/* * Copyright © 2010 - 2015 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #pragma once #include <stdio.h> #include "common/gen_device_info.h" #include "main/mtypes.h" #include "main/macros.h" #ifdef __cplusplus extern "C" { #endif struct ra_regs; struct nir_shader; struct brw_program; union gl_constant_value; struct brw_compiler { const struct gen_device_info *devinfo; struct { struct ra_regs *regs; /** * Array of the ra classes for the unaligned contiguous register * block sizes used. */ int *classes; /** * Mapping for register-allocated objects in *regs to the first * GRF for that object. */ uint8_t *ra_reg_to_grf; } vec4_reg_set; struct { struct ra_regs *regs; /** * Array of the ra classes for the unaligned contiguous register * block sizes used, indexed by register size. */ int classes[16]; /** * Mapping from classes to ra_reg ranges. Each of the per-size * classes corresponds to a range of ra_reg nodes. This array stores * those ranges in the form of first ra_reg in each class and the * total number of ra_reg elements in the last array element. This * way the range of the i'th class is given by: * [ class_to_ra_reg_range[i], class_to_ra_reg_range[i+1] ) */ int class_to_ra_reg_range[17]; /** * Mapping for register-allocated objects in *regs to the first * GRF for that object. */ uint8_t *ra_reg_to_grf; /** * ra class for the aligned pairs we use for PLN, which doesn't * appear in *classes. */ int aligned_pairs_class; } fs_reg_sets[3]; void (*shader_debug_log)(void *, const char *str, ...) PRINTFLIKE(2, 3); void (*shader_perf_log)(void *, const char *str, ...) PRINTFLIKE(2, 3); bool scalar_stage[MESA_SHADER_STAGES]; struct gl_shader_compiler_options glsl_compiler_options[MESA_SHADER_STAGES]; /** * Apply workarounds for SIN and COS output range problems. * This can negatively impact performance. */ bool precise_trig; }; /** * Program key structures. * * When drawing, we look for the currently bound shaders in the program * cache. This is essentially a hash table lookup, and these are the keys. * * Sometimes OpenGL features specified as state need to be simulated via * shader code, due to a mismatch between the API and the hardware. This * is often referred to as "non-orthagonal state" or "NOS". We store NOS * in the program key so it's considered when searching for a program. If * we haven't seen a particular combination before, we have to recompile a * new specialized version. * * Shader compilation should not look up state in gl_context directly, but * instead use the copy in the program key. This guarantees recompiles will * happen correctly. * * @{ */ enum PACKED gen6_gather_sampler_wa { WA_SIGN = 1, /* whether we need to sign extend */ WA_8BIT = 2, /* if we have an 8bit format needing wa */ WA_16BIT = 4, /* if we have a 16bit format needing wa */ }; /** * Sampler information needed by VS, WM, and GS program cache keys. */ struct brw_sampler_prog_key_data { /** * EXT_texture_swizzle and DEPTH_TEXTURE_MODE swizzles. */ uint16_t swizzles[MAX_SAMPLERS]; uint32_t gl_clamp_mask[3]; /** * For RG32F, gather4's channel select is broken. */ uint32_t gather_channel_quirk_mask; /** * Whether this sampler uses the compressed multisample surface layout. */ uint32_t compressed_multisample_layout_mask; /** * Whether this sampler is using 16x multisampling. If so fetching from * this sampler will be handled with a different instruction, ld2dms_w * instead of ld2dms. */ uint32_t msaa_16; /** * For Sandybridge, which shader w/a we need for gather quirks. */ enum gen6_gather_sampler_wa gen6_gather_wa[MAX_SAMPLERS]; /** * Texture units that have a YUV image bound. */ uint32_t y_u_v_image_mask; uint32_t y_uv_image_mask; uint32_t yx_xuxv_image_mask; }; /** The program key for Vertex Shaders. */ struct brw_vs_prog_key { unsigned program_string_id; /* * Per-attribute workaround flags */ uint8_t gl_attrib_wa_flags[VERT_ATTRIB_MAX]; bool copy_edgeflag:1; bool clamp_vertex_color:1; /** * How many user clipping planes are being uploaded to the vertex shader as * push constants. * * These