/*
    LZ4 HC - High Compression Mode of LZ4
    Copyright (C) 2011-2016, Yann Collet.

    BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)

    Redistribution and use in source and binary forms, with or without
    modification, are permitted provided that the following conditions are
    met:

    * Redistributions of source code must retain the above copyright
    notice, this list of conditions and the following disclaimer.
    * Redistributions in binary form must reproduce the above
    copyright notice, this list of conditions and the following disclaimer
    in the documentation and/or other materials provided with the
    distribution.

    THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
    "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
    LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
    A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
    OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
    SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
    LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
    DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
    THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
    (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
    OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

    You can contact the author at :
       - LZ4 source repository : https://github.com/lz4/lz4
       - LZ4 public forum : https://groups.google.com/forum/#!forum/lz4c
*/
/* note : lz4hc is not an independent module, it requires lz4.h/lz4.c for proper compilation */


/* *************************************
*  Tuning Parameter
***************************************/

/*!
 * HEAPMODE :
 * Select how default compression function will allocate workplace memory,
 * in stack (0:fastest), or in heap (1:requires malloc()).
 * Since workplace is rather large, heap mode is recommended.
 */
#ifndef LZ4HC_HEAPMODE
#  define LZ4HC_HEAPMODE 1
#endif


/* *************************************
*  Dependency
***************************************/
#include "lz4hc.h"


/* *************************************
*  Local Compiler Options
***************************************/
#if defined(__GNUC__)
#  pragma GCC diagnostic ignored "-Wunused-function"
#endif

#if defined (__clang__)
#  pragma clang diagnostic ignored "-Wunused-function"
#endif


/* *************************************
*  Common LZ4 definition
***************************************/
#define LZ4_COMMONDEFS_ONLY
#include "lz4.c"


/* *************************************
*  Local Constants
***************************************/
#define OPTIMAL_ML (int)((ML_MASK-1)+MINMATCH)


/**************************************
*  Local Macros
**************************************/
#define HASH_FUNCTION(i)       (((i) * 2654435761U) >> ((MINMATCH*8)-LZ4HC_HASH_LOG))
#define DELTANEXTMAXD(p)       chainTable[(p) & LZ4HC_MAXD_MASK]    /* flexible, LZ4HC_MAXD dependent */
#define DELTANEXTU16(p)        chainTable[(U16)(p)]   /* faster */

static U32 LZ4HC_hashPtr(const void* ptr) { return HASH_FUNCTION(LZ4_read32(ptr)); }



/**************************************
*  HC Compression
**************************************/
static void LZ4HC_init (LZ4HC_CCtx_internal* hc4, const BYTE* start)
{
    MEM_INIT((void*)hc4->hashTable, 0, sizeof(hc4->hashTable));
    MEM_INIT(hc4->chainTable, 0xFF, sizeof(hc4->chainTable));
    hc4->nextToUpdate = 64 KB;
    hc4->base = start - 64 KB;
    hc4->end = start;
    hc4->dictBase = start - 64 KB;
    hc4->dictLimit = 64 KB;
    hc4->lowLimit = 64 KB;
}


/* Update chains up to ip (excluded) */
FORCE_INLINE void LZ4HC_Insert (LZ4HC_CCtx_internal* hc4, const BYTE* ip)
{
    U16* const chainTable = hc4->chainTable;
    U32* const hashTable  = hc4->hashTable;
    const BYTE* const base = hc4->base;
    U32 const target = (U32)(ip - base);
    U32 idx = hc4->nextToUpdate;

    while (idx < target) {
        U32 const h = LZ4HC_hashPtr(base+idx);
        size_t delta = idx - hashTable[h];
        if (delta>MAX_DISTANCE) delta = MAX_DISTANCE;
        DELTANEXTU16(idx) = (U16)delta;
        hashTable[h] = idx;
        idx++;
    }

