; RUN: llc -march=amdgcn -verify-machineinstrs < %s | FileCheck %s ; RUN: llc -march=amdgcn -mcpu=tonga -verify-machineinstrs < %s | FileCheck %s ; Tests for indirect addressing on SI, which is implemented using dynamic ; indexing of vectors. ; CHECK-LABEL: {{^}}extract_w_offset: ; CHECK-DAG: v_mov_b32_e32 v{{[0-9]+}}, 4.0 ; CHECK-DAG: v_mov_b32_e32 v{{[0-9]+}}, 0x40400000 ; CHECK-DAG: v_mov_b32_e32 v{{[0-9]+}}, 2.0 ; CHECK-DAG: v_mov_b32_e32 v{{[0-9]+}}, 1.0 ; CHECK: s_mov_b32 m0 ; CHECK-NEXT: v_movrels_b32_e32 define void @extract_w_offset(float addrspace(1)* %out, i32 %in) { entry: %idx = add i32 %in, 1 %elt = extractelement <4 x float> <float 1.0, float 2.0, float 3.0, float 4.0>, i32 %idx store float %elt, float addrspace(1)* %out ret void } ; XXX: Could do v_or_b32 directly ; CHECK-LABEL: {{^}}extract_w_offset_salu_use_vector: ; CHECK-DAG: s_or_b32 ; CHECK-DAG: s_or_b32 ; CHECK-DAG: s_or_b32 ; CHECK-DAG: s_or_b32 ; CHECK-DAG: v_mov_b32_e32 v{{[0-9]+}}, s{{[0-9]+}} ; CHECK-DAG: v_mov_b32_e32 v{{[0-9]+}}, s{{[0-9]+}} ; CHECK-DAG: v_mov_b32_e32 v{{[0-9]+}}, s{{[0-9]+}} ; CHECK-DAG: v_mov_b32_e32 v{{[0-9]+}}, s{{[0-9]+}} ; CHECK: s_mov_b32 m0 ; CHECK-NEXT: v_movrels_b32_e32 define void @extract_w_offset_salu_use_vector(i32 addrspace(1)* %out, i32 %in, <4 x i32> %or.val) { entry: %idx = add i32 %in, 1 %vec = or <4 x i32> %or.val, <i32 1, i32 2, i32 3, i32 4> %elt = extractelement <4 x i32> %vec, i32 %idx store i32 %elt, i32 addrspace(1)* %out ret void } ; CHECK-LABEL: {{^}}extract_wo_offset: ; CHECK-DAG: v_mov_b32_e32 v{{[0-9]+}}, 4.0 ; CHECK-DAG: v_mov_b32_e32 v{{[0-9]+}}, 0x40400000 ; CHECK-DAG: v_mov_b32_e32 v{{[0-9]+}}, 2.0 ; CHECK-DAG: v_mov_b32_e32 v{{[0-9]+}}, 1.0 ; CHECK: s_mov_b32 m0 ; CHECK-NEXT: v_movrels_b32_e32 define void @extract_wo_offset(float addrspace(1)* %out, i32 %in) { entry: %elt = extractelement <4 x float> <float 1.0, float 2.0, float 3.0, float 4.0>, i32 %in store float %elt, float addrspace(1)* %out ret void } ; CHECK-LABEL: {{^}}extract_neg_offset_sgpr: ; The offset depends on the register that holds the first element of the vector. ; CHECK: s_add_i32 m0, s{{[0-9]+}}, 0xfffffe{{[0-9a-z]+}} ; CHECK: v_movrels_b32_e32 v{{[0-9]}}, v0 define void @extract_neg_offset_sgpr(i32 addrspace(1)* %out, i32 %offset) { entry: %index = add i32 %offset, -512 %value = extractelement <4 x i32> <i32 0, i32 1, i32 2, i32 3>, i32 %index store i32 %value, i32 addrspace(1)* %out ret void } ; CHECK-LABEL: {{^}}extract_neg_offset_sgpr_loaded: ; The offset