are used for lowering legacy gl_ClipVertex/gl_Position clipping to * clip distances. */ unsigned nr_userclip_plane_consts:4; /** * For pre-Gen6 hardware, a bitfield indicating which texture coordinates * are going to be replaced with point coordinates (as a consequence of a * call to glTexEnvi(GL_POINT_SPRITE, GL_COORD_REPLACE, GL_TRUE)). Because * our SF thread requires exact matching between VS outputs and FS inputs, * these texture coordinates will need to be unconditionally included in * the VUE, even if they aren't written by the vertex shader. */ uint8_t point_coord_replace; struct brw_sampler_prog_key_data tex; }; /** The program key for Tessellation Control Shaders. */ struct brw_tcs_prog_key { unsigned program_string_id; GLenum tes_primitive_mode; unsigned input_vertices; /** A bitfield of per-patch outputs written. */ uint32_t patch_outputs_written; /** A bitfield of per-vertex outputs written. */ uint64_t outputs_written; bool quads_workaround; struct brw_sampler_prog_key_data tex; }; /** The program key for Tessellation Evaluation Shaders. */ struct brw_tes_prog_key { unsigned program_string_id; /** A bitfield of per-patch inputs read. */ uint32_t patch_inputs_read; /** A bitfield of per-vertex inputs read. */ uint64_t inputs_read; struct brw_sampler_prog_key_data tex; }; /** The program key for Geometry Shaders. */ struct brw_gs_prog_key { unsigned program_string_id; struct brw_sampler_prog_key_data tex; }; /** The program key for Fragment/Pixel Shaders. */ struct brw_wm_prog_key { uint8_t iz_lookup; bool stats_wm:1; bool flat_shade:1; unsigned nr_color_regions:5; bool replicate_alpha:1; bool clamp_fragment_color:1; bool persample_interp:1; bool multisample_fbo:1; unsigned line_aa:2; bool high_quality_derivatives:1; bool force_dual_color_blend:1; bool coherent_fb_fetch:1; uint16_t drawable_height; uint64_t input_slots_valid; unsigned program_string_id; GLenum alpha_test_func; /* < For Gen4/5 MRT alpha test */ float alpha_test_ref; struct brw_sampler_prog_key_data tex; }; struct brw_cs_prog_key { uint32_t program_string_id; struct brw_sampler_prog_key_data tex; }; /* * Image metadata structure as laid out in the shader parameter * buffer. Entries have to be 16B-aligned for the vec4 back-end to be * able to use them. That's okay because the padding and any unused * entries [most of them except when we're doing untyped surface * access] will be removed by the uniform packing pass. */ #define BRW_IMAGE_PARAM_SURFACE_IDX_OFFSET 0 #define BRW_IMAGE_PARAM_OFFSET_OFFSET 4 #define BRW_IMAGE_PARAM_SIZE_OFFSET 8 #define BRW_IMAGE_PARAM_STRIDE_OFFSET 12 #define BRW_IMAGE_PARAM_TILING_OFFSET 16 #define BRW_IMAGE_PARAM_SWIZZLING_OFFSET 20 #define BRW_IMAGE_PARAM_SIZE 24 struct brw_image_param { /** Surface binding table index. */ uint32_t surface_idx; /** Offset applied to the X and Y surface coordinates. */ uint32_t offset[2]; /** Surface X, Y and Z dimensions. */ uint32_t size[3]; /** X-stride in bytes, Y-stride in pixels, horizontal slice stride in * pixels, vertical slice stride in pixels. */ uint32_t stride[4]; /** Log2 of the tiling modulus in the X, Y and Z dimension. */ uint32_t tiling[3]; /** * Right shift to apply for bit 6 address swizzling. Two different * swizzles can be specified and will be applied one after the other. The * resulting address will be: * * addr' = addr ^ ((1 << 6) & ((addr >> swizzling[0]) ^ * (addr >> swizzling[1]))) * * Use \c 0xff if any of the swizzles is not required. */ uint32_t swizzling[2]; }; struct brw_stage_prog_data { struct { /** size of our binding table. */ uint32_t size_bytes; /** @{ * surface indices for the various groups of surfaces */ uint32_t pull_constants_start; uint32_t texture_start; uint32_t gather_texture_start; uint32_t ubo_start; uint32_t ssbo_start; uint32_t abo_start; uint32_t image_start; uint32_t shader_time_start; uint32_t plane_start[3]; /** @} */ } binding_table; GLuint nr_params; /**< number of float params/constants */ GLuint nr_pull_params; unsigned nr_image_params; unsigned curb_read_length; unsigned