAL_GE ||
          conditional_mod == BRW_CONDITIONAL_L) {
         return true;
      }
      /* fallthrough */
   default:
      return false;
   }
}

bool
backend_instruction::is_3src(const struct gen_device_info *devinfo) const
{
   return ::is_3src(devinfo, opcode);
}

bool
backend_instruction::is_tex() const
{
   return (opcode == SHADER_OPCODE_TEX ||
           opcode == FS_OPCODE_TXB ||
           opcode == SHADER_OPCODE_TXD ||
           opcode == SHADER_OPCODE_TXF ||
           opcode == SHADER_OPCODE_TXF_LZ ||
           opcode == SHADER_OPCODE_TXF_CMS ||
           opcode == SHADER_OPCODE_TXF_CMS_W ||
           opcode == SHADER_OPCODE_TXF_UMS ||
           opcode == SHADER_OPCODE_TXF_MCS ||
           opcode == SHADER_OPCODE_TXL ||
           opcode == SHADER_OPCODE_TXL_LZ ||
           opcode == SHADER_OPCODE_TXS ||
           opcode == SHADER_OPCODE_LOD ||
           opcode == SHADER_OPCODE_TG4 ||
           opcode == SHADER_OPCODE_TG4_OFFSET ||
           opcode == SHADER_OPCODE_SAMPLEINFO);
}

bool
backend_instruction::is_math() const
{
   return (opcode == SHADER_OPCODE_RCP ||
           opcode == SHADER_OPCODE_RSQ ||
           opcode == SHADER_OPCODE_SQRT ||
           opcode == SHADER_OPCODE_EXP2 ||
           opcode == SHADER_OPCODE_LOG2 ||
           opcode == SHADER_OPCODE_SIN ||
           opcode == SHADER_OPCODE_COS ||
           opcode == SHADER_OPCODE_INT_QUOTIENT ||
           opcode == SHADER_OPCODE_INT_REMAINDER ||
           opcode == SHADER_OPCODE_POW);
}

bool
backend_instruction::is_control_flow() const
{
   switch (opcode) {
   case BRW_OPCODE_DO:
   case BRW_OPCODE_WHILE:
   case BRW_OPCODE_IF:
   case BRW_OPCODE_ELSE:
   case BRW_OPCODE_ENDIF:
   case BRW_OPCODE_BREAK:
   case BRW_OPCODE_CONTINUE:
      return true;
   default:
      return false;
   }
}

bool
backend_instruction::can_do_source_mods() const
{
   switch (opcode) {
   case BRW_OPCODE_ADDC:
   case BRW_OPCODE_BFE:
   case BRW_OPCODE_BFI1:
   case BRW_OPCODE_BFI2:
   case BRW_OPCODE_BFREV:
   case BRW_OPCODE_CBIT:
   case BRW_OPCODE_FBH:
   case BRW_OPCODE_FBL:
   case BRW_OPCODE_SUBB:
      return false;
   default:
      return true;
   }
}

bool
backend_instruction::can_do_saturate() const
{
   switch (opcode) {
   case BRW_OPCODE_ADD:
   case BRW_OPCODE_ASR:
   case BRW_OPCODE_AVG:
   case BRW_OPCODE_DP2:
   case BRW_OPCODE_DP3:
   case BRW_OPCODE_DP4:
   case BRW_OPCODE_DPH:
   case BRW_OPCODE_F16TO32:
   case BRW_OPCODE_F32TO16:
   case BRW_OPCODE_LINE:
   case BRW_OPCODE_LRP:
   case BRW_OPCODE_MAC:
   case BRW_OPCODE_MAD:
   case BRW_OPCODE_MATH:
   case BRW_OPCODE_MOV:
   case BRW_OPCODE_MUL:
   case SHADER_OPCODE_MULH:
   case BRW_OPCODE_PLN:
   case BRW_OPCODE_RNDD:
   case BRW_OPCODE_RNDE:
   case BRW_OPCODE_RNDU:
   case BRW_OPCODE_RNDZ:
   case BRW_OPCODE_SEL:
   case BRW_OPCODE_SHL:
   case BRW_OPCODE_SHR:
   case FS_OPCODE_LINTERP:
   case SHADER_OPCODE_COS:
   case SHADER_OPCODE_EXP2:
   case SHADER_OPCODE_LOG2:
   case SHADER_OPCODE_POW:
   case SHADER_OPCODE_RCP:
   case SHADER_OPCODE_RSQ:
   case SHADER_OPCODE_SIN:
   case SHADER_OPCODE_SQRT:
      return true;
   default:
      return false;
   }
}

