//==-- llvm/Support/ThreadPool.cpp - A ThreadPool implementation -*- C++ -*-==// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements a crude C++11 based thread pool. // //===----------------------------------------------------------------------===// #include "llvm/Support/ThreadPool.h" #include "llvm/Config/llvm-config.h" #include "llvm/Support/raw_ostream.h" using namespace llvm; #if LLVM_ENABLE_THREADS // Default to std::thread::hardware_concurrency ThreadPool::ThreadPool() : ThreadPool(std::thread::hardware_concurrency()) {} ThreadPool::ThreadPool(unsigned ThreadCount) : ActiveThreads(0), EnableFlag(true) { // Create ThreadCount threads that will loop forever, wait on QueueCondition // for tasks to be queued or the Pool to be destroyed. Threads.reserve(ThreadCount); for (unsigned ThreadID = 0; ThreadID < ThreadCount; ++ThreadID) { Threads.emplace_back([&] { while (true) { PackagedTaskTy Task; { std::unique_lock<std::mutex> LockGuard(QueueLock); // Wait for tasks to be pushed in the queue QueueCondition.wait(LockGuard, [&] { return !EnableFlag || !Tasks.empty(); }); // Exit condition if (!EnableFlag && Tasks.empty()) return; // Yeah, we have a task, grab it and release the lock on the queue // We first need to signal that we are active before popping the queue // in order for wait() to properly detect that even if the queue is // empty, there is still a task in flight. { ++ActiveThreads; std::unique_lock<std::mutex> LockGuard(CompletionLock); } Task = std::move(Tasks.front()); Tasks.pop(); } // Run the task we just grabbed #ifndef _MSC_VER Task(); #else Task(/* unused */ false); #endif { // Adjust `ActiveThreads`, in case someone waits on ThreadPool::wait() std::unique_lock<std::mutex> LockGuard(CompletionLock); --ActiveThreads; } // Notify task completion, in case someone waits on ThreadPool::wait() CompletionCondition.notify_all(); } }); } } void ThreadPool::wait() { // Wait for all threads to complete and the queue to be empty std::unique_lock<std::mutex> LockGuard(CompletionLock); // The order of the checks for ActiveThreads and Tasks.empty() matters because // any active threads might be modifying the Tasks queue, and this would be a // race. CompletionCondition.wait(LockGuard, [&] { return !ActiveThreads && Tasks.empty(); }); } std::shared_future<ThreadPool::VoidTy> ThreadPool::asyncImpl(TaskTy Task) { /// Wrap the Task in a packaged_task to return a future object. PackagedTaskTy PackagedTask(std::move(Task)); auto Future = PackagedTask.get_future(); { // Lock the queue and push the new task std::unique_lock<std::mutex> LockGuard(QueueLock); // Don't allow enqueueing after disabling the pool assert(EnableFlag && "Queuing a thread during ThreadPool destruction"); Tasks.push(std::move(PackagedTask)); } QueueCondition.notify_one(); return Future.share(); } // The destructor joins all threads, waiting for completion. ThreadPool::~ThreadPool() { { std::unique_lock<std::mutex> LockGuard(QueueLock); EnableFlag = false; } QueueCondition.notify_all(); for (auto &Worker : Threads) Worker.join(); } #else // LLVM_ENABLE_THREADS Disabled ThreadPool::ThreadPool() : ThreadPool(0) {} // No threads are launched, issue a warning if ThreadCount is not 0 ThreadPool::ThreadPool(unsigned ThreadCount) : ActiveThreads(0) { if (ThreadCount) { errs() << "Warning: request a ThreadPool with " << ThreadCount << " threads, but LLVM_ENABLE_THREADS has been turned off\n"; } } void ThreadPool::wait() { // Sequential implementation running the tasks while (!Tasks.empty()) { auto Task = std::move(Tasks.front()); Tasks.pop(); #ifndef _MSC_VER Task(); #else Task(/* unused */ false); #endif } } std::shared_future<ThreadPool::VoidTy> ThreadPool::asyncImpl(TaskTy Task) { #ifndef _MSC_VER // Get a Future with launch::deferred execution using std::async auto Future = std::async(std::launch::deferred, std::move(Task)).share(); // Wrap the future so that both ThreadPool::wait() can operate and the // returned future can be sync'ed on. PackagedTaskTy PackagedTask([Future]() { Future.get(); }); #else auto Future = std::async(std::launch::deferred, std::move(Task), false).share(); PackagedTaskTy PackagedTask([Future](bool) -> bool { Future.get(); return false; }); #endif Tasks.push(std::move(PackagedTask)); return Future; } ThreadPool::~ThreadPool() { wait(); } #endif