total_scratch; unsigned total_shared; /** * Register where the thread expects to find input data from the URB * (typically uniforms, followed by vertex or fragment attributes). */ unsigned dispatch_grf_start_reg; bool use_alt_mode; /**< Use ALT floating point mode? Otherwise, IEEE. */ /* Pointers to tracked values (only valid once * _mesa_load_state_parameters has been called at runtime). */ const union gl_constant_value **param; const union gl_constant_value **pull_param; /** Image metadata passed to the shader as uniforms. */ struct brw_image_param *image_param; }; /* Data about a particular attempt to compile a program. Note that * there can be many of these, each in a different GL state * corresponding to a different brw_wm_prog_key struct, with different * compiled programs. */ struct brw_wm_prog_data { struct brw_stage_prog_data base; GLuint num_varying_inputs; uint8_t reg_blocks_0; uint8_t reg_blocks_2; uint8_t dispatch_grf_start_reg_2; uint32_t prog_offset_2; struct { /** @{ * surface indices the WM-specific surfaces */ uint32_t render_target_start; uint32_t render_target_read_start; /** @} */ } binding_table; uint8_t computed_depth_mode; bool computed_stencil; bool early_fragment_tests; bool post_depth_coverage; bool inner_coverage; bool dispatch_8; bool dispatch_16; bool dual_src_blend; bool persample_dispatch; bool uses_pos_offset; bool uses_omask; bool uses_kill; bool uses_src_depth; bool uses_src_w; bool uses_sample_mask; bool has_side_effects; bool pulls_bary; bool contains_flat_varying; bool contains_noperspective_varying; /** * Mask of which interpolation modes are required by the fragment shader. * Used in hardware setup on gen6+. */ uint32_t barycentric_interp_modes; /** * Mask of which FS inputs are marked flat by the shader source. This is * needed for setting up 3DSTATE_SF/SBE. */ uint32_t flat_inputs; /* Mapping of VUE slots to interpolation modes. * Used by the Gen4-5 clip/sf/wm stages. */ unsigned char interp_mode[65]; /* BRW_VARYING_SLOT_COUNT */ /** * Map from gl_varying_slot to the position within the FS setup data * payload where the varying's attribute vertex deltas should be delivered. * For varying slots that are not used by the FS, the value is -1. */ int urb_setup[VARYING_SLOT_MAX]; }; struct brw_push_const_block { unsigned dwords; /* Dword count, not reg aligned */ unsigned regs; unsigned size; /* Bytes, register aligned */ }; struct brw_cs_prog_data { struct brw_stage_prog_data base; GLuint dispatch_grf_start_reg_16; unsigned local_size[3]; unsigned simd_size; unsigned threads; bool uses_barrier; bool uses_num_work_groups; int thread_local_id_index; struct { struct brw_push_const_block cross_thread; struct brw_push_const_block per_thread; struct brw_push_const_block total; } push; struct { /** @{ * surface indices the CS-specific surfaces */ uint32_t work_groups_start; /** @} */ } binding_table; }; /** * Enum representing the i965-specific vertex results that don't correspond * exactly to any element of gl_varying_slot. The values of this enum are * assigned such that they don't conflict with gl_varying_slot. */ typedef enum { BRW_VARYING_SLOT_NDC = VARYING_SLOT_MAX, BRW_VARYING_SLOT_PAD, /** * Technically this is not a varying but just a placeholder that * compile_sf_prog() inserts into its VUE map to cause the gl_PointCoord * builtin variable to be compiled correctly. see compile_sf_prog() for * more info. */ BRW_VARYING_SLOT_PNTC, BRW_VARYING_SLOT_COUNT } brw_varying_slot; /** * Data structure recording the relationship between the gl_varying_slot enum * and "slots" within the vertex URB entry (VUE). A "slot" is defined as a * single octaword within the VUE (128 bits). * * Note that each BRW register contains 256 bits (2 octawords), so when * accessing the VUE in URB_NOSWIZZLE mode, each register corresponds to two * consecutive VUE slots. When accessing the VUE in URB_INTERLEAVED mode (as * in a vertex shader), each register corresponds to a single VUE slot, since * it contains data for two separate vertices. */ struct