bool
backend_instruction::can_do_cmod() const
{
   switch (opcode) {
   case BRW_OPCODE_ADD:
   case BRW_OPCODE_ADDC:
   case BRW_OPCODE_AND:
   case BRW_OPCODE_ASR:
   case BRW_OPCODE_AVG:
   case BRW_OPCODE_CMP:
   case BRW_OPCODE_CMPN:
   case BRW_OPCODE_DP2:
   case BRW_OPCODE_DP3:
   case BRW_OPCODE_DP4:
   case BRW_OPCODE_DPH:
   case BRW_OPCODE_F16TO32:
   case BRW_OPCODE_F32TO16:
   case BRW_OPCODE_FRC:
   case BRW_OPCODE_LINE:
   case BRW_OPCODE_LRP:
   case BRW_OPCODE_LZD:
   case BRW_OPCODE_MAC:
   case BRW_OPCODE_MACH:
   case BRW_OPCODE_MAD:
   case BRW_OPCODE_MOV:
   case BRW_OPCODE_MUL:
   case BRW_OPCODE_NOT:
   case BRW_OPCODE_OR:
   case BRW_OPCODE_PLN:
   case BRW_OPCODE_RNDD:
   case BRW_OPCODE_RNDE:
   case BRW_OPCODE_RNDU:
   case BRW_OPCODE_RNDZ:
   case BRW_OPCODE_SAD2:
   case BRW_OPCODE_SADA2:
   case BRW_OPCODE_SHL:
   case BRW_OPCODE_SHR:
   case BRW_OPCODE_SUBB:
   case BRW_OPCODE_XOR:
   case FS_OPCODE_CINTERP:
   case FS_OPCODE_LINTERP:
      return true;
   default:
      return false;
   }
}

bool
backend_instruction::reads_accumulator_implicitly() const
{
   switch (opcode) {
   case BRW_OPCODE_MAC:
   case BRW_OPCODE_MACH:
   case BRW_OPCODE_SADA2:
      return true;
   default:
      return false;
   }
}

bool
backend_instruction::writes_accumulator_implicitly(const struct gen_device_info *devinfo) const
{
   return writes_accumulator ||
          (devinfo->gen < 6 &&
           ((opcode >= BRW_OPCODE_ADD && opcode < BRW_OPCODE_NOP) ||
            (opcode >= FS_OPCODE_DDX_COARSE && opcode <= FS_OPCODE_LINTERP &&
             opcode != FS_OPCODE_CINTERP)));
}

bool
backend_instruction::has_side_effects() const
{
   switch (opcode) {
   case SHADER_OPCODE_UNTYPED_ATOMIC:
   case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
   case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
   case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
   case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
   case SHADER_OPCODE_TYPED_ATOMIC:
   case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL:
   case SHADER_OPCODE_TYPED_SURFACE_WRITE:
   case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
   case SHADER_OPCODE_MEMORY_FENCE:
   case SHADER_OPCODE_URB_WRITE_SIMD8:
   case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
   case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
   case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
   case FS_OPCODE_FB_WRITE:
   case FS_OPCODE_FB_WRITE_LOGICAL:
   case SHADER_OPCODE_BARRIER:
   case TCS_OPCODE_URB_WRITE:
   case TCS_OPCODE_RELEASE_INPUT:
      return true;
   default:
      return false;
   }
}

bool
backend_instruction::is_volatile() const
{
   switch (opcode) {
   case SHADER_OPCODE_UNTYPED_SURFACE_READ:
   case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
   case SHADER_OPCODE_TYPED_SURFACE_READ:
   case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
   case SHADER_OPCODE_URB_READ_SIMD8:
   case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
   case VEC4_OPCODE_URB_READ:
      return true;
   default:
      return false;
   }
}