    hc4->nextToUpdate = target;
}


FORCE_INLINE int LZ4HC_InsertAndFindBestMatch (LZ4HC_CCtx_internal* hc4,   /* Index table will be updated */
                                               const BYTE* ip, const BYTE* const iLimit,
                                               const BYTE** matchpos,
                                               const int maxNbAttempts)
{
    U16* const chainTable = hc4->chainTable;
    U32* const HashTable = hc4->hashTable;
    const BYTE* const base = hc4->base;
    const BYTE* const dictBase = hc4->dictBase;
    const U32 dictLimit = hc4->dictLimit;
    const U32 lowLimit = (hc4->lowLimit + 64 KB > (U32)(ip-base)) ? hc4->lowLimit : (U32)(ip - base) - (64 KB - 1);
    U32 matchIndex;
    int nbAttempts=maxNbAttempts;
    size_t ml=0;

    /* HC4 match finder */
    LZ4HC_Insert(hc4, ip);
    matchIndex = HashTable[LZ4HC_hashPtr(ip)];

    while ((matchIndex>=lowLimit) && (nbAttempts)) {
        nbAttempts--;
        if (matchIndex >= dictLimit) {
            const BYTE* const match = base + matchIndex;
            if (*(match+ml) == *(ip+ml)
                && (LZ4_read32(match) == LZ4_read32(ip)))
            {
                size_t const mlt = LZ4_count(ip+MINMATCH, match+MINMATCH, iLimit) + MINMATCH;
                if (mlt > ml) { ml = mlt; *matchpos = match; }
            }
        } else {
            const BYTE* const match = dictBase + matchIndex;
            if (LZ4_read32(match) == LZ4_read32(ip)) {
                size_t mlt;
                const BYTE* vLimit = ip + (dictLimit - matchIndex);
                if (vLimit > iLimit) vLimit = iLimit;
                mlt = LZ4_count(ip+MINMATCH, match+MINMATCH, vLimit) + MINMATCH;
                if ((ip+mlt == vLimit) && (vLimit < iLimit))
                    mlt += LZ4_count(ip+mlt, base+dictLimit, iLimit);
                if (mlt > ml) { ml = mlt; *matchpos = base + matchIndex; }   /* virtual matchpos */
            }
        }
        matchIndex -= DELTANEXTU16(matchIndex);
    }

    return (int)ml;
}


FORCE_INLINE int LZ4HC_InsertAndGetWiderMatch (
    LZ4HC_CCtx_internal* hc4,
    const BYTE* const ip,
    const BYTE* const iLowLimit,
    const BYTE* const iHighLimit,
    int longest,
    const BYTE** matchpos,
    const BYTE** startpos,
    const int maxNbAttempts)
{
    U16* const chainTable = hc4->chainTable;
    U32* const HashTable = hc4->hashTable;
    const BYTE* const base = hc4->base;
    const U32 dictLimit = hc4->dictLimit;
    const BYTE* const lowPrefixPtr = base + dictLimit;
    const U32 lowLimit = (hc4->lowLimit + 64 KB > (U32)(ip-base)) ? hc4->lowLimit : (U32)(ip - base) - (64 KB - 1);
    const BYTE* const dictBase = hc4->dictBase;
    U32   matchIndex;
    int nbAttempts = maxNbAttempts;
    int delta = (int)(ip-iLowLimit);


    /* First Match */
    LZ4HC_Insert(hc4, ip);
    matchIndex = HashTable[LZ4HC_hashPtr(ip)];

    while ((matchIndex>=lowLimit) && (nbAttempts)) {
        nbAttempts--;
        if (matchIndex >= dictLimit) {
            const BYTE* matchPtr = base + matchIndex;
            if (*(iLowLimit + longest) == *(matchPtr - delta + longest)) {
                if (LZ4_read32(matchPtr) == LZ4_read32(ip)) {
                    int mlt = MINMATCH + LZ4_count(ip+MINMATCH, matchPtr+MINMATCH, iHighLimit);
                    int back = 0;

                    while ((ip+back > iLowLimit)
                           && (matchPtr+back > lowPrefixPtr)
                           && (ip[back-1] == matchPtr[back-1]))
                            back--;

                    mlt -= back;