depends on the register that holds the first element of the vector. ; CHECK: s_add_i32 m0, s{{[0-9]+}}, 0xfffffe{{[0-9a-z]+}} ; CHECK: v_movrels_b32_e32 v{{[0-9]}}, v0 define void @extract_neg_offset_sgpr_loaded(i32 addrspace(1)* %out, <4 x i32> %vec0, <4 x i32> %vec1, i32 %offset) { entry: %index = add i32 %offset, -512 %or = or <4 x i32> %vec0, %vec1 %value = extractelement <4 x i32> %or, i32 %index store i32 %value, i32 addrspace(1)* %out ret void } ; CHECK-LABEL: {{^}}extract_neg_offset_vgpr: ; The offset depends on the register that holds the first element of the vector. ; CHECK: v_readfirstlane_b32 ; CHECK: s_add_i32 m0, m0, 0xfffffe{{[0-9a-z]+}} ; CHECK-NEXT: v_movrels_b32_e32 v{{[0-9]}}, v0 ; CHECK: s_cbranch_execnz define void @extract_neg_offset_vgpr(i32 addrspace(1)* %out) { entry: %id = call i32 @llvm.amdgcn.workitem.id.x() #1 %index = add i32 %id, -512 %value = extractelement <4 x i32> <i32 0, i32 1, i32 2, i32 3>, i32 %index store i32 %value, i32 addrspace(1)* %out ret void } ; CHECK-LABEL: {{^}}extract_undef_offset_sgpr: define void @extract_undef_offset_sgpr(i32 addrspace(1)* %out, <4 x i32> addrspace(1)* %in) { entry: %ld = load volatile <4 x i32>, <4 x i32> addrspace(1)* %in %value = extractelement <4 x i32> %ld, i32 undef store i32 %value, i32 addrspace(1)* %out ret void } ; CHECK-LABEL: {{^}}insert_undef_offset_sgpr_vector_src: ; CHECK: buffer_load_dwordx4 ; CHECK: s_mov_b32 m0, ; CHECK-NEXT: v_movreld_b32 define void @insert_undef_offset_sgpr_vector_src(<4 x i32> addrspace(1)* %out, <4 x i32> addrspace(1)* %in) { entry: %ld = load <4 x i32>, <4 x i32> addrspace(1)* %in %value = insertelement <4 x i32> %ld, i32 5, i32 undef store <4 x i32> %value, <4 x i32> addrspace(1)* %out ret void } ; CHECK-LABEL: {{^}}insert_w_offset: ; CHECK: s_mov_b32 m0 ; CHECK-NEXT: v_movreld_b32_e32 define void @insert_w_offset(float addrspace(1)* %out, i32 %in) { entry: %0 = add i32 %in, 1 %1 = insertelement <4 x float> <float 1.0, float 2.0, float 3.0, float 4.0>, float 5.0, i32 %0 %2 = extractelement <4 x float> %1, i32 2 store float %2, float addrspace(1)* %out ret void } ; CHECK-LABEL: {{^}}insert_wo_offset: ; CHECK: s_mov_b32 m0 ; CHECK-NEXT: v_movreld_b32_e32 define void @insert_wo_offset(float addrspace(1)* %out, i32 %in) { entry: %0 = insertelement <4 x float> <float 1.0, float 2.0, float 3.0, float 4.0>, float 5.0, i32 %in %1 = extractelement <4 x float> %0, i32 2 store float %1, float addrspace(1)* %out ret void } ; CHECK-LABEL: {{^}}insert_neg_offset_sgpr: ; The offset depends on the register that holds the first element of the vector. ; CHECK: s_add_i32 m0, s{{[0-9]+}}, 0xfffffe{{[0-9a-z]+}} ; CHECK: v_movreld_b32_e32 v0, v{{[0-9]}} define void @insert_neg_offset_sgpr(i32 addrspace(1)* %in, <4 x i32> addrspace(1)* %out, i32 %offset) { entry: %index = add i32 %offset, -512 %value = insertelement <4 x i32> <i32 0, i32 1, i32 2, i32 3>, i32 5, i32 %index store <4 x i32> %value, <4 x i32> addrspace(1)* %out ret void } ; The vector indexed into is originally loaded into an SGPR rather ; than built with a reg_sequence ; CHECK-LABEL: {{^}}insert_neg_offset_sgpr_loadreg: ; The offset depends on the register that holds the first element of the vector. ; CHECK: s_add_i32 m0, s{{[0-9]+}}, 0xfffffe{{[0-9a-z]+}} ; CHECK: v_movreld_b32_e32 v0, v{{[0-9]}} define void @insert_neg_offset_sgpr_loadreg(i32 addrspace(1)* %in, <4 x i32> addrspace(1)* %out, <4 x i32> %vec, i32 %offset) { entry: %index = add i32 %offset, -512 %value = insertelement <4 x i32> %vec, i32 5, i32 %index store <4 x i32> %value, <4 x i32> addrspace(1)* %out ret void } ; CHECK-LABEL: {{^}}insert_neg_offset_vgpr: ; The offset depends on the register that holds the first element of the vector. ; CHECK: v_readfirstlane_b32 ; CHECK: s_add_i32 m0, m0, 0xfffffe{{[0-9a-z]+}} ; CHECK-NEXT: v_movreld_b32_e32 v0, v{{[0-9]}} ; CHECK: s_cbranch_execnz define void @insert_neg_offset_vgpr(i32 addrspace(1)* %in, <4 x i32> addrspace(1)* %out) { entry: %id = call i32 @llvm.amdgcn.workitem.id.x() #1 %index = add i32 %id, -512 %value = insertelement <4 x i32> <i32 0, i32 1, i32 2, i32 3>, i32 5, i32 %index store <4 x i32> %value, <4 x i32> addrspace(1)* %out ret void } ; CHECK-LABEL: {{^}}insert_neg_inline_offset_vgpr: ; The offset depends on the register that holds the first element of the vector. ; CHECK: v_readfirstlane_b32 ; CHECK: s_add_i32 m0, m0, -{{[0-9]+}} ; CHECK-NEXT: v_movreld_b32_e32 v0, v{{[0-9]}} ; CHECK: s_cbranch_execnz define void @insert_neg_inline_offset_vgpr(i32 addrspace(1)* %in, <4 x i32> addrspace(1)* %out) { entry: %id = call i32 @llvm.amdgcn.workitem.id.x() #1 %index = add i32 %id, -16 %value = insertelement <4 x i32> <i32 0, i32 1, i32 2, i32 3>, i32 5, i32 %index store <4 x i32> %value, <4 x i32> addrspace(1)* %out ret void } ; When the block is split to insert the loop, make sure any other ; places that need to be expanded in the same block are also handled. ; CHECK-LABEL: {{^}}extract_vgpr_offset_multiple_in_block: ; CHECK-DAG: {{buffer|flat}}_load_dword [[IDX0:v[0-9]+]] ; CHECK-DAG: s_mov_b32 [[S_ELT0:s[0-9]+]], 7 ; CHECK-DAG: s_mov_b32 [[S_ELT1:s[0-9]+]], 9 ; CHECK-DAG: v_mov_b32_e32 [[VEC_ELT0:v[0-9]+]], [[S_ELT0]] ; CHECK-DAG: v_mov_b32_e32 [[VEC_ELT1:v[0-9]+]], [[S_ELT1]] ; CHECK: s_waitcnt vmcnt(0) ; CHECK: s_mov_b64 [[MASK:s\[[0-9]+:[0-9]+\]]], exec ; CHECK: [[LOOP0:BB[0-9]+_[0-9]+]]: ; CHECK: v_readfirstlane_b32 vcc_lo, [[IDX0]] ; CHECK: s_mov_b32 m0, vcc_lo ; CHECK: v_cmp_eq_u32_e32 vcc, m0, [[IDX0]] ; CHECK: s_and_saveexec_b64 vcc, vcc ; CHECK-NEXT: v_movrels_b32_e32 [[MOVREL0:v[0-9]+]], [[VEC_ELT0]] ; CHECK-NEXT: s_xor_b64 exec, exec, vcc ; CHECK: s_cbranch_execnz [[LOOP0]] ; FIXME: Redundant copy ; CHECK: s_mov_b64 exec, [[MASK]] ; CHECK: s_mov_b64 [[MASK2:s\[[0-9]+:[0-9]+\]]], exec ; CHECK: [[LOOP1:BB[0-9]+_[0-9]+]]: ; CHECK: v_readfirstlane_b32 vcc_lo, [[IDX0]] ; CHECK: s_mov_b32 m0, vcc_lo ; CHECK: v_cmp_eq_u32_e32 vcc, m0, [[IDX0]] ; CHECK: s_and_saveexec_b64 vcc, vcc ; CHECK-NEXT: v_movrels_b32_e32 [[MOVREL1:v[0-9]+]], [[VEC_ELT1]] ; CHECK-NEXT: s_xor_b64 exec, exec, vcc ; CHECK: s_cbranch_execnz [[LOOP1]] ; CHECK: buffer_store_dword [[MOVREL0]] ; CHECK: buffer_store_dword [[MOVREL1]] define void @extract_vgpr_offset_multiple_in_block(i32 addrspace(1)* %out0, i32 addrspace(1)* %out1, i32 addrspace(1)* %in) #0 { entry: %id = call i32 @llvm.amdgcn.workitem.id.x() #1 %id.ext = zext i32 %id to i64 %gep = getelementptr inbounds i32, i32 addrspace(1)* %in, i64 %id.ext %idx0 = load volatile i32, i32 addrspace(1)* %gep %idx1 = add i32 %idx0, 1 %val0 = extractelement <4 x i32> <i32 7, i32 9, i32 11, i32 13>, i32 %idx0 %live.out.reg = call i32 asm sideeffect "s_mov_b32 $0, 17", "={SGPR4}" () %val1 = extractelement <4 x i32> <i32 7, i32 9, i32 11, i32 13>, i32 %idx1 store volatile i32 %val0, i32 addrspace(1)* %out0 store volatile i32 %val1, i32 addrspace(1)* %out0 %cmp = icmp eq i32 %id, 0 br i1 %cmp, label %bb1, label %bb2 bb1: store volatile i32 %live.out.reg, i32 addrspace(1)* undef br label %bb2 bb2: ret void } ; CHECK-LABEL: {{^}}insert_vgpr_offset_multiple_in_block: ; CHECK-DAG: s_load_dwordx4 s{{\[}}[[S_ELT0:[0-9]+]]:[[S_ELT3:[0-9]+]]{{\]}} ; CHECK-DAG: {{buffer|flat}}_load_dword [[IDX0:v[0-9]+]] ; CHECK-DAG: v_mov_b32_e32 [[VEC_ELT0:v[0-9]+]], s[[S_ELT0]] ; CHECK-DAG: v_mov_b32 [[INS0:v[0-9]+]], 62 ; CHECK-DAG: s_waitcnt vmcnt(0) ; CHECK: s_mov_b64 [[MASK:s\[[0-9]+:[0-9]+\]]], exec ; CHECK: [[LOOP0:BB[0-9]+_[0-9]+]]: ; CHECK: v_readfirstlane_b32 vcc_lo, [[IDX0]] ; CHECK: s_mov_b32 