#ifndef NDEBUG
static bool
inst_is_in_block(const bblock_t *block, const backend_instruction *inst)
{
   bool found = false;
   foreach_inst_in_block (backend_instruction, i, block) {
      if (inst == i) {
         found = true;
      }
   }
   return found;
}
#endif

static void
adjust_later_block_ips(bblock_t *start_block, int ip_adjustment)
{
   for (bblock_t *block_iter = start_block->next();
        block_iter;
        block_iter = block_iter->next()) {
      block_iter->start_ip += ip_adjustment;
      block_iter->end_ip += ip_adjustment;
   }
}

void
backend_instruction::insert_after(bblock_t *block, backend_instruction *inst)
{
   assert(this != inst);

   if (!this->is_head_sentinel())
      assert(inst_is_in_block(block, this) || !"Instruction not in block");

   block->end_ip++;

   adjust_later_block_ips(block, 1);

   exec_node::insert_after(inst);
}

void
backend_instruction::insert_before(bblock_t *block, backend_instruction *inst)
{
   assert(this != inst);

   if (!this->is_tail_sentinel())
      assert(inst_is_in_block(block, this) || !"Instruction not in block");

   block->end_ip++;

   adjust_later_block_ips(block, 1);

   exec_node::insert_before(inst);
}

void
backend_instruction::insert_before(bblock_t *block, exec_list *list)
{
   assert(inst_is_in_block(block, this) || !"Instruction not in block");

   unsigned num_inst = list->length();

   block->end_ip += num_inst;

   adjust_later_block_ips(block, num_inst);

   exec_node::insert_before(list);
}

void
backend_instruction::remove(bblock_t *block)
{
   assert(inst_is_in_block(block, this) || !"Instruction not in block");

   adjust_later_block_ips(block, -1);

   if (block->start_ip == block->end_ip) {
      block->cfg->remove_block(block);
   } else {
      block->end_ip--;
   }

   exec_node::remove();
}

void
backend_shader::dump_instructions()
{
   dump_instructions(NULL);
}

void
backend_shader::dump_instructions(const char *name)
{
   FILE *file = stderr;
   if (name && geteuid() != 0) {
      file = fopen(name, "w");
      if (!file)
         file = stderr;
   }

   if (cfg) {
      int ip = 0;
      foreach_block_and_inst(block, backend_instruction, inst, cfg) {
         if (!unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER))
            fprintf(file, "%4d: ", ip++);
         dump_instruction(inst, file);
      }
   } else {
      int ip = 0;
      foreach_in_list(backend_instruction, inst, &instructions) {
         if (!unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER))
            fprintf(file, "%4d: ", ip++);
         dump_instruction(inst, file);
      }
   }

   if (file != stderr) {
      fclose(file);
   }
}

void
backend_shader::calculate_cfg()
{
   if (this->cfg)
      return;
   cfg = new(mem_ctx) cfg_t(&this->instructions);
}

/**
 * Sets up the starting offsets for the groups of binding table entries
 * commong to all pipeline stages.
 *
 * Unused groups are initialized to 0xd0d0d0d0 to make it obvious that they're
 * unused but also make sure that addition of small offsets to them will
 * trigger some of our asserts that surface indices are < BRW_MAX_SURFACES.
 */
uint32_t
brw_assign_common_binding_table_offsets(const struct gen_device_info *devinfo,
                                        const struct gl_program *prog,
                                        struct brw_stage_prog_data *stage_prog_data,
                                        uint32_t next_binding_table_offset)
{
   int num_textures = util_last_bit(prog->SamplersUsed);