                    if (mlt > longest) {
                        longest = (int)mlt;
                        *matchpos = matchPtr+back;
                        *startpos = ip+back;
                    }
                }
            }
        } else {
            const BYTE* const matchPtr = dictBase + matchIndex;
            if (LZ4_read32(matchPtr) == LZ4_read32(ip)) {
                size_t mlt;
                int back=0;
                const BYTE* vLimit = ip + (dictLimit - matchIndex);
                if (vLimit > iHighLimit) vLimit = iHighLimit;
                mlt = LZ4_count(ip+MINMATCH, matchPtr+MINMATCH, vLimit) + MINMATCH;
                if ((ip+mlt == vLimit) && (vLimit < iHighLimit))
                    mlt += LZ4_count(ip+mlt, base+dictLimit, iHighLimit);
                while ((ip+back > iLowLimit) && (matchIndex+back > lowLimit) && (ip[back-1] == matchPtr[back-1])) back--;
                mlt -= back;
                if ((int)mlt > longest) { longest = (int)mlt; *matchpos = base + matchIndex + back; *startpos = ip+back; }
            }
        }
        matchIndex -= DELTANEXTU16(matchIndex);
    }

    return longest;
}


typedef enum { noLimit = 0, limitedOutput = 1 } limitedOutput_directive;

#define LZ4HC_DEBUG 0
#if LZ4HC_DEBUG
static unsigned debug = 0;
#endif

FORCE_INLINE int LZ4HC_encodeSequence (
    const BYTE** ip,
    BYTE** op,
    const BYTE** anchor,
    int matchLength,
    const BYTE* const match,
    limitedOutput_directive limitedOutputBuffer,
    BYTE* oend)
{
    int length;
    BYTE* token;

#if LZ4HC_DEBUG
    if (debug) printf("literal : %u  --  match : %u  --  offset : %u\n", (U32)(*ip - *anchor), (U32)matchLength, (U32)(*ip-match));
#endif

    /* Encode Literal length */
    length = (int)(*ip - *anchor);
    token = (*op)++;
    if ((limitedOutputBuffer) && ((*op + (length>>8) + length + (2 + 1 + LASTLITERALS)) > oend)) return 1;   /* Check output limit */
    if (length>=(int)RUN_MASK) { int len; *token=(RUN_MASK<<ML_BITS); len = length-RUN_MASK; for(; len > 254 ; len-=255) *(*op)++ = 255;  *(*op)++ = (BYTE)len; }
    else *token = (BYTE)(length<<ML_BITS);

    /* Copy Literals */
    LZ4_wildCopy(*op, *anchor, (*op) + length);
    *op += length;

    /* Encode Offset */
    LZ4_writeLE16(*op, (U16)(*ip-match)); *op += 2;

    /* Encode MatchLength */
    length = (int)(matchLength-MINMATCH);
    if ((limitedOutputBuffer) && (*op + (length>>8) + (1 + LASTLITERALS) > oend)) return 1;   /* Check output limit */
    if (length>=(int)ML_MASK) {
        *token += ML_MASK;
        length -= ML_MASK;
        for(; length > 509 ; length-=510) { *(*op)++ = 255; *(*op)++ = 255; }
        if (length > 254) { length-=255; *(*op)++ = 255; }
        *(*op)++ = (BYTE)length;
    } else {
        *token += (BYTE)(length);
    }

    /* Prepare next loop */
    *ip += matchLength;
    *anchor = *ip;

    return 0;
}

#include "lz4opt.h"

static int LZ4HC_compress_hashChain (
    LZ4HC_CCtx_internal* const ctx,
    const char* const source,
    char* const dest,
    int const inputSize,
    int const maxOutputSize,
    unsigned maxNbAttempts,
    limitedOutput_directive limit
    )
{
    const BYTE* ip = (const BYTE*) source;
    const BYTE* anchor = ip;
    const BYTE* const iend = ip + inputSize;
    const BYTE* const mflimit = iend - MFLIMIT;
    const BYTE* const matchlimit = (iend - LASTLITERALS);