brw_vue_map { /** * Bitfield representing all varying slots that are (a) stored in this VUE * map, and (b) actually written by the shader. Does not include any of * the additional varying slots defined in brw_varying_slot. */ GLbitfield64 slots_valid; /** * Is this VUE map for a separate shader pipeline? * * Separable programs (GL_ARB_separate_shader_objects) can be mixed and matched * without the linker having a chance to dead code eliminate unused varyings. * * This means that we have to use a fixed slot layout, based on the output's * location field, rather than assigning slots in a compact contiguous block. */ bool separate; /** * Map from gl_varying_slot value to VUE slot. For gl_varying_slots that are * not stored in a slot (because they are not written, or because * additional processing is applied before storing them in the VUE), the * value is -1. */ signed char varying_to_slot[VARYING_SLOT_TESS_MAX]; /** * Map from VUE slot to gl_varying_slot value. For slots that do not * directly correspond to a gl_varying_slot, the value comes from * brw_varying_slot. * * For slots that are not in use, the value is BRW_VARYING_SLOT_PAD. */ signed char slot_to_varying[VARYING_SLOT_TESS_MAX]; /** * Total number of VUE slots in use */ int num_slots; /** * Number of per-patch VUE slots. Only valid for tessellation control * shader outputs and tessellation evaluation shader inputs. */ int num_per_patch_slots; /** * Number of per-vertex VUE slots. Only valid for tessellation control * shader outputs and tessellation evaluation shader inputs. */ int num_per_vertex_slots; }; void brw_print_vue_map(FILE *fp, const struct brw_vue_map *vue_map); /** * Convert a VUE slot number into a byte offset within the VUE. */ static inline GLuint brw_vue_slot_to_offset(GLuint slot) { return 16*slot; } /** * Convert a vertex output (brw_varying_slot) into a byte offset within the * VUE. */ static inline GLuint brw_varying_to_offset(const struct brw_vue_map *vue_map, GLuint varying) { return brw_vue_slot_to_offset(vue_map->varying_to_slot[varying]); } void brw_compute_vue_map(const struct gen_device_info *devinfo, struct brw_vue_map *vue_map, GLbitfield64 slots_valid, bool separate_shader); void brw_compute_tess_vue_map(struct brw_vue_map *const vue_map, const GLbitfield64 slots_valid, const GLbitfield is_patch); /* brw_interpolation_map.c */ void brw_setup_vue_interpolation(struct brw_vue_map *vue_map, struct nir_shader *nir, struct brw_wm_prog_data *prog_data, const struct gen_device_info *devinfo); enum shader_dispatch_mode { DISPATCH_MODE_4X1_SINGLE = 0, DISPATCH_MODE_4X2_DUAL_INSTANCE = 1, DISPATCH_MODE_4X2_DUAL_OBJECT = 2, DISPATCH_MODE_SIMD8 = 3, }; /** * @defgroup Tessellator parameter enumerations. * * These correspond to the hardware values in 3DSTATE_TE, and are provided * as part of the tessellation evaluation shader. * * @{ */ enum brw_tess_partitioning { BRW_TESS_PARTITIONING_INTEGER = 0, BRW_TESS_PARTITIONING_ODD_FRACTIONAL = 1, BRW_TESS_PARTITIONING_EVEN_FRACTIONAL = 2, }; enum brw_tess_output_topology { BRW_TESS_OUTPUT_TOPOLOGY_POINT = 0, BRW_TESS_OUTPUT_TOPOLOGY_LINE = 1, BRW_TESS_OUTPUT_TOPOLOGY_TRI_CW = 2, BRW_TESS_OUTPUT_TOPOLOGY_TRI_CCW = 3, }; enum brw_tess_domain { BRW_TESS_DOMAIN_QUAD = 0, BRW_TESS_DOMAIN_TRI = 1, BRW_TESS_DOMAIN_ISOLINE = 2, }; /** @} */ struct brw_vue_prog_data { struct brw_stage_prog_data base; struct brw_vue_map vue_map; /** Should the hardware deliver input VUE handles for URB pull loads? */ bool include_vue_handles; GLuint urb_read_length; GLuint total_grf; uint32_t clip_distance_mask; uint32_t cull_distance_mask; /* Used for calculating urb partitions. In the VS, this is the size of the * URB entry used for both input and output to the thread. In the GS, this * is the size of the URB entry used for output. */ GLuint urb_entry_size; enum shader_dispatch_mode dispatch_mode; }; struct brw_vs_prog_data { struct brw_vue_prog_data base; GLbitfield64 inputs_read; GLbitfield64 double_inputs_read; unsigned nr_attributes; unsigned nr_attribute_slots; bool