/* * Copyright (c) 2017 Richard Palethorpe <rpalethorpe@suse.com> * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ /* * Fuzzy Synchronisation - abreviated to fzsync * * This library is intended to help reproduce race conditions by providing two * thread synchronisation mechanisms. The first is a 'checkpoint' system where * each thread will wait indefinitely for the other to enter a checkpoint * before continuing. This is acheived by calling tst_fzsync_wait() and/or * tst_fzsync_wait_update() at the points you want to synchronise in each * thread. This is functionally very similar to using pthread_barrier_wait() * with two threads. However tst_fzsync_wait() can be inlined and is * guaranteed not to call sleep or futex. * * The second takes the form a of a delay which is calculated by measuring the * time difference between two points in each thread and comparing it to the * desired difference (default is zero). Using a delay allows you to * synchronise the threads at a point outside of your direct control * (e.g. inside the kernel) or just increase the accuracy for the first * mechanism. It is acheived using tst_fzsync_delay_{a,b}(), * tst_fzsync_time_{a,b}() and tst_fzsync[_wait_]update(). * * For a usage example see testcases/cve/cve-2016-7117.c or just run * 'git grep tst_fuzzy_sync.h' */ #include <sys/time.h> #include <time.h> #include <math.h> #include "tst_atomic.h" #ifndef CLOCK_MONOTONIC_RAW # define CLOCK_MONOTONIC_RAW CLOCK_MONOTONIC #endif /** * struct tst_fzsync_pair - the state of a two way synchronisation * @avg_diff: Internal; the average time difference over multiple iterations. * @avg_diff_trgt: The desired average time difference, defaults to 0. * @avg_alpha: The rate at which old diff samples are forgotten, * defaults to 0.25. * @avg_dev: Internal; Absolute average deviation. * @a: Internal; The time at which call site A was last passed. * @b: Internal; The time at which call site B was last passed. * @delay: Internal; The size of the delay, positive to delay A, * negative to delay B. * @delay_inc: The step size of a delay increment, defaults to 1. * @update_gap: The number of iterations between recalculating the delay. * Defaults to 0xF and must be of the form $2^n - 1$ * @info_gap: The number of iterations between printing some statistics. * Defaults to 0x7FFFF and must also be one less than a power of 2. * @a_cntr: Internal; Atomic counter used by fzsync_pair_wait() * @b_cntr: Internal; Atomic counter used by fzsync_pair_wait() * @exit: Internal; Used by tst_fzsync_pair_exit() and fzsync_pair_wait() * * This contains all the necessary state for synchronising two points A and * B. Where A is the time of an event in one process and B is the time of an * event in another process. * * Internal fields should only be accessed by library functions. */ struct tst_fzsync_pair { float avg_diff; float avg_diff_trgt; float avg_alpha; float avg_dev; struct timespec a; struct timespec b; long delay; long delay_inc; int update_gap; int info_gap; int a_cntr; int b_cntr; int exit; }; /** * TST_FZSYNC_PAIR_INIT - Default values for struct tst_fzysnc_pair */ #define TST_FZSYNC_PAIR_INIT { \ .avg_alpha = 0.25, \ .delay_inc = 1, \ .update_gap = 0xF, \ .info_gap = 0x7FFFF \ } /** * tst_fzsync_pair_info - Print some synchronisation statistics */ static void tst_fzsync_pair_info(struct tst_fzsync_pair *pair) { tst_res(TINFO, "avg_diff = %.0fns, avg_dev = %.0fns, delay = %05ld loops", pair->avg_diff, pair->avg_dev, pair->delay); } /** * tst_fzsync_delay_a - Perform spin delay for A, if needed * * Usually called just before the point you want to synchronise. */ static inline void tst_fzsync_delay_a(struct tst_fzsync_pair *pair) { volatile long spin_delay = pair->delay; while (spin_delay > 0) spin_delay--; } /** * tst_fzsync_delay_b - Perform spin delay for B, if needed * * Usually called just before the point you want to synchronise. */ static inline void tst_fzsync_delay_b(struct tst_fzsync_pair *pair) { volatile long spin_delay = pair->delay; while (spin_delay < 0) spin_delay++; } static inline void tst_fzsync_time(struct timespec *t) { clock_gettime(CLOCK_MONOTONIC_RAW, t); } /** * tst_fzsync_time_a - Set A's time to now. * * Called at the point you want to synchronise. */ static inline void tst_fzsync_time_a(struct tst_fzsync_pair *pair) { tst_fzsync_time(&pair->a); } /** * tst_fzsync_time_b - Set B's call time to now. * * Called at the point you want to synchronise. */ static inline void tst_fzsync_time_b(struct tst_fzsync_pair *pair) { tst_fzsync_time(&pair->b); } /** * tst_exp_moving_avg - Exponential moving average * @alpha: The preference for recent samples over old ones. * @sample: The current sample * @prev_avg: The average of the all the previous samples * * Returns average including the current sample. */ static inline float tst_exp_moving_avg(float alpha, float sample, float prev_avg) { return alpha * sample + (1.0 - alpha) * prev_avg; } /** * tst_fzsync_pair_update - Recalculate