   stage_prog_data->binding_table.texture_start = next_binding_table_offset;
   next_binding_table_offset += num_textures;

   if (prog->info.num_ubos) {
      assert(prog->info.num_ubos <= BRW_MAX_UBO);
      stage_prog_data->binding_table.ubo_start = next_binding_table_offset;
      next_binding_table_offset += prog->info.num_ubos;
   } else {
      stage_prog_data->binding_table.ubo_start = 0xd0d0d0d0;
   }

   if (prog->info.num_ssbos) {
      assert(prog->info.num_ssbos <= BRW_MAX_SSBO);
      stage_prog_data->binding_table.ssbo_start = next_binding_table_offset;
      next_binding_table_offset += prog->info.num_ssbos;
   } else {
      stage_prog_data->binding_table.ssbo_start = 0xd0d0d0d0;
   }

   if (INTEL_DEBUG & DEBUG_SHADER_TIME) {
      stage_prog_data->binding_table.shader_time_start = next_binding_table_offset;
      next_binding_table_offset++;
   } else {
      stage_prog_data->binding_table.shader_time_start = 0xd0d0d0d0;
   }

   if (prog->nir->info->uses_texture_gather) {
      if (devinfo->gen >= 8) {
         stage_prog_data->binding_table.gather_texture_start =
            stage_prog_data->binding_table.texture_start;
      } else {
         stage_prog_data->binding_table.gather_texture_start = next_binding_table_offset;
         next_binding_table_offset += num_textures;
      }
   } else {
      stage_prog_data->binding_table.gather_texture_start = 0xd0d0d0d0;
   }

   if (prog->info.num_abos) {
      stage_prog_data->binding_table.abo_start = next_binding_table_offset;
      next_binding_table_offset += prog->info.num_abos;
   } else {
      stage_prog_data->binding_table.abo_start = 0xd0d0d0d0;
   }

   if (prog->info.num_images) {
      stage_prog_data->binding_table.image_start = next_binding_table_offset;
      next_binding_table_offset += prog->info.num_images;
   } else {
      stage_prog_data->binding_table.image_start = 0xd0d0d0d0;
   }

   /* This may or may not be used depending on how the compile goes. */
   stage_prog_data->binding_table.pull_constants_start = next_binding_table_offset;
   next_binding_table_offset++;

   /* Plane 0 is just the regular texture section */
   stage_prog_data->binding_table.plane_start[0] = stage_prog_data->binding_table.texture_start;

   stage_prog_data->binding_table.plane_start[1] = next_binding_table_offset;
   next_binding_table_offset += num_textures;

   stage_prog_data->binding_table.plane_start[2] = next_binding_table_offset;
   next_binding_table_offset += num_textures;

   /* prog_data->base.binding_table.size will be set by brw_mark_surface_used. */

   assert(next_binding_table_offset <= BRW_MAX_SURFACES);
   return next_binding_table_offset;
}

static void
setup_vec4_uniform_value(const gl_constant_value **params,
                         const gl_constant_value *values,
                         unsigned n)
{
   static const gl_constant_value zero = { 0 };

   for (unsigned i = 0; i < n; ++i)
      params[i] = &values[i];

   for (unsigned i = n; i < 4; ++i)
      params[i] = &zero;
}

void
brw_setup_image_uniform_values(gl_shader_stage stage,
                               struct brw_stage_prog_data *stage_prog_data,
                               unsigned param_start_index,
                               const gl_uniform_storage *storage)
{
   const gl_constant_value **param =
      &stage_prog_data->param[param_start_index];

   for (unsigned i = 0; i < MAX2(storage->array_elements, 1); i++) {
      const unsigned image_idx = storage->opaque[stage].index + i;
      const brw_image_param *image_param =
         &stage_prog_data->image_param[image_idx];