    BYTE* op = (BYTE*) dest;
    BYTE* const oend = op + maxOutputSize;

    int   ml, ml2, ml3, ml0;
    const BYTE* ref = NULL;
    const BYTE* start2 = NULL;
    const BYTE* ref2 = NULL;
    const BYTE* start3 = NULL;
    const BYTE* ref3 = NULL;
    const BYTE* start0;
    const BYTE* ref0;

    /* init */
    ctx->end += inputSize;

    ip++;

    /* Main Loop */
    while (ip < mflimit) {
        ml = LZ4HC_InsertAndFindBestMatch (ctx, ip, matchlimit, (&ref), maxNbAttempts);
        if (!ml) { ip++; continue; }

        /* saved, in case we would skip too much */
        start0 = ip;
        ref0 = ref;
        ml0 = ml;

_Search2:
        if (ip+ml < mflimit)
            ml2 = LZ4HC_InsertAndGetWiderMatch(ctx, ip + ml - 2, ip + 0, matchlimit, ml, &ref2, &start2, maxNbAttempts);
        else ml2 = ml;

        if (ml2 == ml) { /* No better match */
            if (LZ4HC_encodeSequence(&ip, &op, &anchor, ml, ref, limit, oend)) return 0;
            continue;
        }

        if (start0 < ip) {
            if (start2 < ip + ml0) {  /* empirical */
                ip = start0;
                ref = ref0;
                ml = ml0;
            }
        }

        /* Here, start0==ip */
        if ((start2 - ip) < 3) {  /* First Match too small : removed */
            ml = ml2;
            ip = start2;
            ref =ref2;
            goto _Search2;
        }

_Search3:
        /*
        * Currently we have :
        * ml2 > ml1, and
        * ip1+3 <= ip2 (usually < ip1+ml1)
        */
        if ((start2 - ip) < OPTIMAL_ML) {
            int correction;
            int new_ml = ml;
            if (new_ml > OPTIMAL_ML) new_ml = OPTIMAL_ML;
            if (ip+new_ml > start2 + ml2 - MINMATCH) new_ml = (int)(start2 - ip) + ml2 - MINMATCH;
            correction = new_ml - (int)(start2 - ip);
            if (correction > 0) {
                start2 += correction;
                ref2 += correction;
                ml2 -= correction;
            }
        }
        /* Now, we have start2 = ip+new_ml, with new_ml = min(ml, OPTIMAL_ML=18) */

        if (start2 + ml2 < mflimit)
            ml3 = LZ4HC_InsertAndGetWiderMatch(ctx, start2 + ml2 - 3, start2, matchlimit, ml2, &ref3, &start3, maxNbAttempts);
        else ml3 = ml2;

        if (ml3 == ml2) {  /* No better match : 2 sequences to encode */
            /* ip & ref are known; Now for ml */
            if (start2 < ip+ml)  ml = (int)(start2 - ip);
            /* Now, encode 2 sequences */
            if (LZ4HC_encodeSequence(&ip, &op, &anchor, ml, ref, limit, oend)) return 0;
            ip = start2;
            if (LZ4HC_encodeSequence(&ip, &op, &anchor, ml2, ref2, limit, oend)) return 0;
            continue;
        }

        if (start3 < ip+ml+3) {  /* Not enough space for match 2 : remove it */
            if (start3 >= (ip+ml)) {  /* can write Seq1 immediately ==> Seq2 is removed, so Seq3 becomes Seq1 */
                if (start2 < ip+ml) {
                    int correction = (int)(ip+ml - start2);
                    start2 += correction;
                    ref2 += correction;
                    ml2 -= correction;
                    if (ml2 < MINMATCH) {
                        start2 = start3;
                        ref2 = ref3;
                        ml2 = ml3;
                    }
                }

                if (LZ4HC_encodeSequence(&ip, &op, &anchor, ml, ref, limit, oend)) return 0;
                ip  = start3;
                ref = ref3;
                ml  = ml3;

                start0 = start2;
                ref0 = ref2;
                ml0 = ml2;
                goto _Search2;
            }

            start2 = start3;
            ref2 = ref3;
            ml2 = ml3;
            goto _Search3;
        }