m0, vcc_lo ; CHECK: v_cmp_eq_u32_e32 vcc, m0, [[IDX0]] ; CHECK: s_and_saveexec_b64 vcc, vcc ; CHECK-NEXT: v_movreld_b32_e32 v[[MOVREL0:[0-9]+]], [[INS0]] ; CHECK-NEXT: s_xor_b64 exec, exec, vcc ; CHECK: s_cbranch_execnz [[LOOP0]] ; FIXME: Redundant copy ; CHECK: s_mov_b64 exec, [[MASK]] ; CHECK: v_mov_b32_e32 [[INS1:v[0-9]+]], 63 ; CHECK: s_mov_b64 [[MASK]], exec ; CHECK: [[LOOP1:BB[0-9]+_[0-9]+]]: ; CHECK: v_readfirstlane_b32 vcc_lo, [[IDX0]] ; CHECK: s_mov_b32 m0, vcc_lo ; CHECK: v_cmp_eq_u32_e32 vcc, m0, [[IDX0]] ; CHECK: s_and_saveexec_b64 vcc, vcc ; CHECK-NEXT: v_movreld_b32_e32 v[[MOVREL1:[0-9]+]], [[INS1]] ; CHECK-NEXT: s_xor_b64 exec, exec, vcc ; CHECK: s_cbranch_execnz [[LOOP1]] ; CHECK: buffer_store_dwordx4 v{{\[}}[[MOVREL0]]: ; CHECK: buffer_store_dword [[INS0]] define void @insert_vgpr_offset_multiple_in_block(<4 x i32> addrspace(1)* %out0, <4 x i32> addrspace(1)* %out1, i32 addrspace(1)* %in, <4 x i32> %vec0) #0 { entry: %id = call i32 @llvm.amdgcn.workitem.id.x() #1 %id.ext = zext i32 %id to i64 %gep = getelementptr inbounds i32, i32 addrspace(1)* %in, i64 %id.ext %idx0 = load volatile i32, i32 addrspace(1)* %gep %idx1 = add i32 %idx0, 1 %live.out.val = call i32 asm sideeffect "v_mov_b32 $0, 62", "=v"() %vec1 = insertelement <4 x i32> %vec0, i32 %live.out.val, i32 %idx0 %vec2 = insertelement <4 x i32> %vec1, i32 63, i32 %idx1 store volatile <4 x i32> %vec2, <4 x i32> addrspace(1)* %out0 %cmp = icmp eq i32 %id, 0 br i1 %cmp, label %bb1, label %bb2 bb1: store volatile i32 %live.out.val, i32 addrspace(1)* undef br label %bb2 bb2: ret void } ; CHECK-LABEL: {{^}}extract_adjacent_blocks: ; CHECK: s_load_dword [[ARG:s[0-9]+]] ; CHECK: s_cmp_lg_i32 ; CHECK: s_cbranch_scc0 [[BB4:BB[0-9]+_[0-9]+]] ; CHECK: buffer_load_dwordx4 ; CHECK: s_mov_b32 m0, ; CHECK: v_movrels_b32_e32 ; CHECK: s_branch [[ENDBB:BB[0-9]+_[0-9]+]] ; CHECK: [[BB4]]: ; CHECK: buffer_load_dwordx4 ; CHECK: s_mov_b32 m0, ; CHECK: v_movrels_b32_e32 ; CHECK: [[ENDBB]]: ; CHECK: buffer_store_dword ; CHECK: s_endpgm define void @extract_adjacent_blocks(i32 %arg) #0 { bb: %tmp = icmp eq i32 %arg, 0 br i1 %tmp, label %bb1, label %bb4 bb1: %tmp2 = load volatile <4 x float>, <4 x float> addrspace(1)* undef %tmp3 = extractelement <4 x float> %tmp2, i32 undef br label %bb7 bb4: %tmp5 = load volatile <4 x float>, <4 x float> addrspace(1)* undef %tmp6 = extractelement <4 x float> %tmp5, i32 undef br label %bb7 bb7: %tmp8 = phi float [ %tmp3, %bb1 ], [ %tmp6, %bb4 ] store volatile float %tmp8, float