      /* Upload the brw_image_param structure.  The order is expected to match
       * the BRW_IMAGE_PARAM_*_OFFSET defines.
       */
      setup_vec4_uniform_value(param + BRW_IMAGE_PARAM_SURFACE_IDX_OFFSET,
         (const gl_constant_value *)&image_param->surface_idx, 1);
      setup_vec4_uniform_value(param + BRW_IMAGE_PARAM_OFFSET_OFFSET,
         (const gl_constant_value *)image_param->offset, 2);
      setup_vec4_uniform_value(param + BRW_IMAGE_PARAM_SIZE_OFFSET,
         (const gl_constant_value *)image_param->size, 3);
      setup_vec4_uniform_value(param + BRW_IMAGE_PARAM_STRIDE_OFFSET,
         (const gl_constant_value *)image_param->stride, 4);
      setup_vec4_uniform_value(param + BRW_IMAGE_PARAM_TILING_OFFSET,
         (const gl_constant_value *)image_param->tiling, 3);
      setup_vec4_uniform_value(param + BRW_IMAGE_PARAM_SWIZZLING_OFFSET,
         (const gl_constant_value *)image_param->swizzling, 2);
      param += BRW_IMAGE_PARAM_SIZE;

      brw_mark_surface_used(
         stage_prog_data,
         stage_prog_data->binding_table.image_start + image_idx);
   }
}

/**
 * Decide which set of clip planes should be used when clipping via
 * gl_Position or gl_ClipVertex.
 */
gl_clip_plane *brw_select_clip_planes(struct gl_context *ctx)
{
   if (ctx->_Shader->CurrentProgram[MESA_SHADER_VERTEX]) {
      /* There is currently a GLSL vertex shader, so clip according to GLSL
       * rules, which means compare gl_ClipVertex (or gl_Position, if
       * gl_ClipVertex wasn't assigned) against the eye-coordinate clip planes
       * that were stored in EyeUserPlane at the time the clip planes were
       * specified.
       */
      return ctx->Transform.EyeUserPlane;
   } else {
      /* Either we are using fixed function or an ARB vertex program.  In
       * either case the clip planes are going to be compared against
       * gl_Position (which is in clip coordinates) so we have to clip using
       * _ClipUserPlane, which was transformed into clip coordinates by Mesa
       * core.
       */
      return ctx->Transform._ClipUserPlane;
   }
}

extern "C" const unsigned *
brw_compile_tes(const struct brw_compiler *compiler,
                void *log_data,
                void *mem_ctx,
                const struct brw_tes_prog_key *key,
                const struct brw_vue_map *input_vue_map,
                struct brw_tes_prog_data *prog_data,
                const nir_shader *src_shader,
                struct gl_program *prog,
                int shader_time_index,
                unsigned *final_assembly_size,
                char **error_str)
{
   const struct gen_device_info *devinfo = compiler->devinfo;
   const bool is_scalar = compiler->scalar_stage[MESA_SHADER_TESS_EVAL];

   nir_shader *nir = nir_shader_clone(mem_ctx, src_shader);
   nir->info->inputs_read = key->inputs_read;
   nir->info->patch_inputs_read = key->patch_inputs_read;

   nir = brw_nir_apply_sampler_key(nir, compiler, &key->tex, is_scalar);
   brw_nir_lower_tes_inputs(nir, input_vue_map);
   brw_nir_lower_vue_outputs(nir, is_scalar);
   nir = brw_postprocess_nir(nir, compiler, is_scalar);

   brw_compute_vue_map(devinfo, &prog_data->base.vue_map,
                       nir->info->outputs_written,
                       nir->info->separate_shader);

   unsigned output_size_bytes = prog_data->base.vue_map.num_slots * 4 * 4;

   assert(output_size_bytes >= 1);
   if (output_size_bytes > GEN7_MAX_DS_URB_ENTRY_SIZE_BYTES) {
      if (error_str)
         *error_str = ralloc_strdup(mem_ctx, "DS outputs exceed maximum size");
      return NULL;
   }

   prog_data->base.clip_distance_mask =
      ((1 << nir->info->clip_distance_array_size) - 1);
   prog_data->base.cull_distance_mask =
      ((1 << nir->info->cull_distance_array_size) - 1) <<
      nir->info->clip_distance_array_size;