        /*
        * OK, now we have 3 ascending matches; let's write at least the first one
        * ip & ref are known; Now for ml
        */
        if (start2 < ip+ml) {
            if ((start2 - ip) < (int)ML_MASK) {
                int correction;
                if (ml > OPTIMAL_ML) ml = OPTIMAL_ML;
                if (ip + ml > start2 + ml2 - MINMATCH) ml = (int)(start2 - ip) + ml2 - MINMATCH;
                correction = ml - (int)(start2 - ip);
                if (correction > 0) {
                    start2 += correction;
                    ref2 += correction;
                    ml2 -= correction;
                }
            } else {
                ml = (int)(start2 - ip);
            }
        }
        if (LZ4HC_encodeSequence(&ip, &op, &anchor, ml, ref, limit, oend)) return 0;

        ip = start2;
        ref = ref2;
        ml = ml2;

        start2 = start3;
        ref2 = ref3;
        ml2 = ml3;

        goto _Search3;
    }

    /* Encode Last Literals */
    {   int lastRun = (int)(iend - anchor);
        if ((limit) && (((char*)op - dest) + lastRun + 1 + ((lastRun+255-RUN_MASK)/255) > (U32)maxOutputSize)) return 0;  /* Check output limit */
        if (lastRun>=(int)RUN_MASK) { *op++=(RUN_MASK<<ML_BITS); lastRun-=RUN_MASK; for(; lastRun > 254 ; lastRun-=255) *op++ = 255; *op++ = (BYTE) lastRun; }
        else *op++ = (BYTE)(lastRun<<ML_BITS);
        memcpy(op, anchor, iend - anchor);
        op += iend-anchor;
    }

    /* End */
    return (int) (((char*)op)-dest);
}

static int LZ4HC_getSearchNum(int compressionLevel)
{
    switch (compressionLevel) {
        default: return 0; /* unused */
        case 11: return 128; 
        case 12: return 1<<10; 
    }
}

static int LZ4HC_compress_generic (
    LZ4HC_CCtx_internal* const ctx,
    const char* const source,
    char* const dest,
    int const inputSize,
    int const maxOutputSize,
    int compressionLevel,
    limitedOutput_directive limit
    )
{
    if (compressionLevel < 1) compressionLevel = LZ4HC_CLEVEL_DEFAULT;
    if (compressionLevel > 9) {
        switch (compressionLevel) {
            case 10: return LZ4HC_compress_hashChain(ctx, source, dest, inputSize, maxOutputSize, 1 << (16-1), limit);
            case 11: ctx->searchNum = LZ4HC_getSearchNum(compressionLevel); return LZ4HC_compress_optimal(ctx, source, dest, inputSize, maxOutputSize, limit, 128, 0);
            default:
            case 12: ctx->searchNum = LZ4HC_getSearchNum(compressionLevel); return LZ4HC_compress_optimal(ctx, source, dest, inputSize, maxOutputSize, limit, LZ4_OPT_NUM, 1);
        }
    }
    return LZ4HC_compress_hashChain(ctx, source, dest, inputSize, maxOutputSize, 1 << (compressionLevel-1), limit);
}


int LZ4_sizeofStateHC(void) { return sizeof(LZ4_streamHC_t); }

int LZ4_compress_HC_extStateHC (void* state, const char* src, char* dst, int srcSize, int maxDstSize, int compressionLevel)
{
    LZ4HC_CCtx_internal* ctx = &((LZ4_streamHC_t*)state)->internal_donotuse;
    if (((size_t)(state)&(sizeof(void*)-1)) != 0) return 0;   /* Error : state is not aligned for pointers (32 or 64 bits) */
    LZ4HC_init (ctx, (const BYTE*)src);
    if (maxDstSize < LZ4_compressBound(srcSize))
        return LZ4HC_compress_generic (ctx, src, dst, srcSize, maxDstSize, compressionLevel, limitedOutput);
    else
        return LZ4HC_compress_generic (ctx, src, dst, srcSize, maxDstSize, compressionLevel, noLimit);
}

int LZ4_compress_HC(const char* src, char* dst, int srcSize, int maxDstSize, int compressionLevel)
{
#if defined(LZ4HC_HEAPMODE) && LZ4HC_HEAPMODE==1
    LZ4_streamHC_t* const statePtr = (LZ4_streamHC_t*)malloc(sizeof(LZ4_streamHC_t));
#else
    LZ4_streamHC_t state;
    LZ4_streamHC_t* const statePtr = &state;
#endif
    int const cSize = LZ4_compress_HC_extStateHC(statePtr, src, dst, srcSize, maxDstSize, compressionLevel);
#if defined(LZ4HC_HEAPMODE) && LZ4HC_HEAPMODE==1
    free(statePtr);
#endif
    return cSize;
}