the delay * @loop_index: The i in "for(i = 0;..." or zero to ignore update_gap * @pair: The state necessary for calculating the delay * * This should be called at the end of each loop to update the average * measured time difference (between A and B) and update the delay. It is * assumed that A and B are less than a second apart. * * The values of update_gap, avg_alpha and delay_inc decide the speed at which * the algorithm approaches the optimum delay value and whether it is * stable. If your test is behaving strangely, it could be because this * algorithm is behaving chaotically and flip-flopping between large positve * and negative delay values. You can call tst_fzysync_pair_info every few * loops to check whether the average difference and delay values are stable. */ static void tst_fzsync_pair_update(int loop_index, struct tst_fzsync_pair *pair) { long diff; long inc = pair->delay_inc; float target = pair->avg_diff_trgt; float avg = pair->avg_diff; diff = pair->a.tv_nsec - pair->b.tv_nsec + 1000000000 * (pair->a.tv_sec - pair->b.tv_sec); avg = tst_exp_moving_avg(pair->avg_alpha, diff, avg); pair->avg_dev = tst_exp_moving_avg(pair->avg_alpha, fabs(diff - avg), pair->avg_dev); if (!(loop_index & pair->update_gap)) { if (avg > target) pair->delay -= inc; else if (avg < target) pair->delay += inc; } if (!(loop_index & pair->info_gap)) tst_fzsync_pair_info(pair); pair->avg_diff = avg; } /** * tst_fzsync_pair_wait - Wait for the other thread * @our_cntr: The counter for the thread we are on * @other_cntr: The counter for the thread we are synchronising with * * Use this (through tst_fzsync_pair_wait_a() and tst_fzsync_pair_wait_b()) if * you need an additional synchronisation point in a thread or you do not want * to use the delay facility (not recommended). See * tst_fzsync_pair_wait_update(). * * Returns a non-zero value if the thread should continue otherwise the * calling thread should exit. */ static inline int tst_fzsync_pair_wait(struct tst_fzsync_pair *pair, int *our_cntr, int *other_cntr) { if (tst_atomic_inc(other_cntr) == INT_MAX) { /* * We are about to break the invariant that the thread with * the lowest count is in front of the other. So we must wait * here to ensure the other thread has atleast reached the * line above before doing that. If we are in rear position * then our counter may already have been set to zero. */ while (tst_atomic_load(our_cntr) > 0 && tst_atomic_load(our_cntr) < INT_MAX && !tst_atomic_load(&pair->exit)) ; tst_atomic_store(0, other_cntr); /* * Once both counters have been set to zero the invariant * is restored and we can continue. */ while (tst_atomic_load(our_cntr) > 1 && !tst_atomic_load(&pair->exit)) ; } else { /* * If our counter is less than the other thread's we are ahead * of it and need to wait. */ while (tst_atomic_load(our_cntr) < tst_atomic_load(other_cntr) && !tst_atomic_load(&pair->exit)) ; } /* Only exit if we have done the same amount of work as the other thread */ return !tst_atomic_load(&pair->exit) || tst_atomic_load(other_cntr) <= tst_atomic_load(our_cntr); } static inline int tst_fzsync_wait_a(struct tst_fzsync_pair *pair) { return tst_fzsync_pair_wait(pair, &pair->a_cntr, &pair->b_cntr); } static inline int tst_fzsync_wait_b(struct tst_fzsync_pair *pair) { return tst_fzsync_pair_wait(pair, &pair->b_cntr, &pair->a_cntr); } /** * tst_fzsync_pair_wait_update_{a,b} - Wait and then recalculate * * This allows you to have two long running threads which wait for each other * every iteration. So each thread will exit this function at approximately * the same time. It also updates the delay values in a thread safe manner. * * You must call this function in both threads the same number of times each * iteration. So a call in one thread must match with a call in the * other. Make sure that calls to tst_fzsync_pair_wait() and * tst_fzsync_pair_wait_update() happen in the same order in each thread. That * is, make sure that a call to tst_fzsync_pair_wait_update_a() in one thread * corresponds to a call to tst_fzsync_pair_wait_update_b() in the other. * * Returns a non-zero value if the calling thread should continue to loop. If * it returns zero then tst_fzsync_exit() has been called and you must exit * the thread. */ static inline int tst_fzsync_wait_update_a(struct tst_fzsync_pair *pair) { static int loop_index; tst_fzsync_pair_wait(pair, &pair->a_cntr, &pair->b_cntr); loop_index++; tst_fzsync_pair_update(loop_index, pair); return tst_fzsync_pair_wait(pair, &pair->a_cntr, &pair->b_cntr); } static inline int tst_fzsync_wait_update_b(struct tst_fzsync_pair *pair) { tst_fzsync_pair_wait(pair, &pair->b_cntr, &pair->a_cntr); return tst_fzsync_pair_wait(pair, &pair->b_cntr, &pair->a_cntr); } /** * tst_fzsync_pair_exit - Signal that the other thread should exit * * Causes tst_fzsync_pair_wait() and tst_fzsync_pair_wait_update() to return * 0. */ static inline void tst_fzsync_pair_exit(struct tst_fzsync_pair *pair) { tst_atomic_store(1, &pair->exit); }