   /* URB entry sizes are stored as a multiple of 64 bytes. */
   prog_data->base.urb_entry_size = ALIGN(output_size_bytes, 64) / 64;
   prog_data->base.urb_read_length = 0;

   STATIC_ASSERT(BRW_TESS_PARTITIONING_INTEGER == TESS_SPACING_EQUAL - 1);
   STATIC_ASSERT(BRW_TESS_PARTITIONING_ODD_FRACTIONAL ==
                 TESS_SPACING_FRACTIONAL_ODD - 1);
   STATIC_ASSERT(BRW_TESS_PARTITIONING_EVEN_FRACTIONAL ==
                 TESS_SPACING_FRACTIONAL_EVEN - 1);

   prog_data->partitioning =
      (enum brw_tess_partitioning) (nir->info->tess.spacing - 1);

   switch (nir->info->tess.primitive_mode) {
   case GL_QUADS:
      prog_data->domain = BRW_TESS_DOMAIN_QUAD;
      break;
   case GL_TRIANGLES:
      prog_data->domain = BRW_TESS_DOMAIN_TRI;
      break;
   case GL_ISOLINES:
      prog_data->domain = BRW_TESS_DOMAIN_ISOLINE;
      break;
   default:
      unreachable("invalid domain shader primitive mode");
   }

   if (nir->info->tess.point_mode) {
      prog_data->output_topology = BRW_TESS_OUTPUT_TOPOLOGY_POINT;
   } else if (nir->info->tess.primitive_mode == GL_ISOLINES) {
      prog_data->output_topology = BRW_TESS_OUTPUT_TOPOLOGY_LINE;
   } else {
      /* Hardware winding order is backwards from OpenGL */
      prog_data->output_topology =
         nir->info->tess.ccw ? BRW_TESS_OUTPUT_TOPOLOGY_TRI_CW
                             : BRW_TESS_OUTPUT_TOPOLOGY_TRI_CCW;
   }

   if (unlikely(INTEL_DEBUG & DEBUG_TES)) {
      fprintf(stderr, "TES Input ");
      brw_print_vue_map(stderr, input_vue_map);
      fprintf(stderr, "TES Output ");
      brw_print_vue_map(stderr, &prog_data->base.vue_map);
   }

   if (is_scalar) {
      fs_visitor v(compiler, log_data, mem_ctx, (void *) key,
                   &prog_data->base.base, NULL, nir, 8,
                   shader_time_index, input_vue_map);
      if (!v.run_tes()) {
         if (error_str)
            *error_str = ralloc_strdup(mem_ctx, v.fail_msg);
         return NULL;
      }

      prog_data->base.base.dispatch_grf_start_reg = v.payload.num_regs;
      prog_data->base.dispatch_mode = DISPATCH_MODE_SIMD8;

      fs_generator g(compiler, log_data, mem_ctx, (void *) key,
                     &prog_data->base.base, v.promoted_constants, false,
                     MESA_SHADER_TESS_EVAL);
      if (unlikely(INTEL_DEBUG & DEBUG_TES)) {
         g.enable_debug(ralloc_asprintf(mem_ctx,
                                        "%s tessellation evaluation shader %s",
                                        nir->info->label ? nir->info->label
                                                        : "unnamed",
                                        nir->info->name));
      }

      g.generate_code(v.cfg, 8);

      return g.get_assembly(final_assembly_size);
   } else {
      brw::vec4_tes_visitor v(compiler, log_data, key, prog_data,
			      nir, mem_ctx, shader_time_index);
      if (!v.run()) {
	 if (error_str)
	    *error_str = ralloc_strdup(mem_ctx, v.fail_msg);
	 return NULL;
      }

      if (unlikely(INTEL_DEBUG & DEBUG_TES))
	 v.dump_instructions();

      return brw_vec4_generate_assembly(compiler, log_data, mem_ctx, nir,
					&prog_data->base, v.cfg,
					final_assembly_size);
   }
}