/**************************************
*  Streaming Functions
**************************************/
/* allocation */
LZ4_streamHC_t* LZ4_createStreamHC(void) { return (LZ4_streamHC_t*)malloc(sizeof(LZ4_streamHC_t)); }
int             LZ4_freeStreamHC (LZ4_streamHC_t* LZ4_streamHCPtr) { free(LZ4_streamHCPtr); return 0; }


/* initialization */
void LZ4_resetStreamHC (LZ4_streamHC_t* LZ4_streamHCPtr, int compressionLevel)
{
    LZ4_STATIC_ASSERT(sizeof(LZ4HC_CCtx_internal) <= sizeof(size_t) * LZ4_STREAMHCSIZE_SIZET);   /* if compilation fails here, LZ4_STREAMHCSIZE must be increased */
    LZ4_streamHCPtr->internal_donotuse.base = NULL;
    LZ4_streamHCPtr->internal_donotuse.compressionLevel = (unsigned)compressionLevel;
    LZ4_streamHCPtr->internal_donotuse.searchNum = LZ4HC_getSearchNum(compressionLevel);
}

int LZ4_loadDictHC (LZ4_streamHC_t* LZ4_streamHCPtr, const char* dictionary, int dictSize)
{
    LZ4HC_CCtx_internal* ctxPtr = &LZ4_streamHCPtr->internal_donotuse;
    if (dictSize > 64 KB) {
        dictionary += dictSize - 64 KB;
        dictSize = 64 KB;
    }
    LZ4HC_init (ctxPtr, (const BYTE*)dictionary);
    ctxPtr->end = (const BYTE*)dictionary + dictSize;
    if (ctxPtr->compressionLevel >= LZ4HC_CLEVEL_OPT_MIN)
        LZ4HC_updateBinTree(ctxPtr, ctxPtr->end - MFLIMIT, ctxPtr->end - LASTLITERALS);
    else
        if (dictSize >= 4) LZ4HC_Insert (ctxPtr, ctxPtr->end-3);
    return dictSize;
}


/* compression */

static void LZ4HC_setExternalDict(LZ4HC_CCtx_internal* ctxPtr, const BYTE* newBlock)
{
    if (ctxPtr->compressionLevel >= LZ4HC_CLEVEL_OPT_MIN)
        LZ4HC_updateBinTree(ctxPtr, ctxPtr->end - MFLIMIT, ctxPtr->end - LASTLITERALS);
    else
        if (ctxPtr->end >= ctxPtr->base + 4) LZ4HC_Insert (ctxPtr, ctxPtr->end-3);   /* Referencing remaining dictionary content */

    /* Only one memory segment for extDict, so any previous extDict is lost at this stage */
    ctxPtr->lowLimit  = ctxPtr->dictLimit;
    ctxPtr->dictLimit = (U32)(ctxPtr->end - ctxPtr->base);
    ctxPtr->dictBase  = ctxPtr->base;
    ctxPtr->base = newBlock - ctxPtr->dictLimit;
    ctxPtr->end  = newBlock;
    ctxPtr->nextToUpdate = ctxPtr->dictLimit;   /* match referencing will resume from there */
}

static int LZ4_compressHC_continue_generic (LZ4_streamHC_t* LZ4_streamHCPtr,
                                            const char* source, char* dest,
                                            int inputSize, int maxOutputSize, limitedOutput_directive limit)
{
    LZ4HC_CCtx_internal* ctxPtr = &LZ4_streamHCPtr->internal_donotuse;
    /* auto-init if forgotten */
    if (ctxPtr->base == NULL) LZ4HC_init (ctxPtr, (const BYTE*) source);