addrspace(1)* undef ret void } ; CHECK-LABEL: {{^}}insert_adjacent_blocks: ; CHECK: s_load_dword [[ARG:s[0-9]+]] ; CHECK: s_cmp_lg_i32 ; CHECK: s_cbranch_scc0 [[BB4:BB[0-9]+_[0-9]+]] ; CHECK: buffer_load_dwordx4 ; CHECK: s_mov_b32 m0, ; CHECK: v_movreld_b32_e32 ; CHECK: s_branch [[ENDBB:BB[0-9]+_[0-9]+]] ; CHECK: [[BB4]]: ; CHECK: buffer_load_dwordx4 ; CHECK: s_mov_b32 m0, ; CHECK: v_movreld_b32_e32 ; CHECK: [[ENDBB]]: ; CHECK: buffer_store_dword ; CHECK: s_endpgm define void @insert_adjacent_blocks(i32 %arg, float %val0) #0 { bb: %tmp = icmp eq i32 %arg, 0 br i1 %tmp, label %bb1, label %bb4 bb1: ; preds = %bb %tmp2 = load volatile <4 x float>, <4 x float> addrspace(1)* undef %tmp3 = insertelement <4 x float> %tmp2, float %val0, i32 undef br label %bb7 bb4: ; preds = %bb %tmp5 = load volatile <4 x float>, <4 x float> addrspace(1)* undef %tmp6 = insertelement <4 x float> %tmp5, float %val0, i32 undef br label %bb7 bb7: ; preds = %bb4, %bb1 %tmp8 = phi <4 x float> [ %tmp3, %bb1 ], [ %tmp6, %bb4 ] store volatile <4 x float> %tmp8, <4 x float> addrspace(1)* undef ret void } ; FIXME: Should be able to fold zero input to movreld to inline imm? ; CHECK-LABEL: {{^}}multi_same_block: ; CHECK: s_load_dword [[ARG:s[0-9]+]] ; CHECK-DAG: v_mov_b32_e32 [[ZERO:v[0-9]+]], 0{{$}} ; CHECK-DAG: s_add_i32 m0, [[ARG]], -16 ; CHECK: v_movreld_b32_e32 v{{[0-9]+}}, [[ZERO]] ; CHECK: s_add_i32 m0, [[ARG]], -14 ; CHECK: v_movreld_b32_e32 v{{[0-9]+}}, v{{[0-9]+}} ; CHECK: s_mov_b32 m0, -1 ; CHECK: ds_write_b32 ; CHECK: ds_write_b32 ; CHECK: s_endpgm define void @multi_same_block(i32 %arg) #0 { bb: %tmp1 = add i32 %arg, -16 %tmp2 = insertelement <6 x float> <float 1.700000e+01, float 1.800000e+01, float 1.900000e+01, float 2.000000e+01, float 2.100000e+01, float 2.200000e+01>, float 0.000000e+00, i32 %tmp1 %tmp3 = add i32 %arg, -16 %tmp4 = insertelement <6 x float> <float 0x40311999A0000000, float 0x40321999A0000000, float 0x40331999A0000000, float 0x40341999A0000000, float 0x40351999A0000000, float 0x40361999A0000000>, float 0x3FB99999A0000000, i32 %tmp3 %tmp5 = bitcast <6 x float> %tmp2 to <6 x i32> %tmp6 = extractelement <6 x i32> %tmp5, i32 1 %tmp7 = bitcast <6 x float> %tmp4 to <6 x i32> %tmp8 = extractelement <6 x i32> %tmp7, i32 5 store volatile i32 %tmp6, i32 addrspace(3)* undef, align 4 store volatile i32 %tmp8, i32 addrspace(3)* undef, align 4 ret void } ; offset puts outside of superegister bounaries, so clamp to 1st element. ; CHECK-LABEL: {{^}}extract_largest_inbounds_offset: ; CHECK: buffer_load_dwordx4 v{{\[}}[[LO_ELT:[0-9]+]]:[[HI_ELT:[0-9]+]]{{\]}} ; CHECK: s_load_dword [[IDX:s[0-9]+]] ; CHECK: s_mov_b32 m0, [[IDX]] ; CHECK-NEXT: v_movrels_b32_e32 [[EXTRACT:v[0-9]+]], v[[HI_ELT]] ; CHECK: buffer_store_dword [[EXTRACT]] define void @extract_largest_inbounds_offset(i32 addrspace(1)* %out, <4 x i32> addrspace(1)* %in, i32 %idx) { entry: %ld = load volatile <4 x i32>, <4 x i32> addrspace(1)* %in %offset = add i32 %idx, 3 %value = extractelement <4 x i32> %ld, i32 %offset store i32 %value, i32 addrspace(1)* %out ret void } ; CHECK-LABL: {{^}}extract_out_of_bounds_offset: ; CHECK: buffer_load_dwordx4 v{{\[}}[[LO_ELT:[0-9]+]]:[[HI_ELT:[0-9]+]]{{\]}} ; CHECK: s_load_dword [[IDX:s[0-9]+]] ; CHECK: s_add_i32 m0, [[IDX]], 4 ; CHECK-NEXT: v_movrels_b32_e32 [[EXTRACT:v[0-9]+]], v[[LO_ELT]] ; CHECK: buffer_store_dword [[EXTRACT]] define void @extract_out_of_bounds_offset(i32 addrspace(1)* %out, <4 x i32> addrspace(1)* %in, i32 %idx) { entry: %ld = load volatile <4 x i32>, <4 x i32> addrspace(1)* %in %offset = add i32 %idx, 4 %value = extractelement <4 x i32> %ld, i32 %offset store i32 %value, i32 addrspace(1)* %out ret void } ; Test that the or is folded into the base address register instead of ; added to m0 ; GCN-LABEL: {{^}}extractelement_v4i32_or_index: ; GCN: s_load_dword [[IDX_IN:s[0-9]+]] ; GCN: s_lshl_b32 [[IDX_SHL:s[0-9]+]], [[IDX_IN]] ; GCN-NOT: [[IDX_SHL]] ; GCN: s_mov_b32 m0, [[IDX_SHL]] ; GCN: v_movreld_b32_e32 v{{[0-9]+}}, v{{[0-9]+}} define void @extractelement_v4i32_or_index(i32 addrspace(1)* %out, <4 x i32> addrspace(1)* %in, i32 %idx.in) { entry: %ld = load volatile <4 x i32>, <4 x i32> addrspace(1)* %in %idx.shl = shl i32 %idx.in, 2 %idx = or i32 %idx.shl, 1 %value = extractelement <4 x i32> %ld, i32 %idx store i32 %value, i32 addrspace(1)* %out ret void } ; GCN-LABEL: {{^}}insertelement_v4f32_or_index: ; GCN: s_load_dword [[IDX_IN:s[0-9]+]] ; GCN: s_lshl_b32 [[IDX_SHL:s[0-9]+]], [[IDX_IN]] ; GCN-NOT: [[IDX_SHL]] ; GCN: s_mov_b32 m0, [[IDX_SHL]] ; GCN: v_movreld_b32_e32 v{{[0-9]+}}, v{{[0-9]+}} define void @insertelement_v4f32_or_index(<4 x float> addrspace(1)* %out, <4 x float> %a, i32 %idx.in) nounwind { %idx.shl = shl i32 %idx.in, 2 %idx = or i32 %idx.shl, 1 %vecins = insertelement <4 x float> %a, float 5.000000e+00, i32 %idx store <4 x float> %vecins, <4 x float> addrspace(1)* %out, align 16 ret void } declare i32 @llvm.amdgcn.workitem.id.x() #1 attributes #0 = { nounwind } attributes #1 = { nounwind readnone }