; Test merging of blocks with phi nodes. ; ; RUN: opt < %s -simplifycfg -S > %t ; RUN: not grep N: %t ; RUN: not grep X: %t ; RUN: not grep 'switch i32[^U]+%U' %t ; RUN: not grep "^BB.tomerge" %t ; RUN: grep "^BB.nomerge" %t | count 4 ; ; ModuleID = '<stdin>' declare i1 @foo() declare i1 @bar(i32) define i32 @test(i1 %a) { Q: br i1 %a, label %N, label %M N: ; preds = %Q br label %M M: ; preds = %N, %Q ; It's ok to merge N and M because the incoming values for W are the ; same for both cases... %W = phi i32 [ 2, %N ], [ 2, %Q ] ; <i32> [#uses=1] %R = add i32 %W, 1 ; <i32> [#uses=1] ret i32 %R } ; Test merging of blocks with phi nodes where at least one incoming value ; in the successor is undef. define i8 @testundef(i32 %u) { R: switch i32 %u, label %U [ i32 0, label %S i32 1, label %T i32 2, label %T ] S: ; preds = %R br label %U T: ; preds = %R, %R br label %U U: ; preds = %T, %S, %R ; We should be able to merge either the S or T block into U by rewriting ; R's incoming value with the incoming value of that predecessor since ; R's incoming value is undef and both of those predecessors are simple ; unconditional branches. %val.0 = phi i8 [ undef, %R ], [ 1, %T ], [ 0, %S ] ret i8 %val.0 } ; Test merging of blocks with phi nodes where at least one incoming value ; in the successor is undef. define i8 @testundef2(i32 %u, i32* %A) { V: switch i32 %u, label %U [ i32 0, label %W i32 1, label %X i32 2, label %X i32 3, label %Z ] W: ; preds = %V br label %U Z: store i32 0, i32* %A, align 4 br label %X X: ; preds = %V, %V, %Z br label %U U: ; preds = %X, %W, %V ; We should be able to merge either the W or X block into U by rewriting ; V's incoming value with the incoming value of that predecessor since ; V's incoming value is undef and both of those predecessors are simple ; unconditional branches. Note that X has predecessors beyond ; the direct predecessors of U. %val.0 = phi i8 [ undef, %V ], [ 1, %X ], [ 1, %W ] ret i8 %val.0 } define i8 @testmergesome(i32 %u, i32* %A) { V: switch i32 %u, label %Y [ i32 0, label %W i32 1, label %X i32 2, label %X i32 3, label %Z ] W: ; preds = %V store i32 1, i32* %A, align 4 br label %Y Z: store i32 0, i32* %A, align 4 br label %X X: ; preds = %V, %Z br label %Y Y: ; preds = %X, %W, %V ; After merging X into Y, we should have 5 predecessors ; and thus 5 incoming values to the phi. %val.0 = phi i8 [ 1, %V ], [ 1, %X ], [ 2, %W ] ret i8 %val.0 } define i8 @testmergesome2(i32 %u, i32* %A) { V: switch i32 %u, label %W [ i32 0, label %W i32 1, label %Y i32 2, label %X i32 4, label %Y ] W: ; preds = %V store i32 1, i32* %A, align 4 br label %Y X: ; preds = %V, %Z br label %Y Y: ; preds = %X, %W, %V ; Ensure that we deal with both undef inputs for V when we merge in X. %val.0 = phi i8 [ undef, %V ], [ 1, %X ], [ 2, %W ], [ undef, %V ] ret i8 %val.0 } ; This function can't be merged define void @a() { entry: br label %BB.nomerge BB.nomerge: ; preds = %Common, %entry ; This phi has a conflicting value (0) with below phi (2), so blocks ; can't be merged. %a = phi i32 [ 1, %entry ], [ 0, %Common ] ; <i32> [#uses=1] br label %Succ Succ: ; preds = %Common, %BB.nomerge %b = phi i32 [ %a, %BB.nomerge ], [ 2, %Common ] ; <i32> [#uses=0] %conde = call i1 @foo( ) ; <i1> [#uses=1] br i1 %conde, label %Common, label %Exit Common: ; preds = %Succ %cond = call i1 @foo( ) ; <i1> [#uses=1] br i1 %cond, label %BB.nomerge, label %Succ Exit: ; preds = %Succ ret void } ; This function can't be merged define void @b() { entry: br label %BB.nomerge BB.nomerge: ; preds = %Common, %entry br label %Succ Succ: ; preds = %Common, %BB.nomerge ; This phi has confliction values for Common and (through BB) Common, ; blocks can't be merged %b = phi i32 [ 1, %BB.nomerge ], [ 2, %Common ] ; <i32> [#uses=0] %conde = call i1 @foo( ) ; <i1> [#uses=1] br i1 %conde, label %Common, label %Exit Common: ; preds = %Succ %cond = call i1 @foo( ) ; <i1> [#uses=1] br i1 %cond, label %BB.nomerge, label %Succ Exit: ; preds = %Succ ret void } ; This function can't be merged (for keeping canonical loop structures) define void @c() { entry: br label %BB.nomerge BB.nomerge: ; preds = %Common, %entry br label %Succ Succ: ; preds = %Common, %BB.tomerge, %Pre-Exit ; This phi has identical values for Common and (through BB) Common, ; blocks can't be merged %b = phi i32 [ 1, %BB.nomerge ], [ 1, %Common ], [ 2, %Pre-Exit ] %conde = call i1 @foo( ) ; <i1> [#uses=1] br i1 %conde, label %Common, label %Pre-Exit Common: ; preds = %Succ %cond = call i1 @foo( ) ; <i1> [#uses=1] br i1 %cond, label %BB.nomerge, label %Succ Pre-Exit: ; preds = %Succ ; This adds a backedge, so the %b phi node gets a third branch and is ; not completely trivial %cond2 = call i1 @foo( ) ; <i1> [#uses=1] br i1 %cond2, label %Succ, label %Exit Exit: ; preds = %Pre-Exit ret void } ; This function can't be merged (for keeping canonical loop structures) define void @d() { entry: br label %BB.nomerge BB.nomerge: ; preds = %Common, %entry ; This phi has a matching value (0) with below phi (0), so blocks ; can be merged. %a = phi i32 [ 1, %entry ], [ 0, %Common ] ; <i32> [#uses=1] br label %Succ Succ: ; preds = %Common, %BB.tomerge %b = phi i32 [ %a, %BB.nomerge ], [ 0, %Common ] ; <i32> [#uses=0] %conde = call i1 @foo( ) ; <i1> [#uses=1] br i1 %conde, label %Common, label %Exit Common: ; preds = %Succ %cond = call i1 @foo( ) ; <i1> [#uses=1] br i1 %cond, label %BB.nomerge, label %Succ Exit: ; preds = %Succ ret void } ; This function can be merged define void @e() { entry: br label %Succ Succ: ; preds = %Use, %entry ; This phi is used somewhere else than Succ, but this should not prevent ; merging this block %a = phi i32 [ 1, %entry ], [ 0, %Use ] ; <i32> [#uses=1] br label %BB.tomerge BB.tomerge: ; preds = %Succ %conde = call i1 @foo( ) ; <i1> [#uses=1] br i1 %conde, label %Use, label %Exit Use: ; preds = %Succ %cond = call i1 @bar( i32 %a ) ; <i1> [#uses=1] br i1 %cond, label %Succ, label %Exit Exit: ; preds = %Use, %Succ ret void }