    /* Check overflow */
    if ((size_t)(ctxPtr->end - ctxPtr->base) > 2 GB) {
        size_t dictSize = (size_t)(ctxPtr->end - ctxPtr->base) - ctxPtr->dictLimit;
        if (dictSize > 64 KB) dictSize = 64 KB;
        LZ4_loadDictHC(LZ4_streamHCPtr, (const char*)(ctxPtr->end) - dictSize, (int)dictSize);
    }

    /* Check if blocks follow each other */
    if ((const BYTE*)source != ctxPtr->end) LZ4HC_setExternalDict(ctxPtr, (const BYTE*)source);

    /* Check overlapping input/dictionary space */
    {   const BYTE* sourceEnd = (const BYTE*) source + inputSize;
        const BYTE* const dictBegin = ctxPtr->dictBase + ctxPtr->lowLimit;
        const BYTE* const dictEnd   = ctxPtr->dictBase + ctxPtr->dictLimit;
        if ((sourceEnd > dictBegin) && ((const BYTE*)source < dictEnd)) {
            if (sourceEnd > dictEnd) sourceEnd = dictEnd;
            ctxPtr->lowLimit = (U32)(sourceEnd - ctxPtr->dictBase);
            if (ctxPtr->dictLimit - ctxPtr->lowLimit < 4) ctxPtr->lowLimit = ctxPtr->dictLimit;
        }
    }

    return LZ4HC_compress_generic (ctxPtr, source, dest, inputSize, maxOutputSize, ctxPtr->compressionLevel, limit);
}

int LZ4_compress_HC_continue (LZ4_streamHC_t* LZ4_streamHCPtr, const char* source, char* dest, int inputSize, int maxOutputSize)
{
    if (maxOutputSize < LZ4_compressBound(inputSize))
        return LZ4_compressHC_continue_generic (LZ4_streamHCPtr, source, dest, inputSize, maxOutputSize, limitedOutput);
    else
        return LZ4_compressHC_continue_generic (LZ4_streamHCPtr, source, dest, inputSize, maxOutputSize, noLimit);
}


/* dictionary saving */

int LZ4_saveDictHC (LZ4_streamHC_t* LZ4_streamHCPtr, char* safeBuffer, int dictSize)
{
    LZ4HC_CCtx_internal* const streamPtr = &LZ4_streamHCPtr->internal_donotuse;
    int const prefixSize = (int)(streamPtr->end - (streamPtr->base + streamPtr->dictLimit));
    if (dictSize > 64 KB) dictSize = 64 KB;
    if (dictSize < 4) dictSize = 0;
    if (dictSize > prefixSize) dictSize = prefixSize;
    memmove(safeBuffer, streamPtr->end - dictSize, dictSize);
    {   U32 const endIndex = (U32)(streamPtr->end - streamPtr->base);
        streamPtr->end = (const BYTE*)safeBuffer + dictSize;
        streamPtr->base = streamPtr->end - endIndex;
        streamPtr->dictLimit = endIndex - dictSize;
        streamPtr->lowLimit = endIndex - dictSize;
        if (streamPtr->nextToUpdate < streamPtr->dictLimit) streamPtr->nextToUpdate = streamPtr->dictLimit;
    }
    return dictSize;
}