uses_vertexid; bool uses_instanceid; bool uses_basevertex; bool uses_baseinstance; bool uses_drawid; }; struct brw_tcs_prog_data { struct brw_vue_prog_data base; /** Number vertices in output patch */ int instances; }; struct brw_tes_prog_data { struct brw_vue_prog_data base; enum brw_tess_partitioning partitioning; enum brw_tess_output_topology output_topology; enum brw_tess_domain domain; }; struct brw_gs_prog_data { struct brw_vue_prog_data base; unsigned vertices_in; /** * Size of an output vertex, measured in HWORDS (32 bytes). */ unsigned output_vertex_size_hwords; unsigned output_topology; /** * Size of the control data (cut bits or StreamID bits), in hwords (32 * bytes). 0 if there is no control data. */ unsigned control_data_header_size_hwords; /** * Format of the control data (either GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_SID * if the control data is StreamID bits, or * GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT if the control data is cut bits). * Ignored if control_data_header_size is 0. */ unsigned control_data_format; bool include_primitive_id; /** * The number of vertices emitted, if constant - otherwise -1. */ int static_vertex_count; int invocations; /** * Gen6: Provoking vertex convention for odd-numbered triangles * in tristrips. */ GLuint pv_first:1; /** * Gen6: Number of varyings that are output to transform feedback. */ GLuint num_transform_feedback_bindings:7; /* 0-BRW_MAX_SOL_BINDINGS */ /** * Gen6: Map from the index of a transform feedback binding table entry to the * gl_varying_slot that should be streamed out through that binding table * entry. */ unsigned char transform_feedback_bindings[64 /* BRW_MAX_SOL_BINDINGS */]; /** * Gen6: Map from the index of a transform feedback binding table entry to the * swizzles that should be used when streaming out data through that * binding table entry. */ unsigned char transform_feedback_swizzles[64 /* BRW_MAX_SOL_BINDINGS */]; }; #define DEFINE_PROG_DATA_DOWNCAST(stage) \ static inline struct brw_##stage##_prog_data * \ brw_##stage##_prog_data(struct brw_stage_prog_data *prog_data) \ { \ return (struct brw_##stage##_prog_data *) prog_data; \ } DEFINE_PROG_DATA_DOWNCAST(vue) DEFINE_PROG_DATA_DOWNCAST(vs) DEFINE_PROG_DATA_DOWNCAST(tcs) DEFINE_PROG_DATA_DOWNCAST(tes) DEFINE_PROG_DATA_DOWNCAST(gs) DEFINE_PROG_DATA_DOWNCAST(wm) DEFINE_PROG_DATA_DOWNCAST(cs) DEFINE_PROG_DATA_DOWNCAST(ff_gs) DEFINE_PROG_DATA_DOWNCAST(clip) DEFINE_PROG_DATA_DOWNCAST(sf) #undef DEFINE_PROG_DATA_DOWNCAST /** @} */ struct brw_compiler * brw_compiler_create(void *mem_ctx, const struct gen_device_info *devinfo); /** * Compile a vertex shader. * * Returns the final assembly and the program's size. */ const unsigned * brw_compile_vs(const struct brw_compiler *compiler, void *log_data, void *mem_ctx, const struct brw_vs_prog_key *key, struct brw_vs_prog_data *prog_data, const struct nir_shader *shader, gl_clip_plane *clip_planes, bool use_legacy_snorm_formula, int shader_time_index, unsigned *final_assembly_size, char **error_str); /** * Compile a tessellation control shader. * * Returns the final assembly and the program's size. */ const unsigned * brw_compile_tcs(const struct brw_compiler *compiler, void *log_data, void *mem_ctx, const struct brw_tcs_prog_key *key, struct brw_tcs_prog_data *prog_data, const struct nir_shader *nir, int shader_time_index, unsigned *final_assembly_size, char **error_str); /** * Compile a tessellation evaluation shader. * * Returns the final assembly and the program's size. */ const unsigned * brw_compile_tes(const struct brw_compiler *compiler, void *log_data, void *mem_ctx, const struct brw_tes_prog_key *key, const struct brw_vue_map *input_vue_map, struct brw_tes_prog_data *prog_data, const struct nir_shader *shader, struct gl_program *prog, int shader_time_index, unsigned *final_assembly_size, char **error_str); /** * Compile a vertex shader. * * Returns the final assembly and the program's size. */ const unsigned * brw_compile_gs(const struct brw_compiler *compiler, void *log_data, void *mem_ctx, const struct brw_gs_prog_key *key, struct brw_gs_prog_data *prog_data, const struct nir_shader *shader, struct gl_program *prog, int shader_time_index, unsigned *final_assembly_size, char **error_str); /** * Compile a fragment shader. * * Returns the final assembly and the program's size. */ const unsigned * brw_compile_fs(const struct brw_compiler *compiler, void *log_data, void *mem_ctx, const struct brw_wm_prog_key *key, struct brw_wm_prog_data *prog_data, const struct nir_shader *shader, struct gl_program *prog, int shader_time_index8, int shader_time_index16, bool allow_spilling, bool use_rep_send, struct brw_vue_map *vue_map, unsigned *final_assembly_size, char **error_str); /** * Compile a compute shader. * * Returns the final assembly and the program's size. */ const unsigned * brw_compile_cs(const struct brw_compiler *compiler, void *log_data, void *mem_ctx, const struct brw_cs_prog_key *key, struct brw_cs_prog_data *prog_data, const struct nir_shader *shader, int shader_time_index, unsigned *final_assembly_size, char **error_str); static inline uint32_t encode_slm_size(unsigned gen, uint32_t bytes) { uint32_t slm_size = 0; /* Shared Local Memory is specified as powers of two, and encoded in * INTERFACE_DESCRIPTOR_DATA with the following representations: * * Size | 0 kB | 1 kB | 2 kB | 4 kB | 8 kB | 16 kB | 32 kB | 64 kB | * ------------------------------------------------------------------- * Gen7-8 | 0 | none | none | 1 | 2 | 4 | 8 | 16 | * ------------------------------------------------------------------- * Gen9+ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | */ assert(bytes <= 64 * 1024); if (bytes > 0) { /* Shared Local Memory Size is specified as powers of two. */ slm_size = util_next_power_of_two(bytes); if (gen >= 9) { /* Use a minimum of 1kB; turn an exponent of 10 (1024 kB) into 1. */ slm_size = ffs(MAX2(slm_size, 1024)) - 10; } else { /* Use a minimum of 4kB; convert to the pre-Gen9 representation. */ slm_size = MAX2(slm_size, 4096) / 4096; } } return slm_size; } /** * Return true if the given shader stage is dispatched contiguously by the * relevant fixed function starting from channel 0 of the SIMD thread, which * implies that the dispatch mask of a thread can be assumed to have the form * '2^n - 1' for some n. */ static inline bool brw_stage_has_packed_dispatch(const struct gen_device_info *devinfo, gl_shader_stage stage, const struct brw_stage_prog_data *prog_data) { /* The code below makes assumptions about the hardware's thread dispatch * behavior that could be proven wrong in future generations -- Make sure * to do a full test run with brw_fs_test_dispatch_packing() hooked up to * the NIR front-end before changing this assertion. */ assert(devinfo->gen <= 9); switch (stage) { case MESA_SHADER_FRAGMENT: { /* The PSD discards subspans coming in with no lit samples, which in the * per-pixel shading case implies that each subspan will either be fully * lit (due to the VMask being used to allow derivative computations), * or not dispatched at all. In per-sample dispatch mode individual * samples from the same subspan have a fixed relative location within * the SIMD thread, so dispatch of unlit samples cannot be avoided in * general and we should return false. */ const struct brw_wm_prog_data *wm_prog_data = (const struct brw_wm_prog_data *)prog_data; return !wm_prog_data->persample_dispatch; } case MESA_SHADER_COMPUTE: /* Compute shaders will be spawned with either a fully enabled dispatch * mask or with whatever bottom/right execution mask was given to the * GPGPU walker command to be used along the workgroup edges -- In both * cases the dispatch mask is required to be tightly packed for our * invocation index calculations to work. */ return true; default: /* Most remaining fixed functions are limited to use a packed dispatch * mask due to the hardware representation of the dispatch mask as a * single counter representing the number of enabled channels. */ return true; } } #ifdef __cplusplus } /* extern "C" */ #endif