/***********************************
*  Deprecated Functions
***********************************/
/* These functions currently generate deprecation warnings */
/* Deprecated compression functions */
int LZ4_compressHC(const char* src, char* dst, int srcSize) { return LZ4_compress_HC (src, dst, srcSize, LZ4_compressBound(srcSize), 0); }
int LZ4_compressHC_limitedOutput(const char* src, char* dst, int srcSize, int maxDstSize) { return LZ4_compress_HC(src, dst, srcSize, maxDstSize, 0); }
int LZ4_compressHC2(const char* src, char* dst, int srcSize, int cLevel) { return LZ4_compress_HC (src, dst, srcSize, LZ4_compressBound(srcSize), cLevel); }
int LZ4_compressHC2_limitedOutput(const char* src, char* dst, int srcSize, int maxDstSize, int cLevel) { return LZ4_compress_HC(src, dst, srcSize, maxDstSize, cLevel); }
int LZ4_compressHC_withStateHC (void* state, const char* src, char* dst, int srcSize) { return LZ4_compress_HC_extStateHC (state, src, dst, srcSize, LZ4_compressBound(srcSize), 0); }
int LZ4_compressHC_limitedOutput_withStateHC (void* state, const char* src, char* dst, int srcSize, int maxDstSize) { return LZ4_compress_HC_extStateHC (state, src, dst, srcSize, maxDstSize, 0); }
int LZ4_compressHC2_withStateHC (void* state, const char* src, char* dst, int srcSize, int cLevel) { return LZ4_compress_HC_extStateHC(state, src, dst, srcSize, LZ4_compressBound(srcSize), cLevel); }
int LZ4_compressHC2_limitedOutput_withStateHC (void* state, const char* src, char* dst, int srcSize, int maxDstSize, int cLevel) { return LZ4_compress_HC_extStateHC(state, src, dst, srcSize, maxDstSize, cLevel); }
int LZ4_compressHC_continue (LZ4_streamHC_t* ctx, const char* src, char* dst, int srcSize) { return LZ4_compress_HC_continue (ctx, src, dst, srcSize, LZ4_compressBound(srcSize)); }
int LZ4_compressHC_limitedOutput_continue (LZ4_streamHC_t* ctx, const char* src, char* dst, int srcSize, int maxDstSize) { return LZ4_compress_HC_continue (ctx, src, dst, srcSize, maxDstSize); }


/* Deprecated streaming functions */
int LZ4_sizeofStreamStateHC(void) { return LZ4_STREAMHCSIZE; }

int LZ4_resetStreamStateHC(void* state, char* inputBuffer)
{
    LZ4HC_CCtx_internal *ctx = &((LZ4_streamHC_t*)state)->internal_donotuse;
    if ((((size_t)state) & (sizeof(void*)-1)) != 0) return 1;   /* Error : pointer is not aligned for pointer (32 or 64 bits) */
    LZ4HC_init(ctx, (const BYTE*)inputBuffer);
    ctx->inputBuffer = (BYTE*)inputBuffer;
    return 0;
}

void* LZ4_createHC (char* inputBuffer)
{
    LZ4_streamHC_t* hc4 = (LZ4_streamHC_t*)ALLOCATOR(1, sizeof(LZ4_streamHC_t));
    if (hc4 == NULL) return NULL;   /* not enough memory */
    LZ4HC_init (&hc4->internal_donotuse, (const BYTE*)inputBuffer);
    hc4->internal_donotuse.inputBuffer = (BYTE*)inputBuffer;
    return hc4;
}

int LZ4_freeHC (void* LZ4HC_Data) { FREEMEM(LZ4HC_Data); return 0; }

int LZ4_compressHC2_continue (void* LZ4HC_Data, const char* source, char* dest, int inputSize, int compressionLevel)
{
    return LZ4HC_compress_generic (&((LZ4_streamHC_t*)LZ4HC_Data)->internal_donotuse, source, dest, inputSize, 0, compressionLevel, noLimit);
}

int LZ4_compressHC2_limitedOutput_continue (void* LZ4HC_Data, const char* source, char* dest, int inputSize, int maxOutputSize, int compressionLevel)
{
    return LZ4HC_compress_generic (&((LZ4_streamHC_t*)LZ4HC_Data)->internal_donotuse, source, dest, inputSize, maxOutputSize, compressionLevel, limitedOutput);
}

char* LZ4_slideInputBufferHC(void* LZ4HC_Data)
{
    LZ4HC_CCtx_internal* const hc4 = &((LZ4_streamHC_t*)LZ4HC_Data)->internal_donotuse;
    int const dictSize = LZ4_saveDictHC((LZ4_streamHC_t*)LZ4HC_Data, (char*)(hc4->inputBuffer), 64 KB);
    return (char*)(hc4->inputBuffer + dictSize);
}