//===- llvm/ADT/SmallPtrSet.cpp - 'Normally small' pointer set ------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the SmallPtrSet class. See SmallPtrSet.h for an // overview of the algorithm. // //===----------------------------------------------------------------------===// #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/DenseMapInfo.h" #include "llvm/Support/MathExtras.h" #include <algorithm> #include <cstdlib> using namespace llvm; void SmallPtrSetImplBase::shrink_and_clear() { assert(!isSmall() && "Can't shrink a small set!"); free(CurArray); // Reduce the number of buckets. unsigned Size = size(); CurArraySize = Size > 16 ? 1 << (Log2_32_Ceil(Size) + 1) : 32; NumNonEmpty = NumTombstones = 0; // Install the new array. Clear all the buckets to empty. CurArray = (const void**)malloc(sizeof(void*) * CurArraySize); assert(CurArray && "Failed to allocate memory?"); memset(CurArray, -1, CurArraySize*sizeof(void*)); } std::pair<const void *const *, bool> SmallPtrSetImplBase::insert_imp_big(const void *Ptr) { if (LLVM_UNLIKELY(size() * 4 >= CurArraySize * 3)) { // If more than 3/4 of the array is full, grow. Grow(CurArraySize < 64 ? 128 : CurArraySize * 2); } else if (LLVM_UNLIKELY(CurArraySize - NumNonEmpty < CurArraySize / 8)) { // If fewer of 1/8 of the array is empty (meaning that many are filled with // tombstones), rehash. Grow(CurArraySize); } // Okay, we know we have space. Find a hash bucket. const void **Bucket = const_cast<const void**>(FindBucketFor(Ptr)); if (*Bucket == Ptr) return std::make_pair(Bucket, false); // Already inserted, good. // Otherwise, insert it! if (*Bucket == getTombstoneMarker()) --NumTombstones; else ++NumNonEmpty; // Track density. *Bucket = Ptr; return std::make_pair(Bucket, true); } bool SmallPtrSetImplBase::erase_imp(const void * Ptr) { if (isSmall()) { // Check to see if it is in the set. for (const void **APtr = CurArray, **E = CurArray + NumNonEmpty; APtr != E; ++APtr) if (*APtr == Ptr) { // If it is in the set, replace this element. *APtr = getTombstoneMarker(); ++NumTombstones; return true; } return false; } // Okay, we know we have space. Find a hash bucket. void **Bucket = const_cast<void**>(FindBucketFor(Ptr)); if (*Bucket != Ptr) return false; // Not in the set? // Set this as a tombstone. *Bucket = getTombstoneMarker(); ++NumTombstones; return true; } const void * const *SmallPtrSetImplBase::FindBucketFor(const void *Ptr) const { unsigned Bucket = DenseMapInfo<void *>::getHashValue(Ptr) & (CurArraySize-1); unsigned ArraySize = CurArraySize; unsigned ProbeAmt = 1; const void *const *Array = CurArray; const void *const *Tombstone = nullptr; while (1) { // If we found an empty bucket, the pointer doesn't exist in the set. // Return a tombstone if we've seen one so far, or the empty bucket if // not. if (LLVM_LIKELY(Array[Bucket] == getEmptyMarker())) return Tombstone ? Tombstone : Array+Bucket; // Found Ptr's bucket? if (LLVM_LIKELY(Array[Bucket] == Ptr)) return Array+Bucket; // If this is a tombstone, remember it. If Ptr ends up not in the set, we // prefer to return it than something that would require more probing. if (Array[Bucket] == getTombstoneMarker() && !Tombstone) Tombstone = Array+Bucket; // Remember the first tombstone found. // It's a hash collision or a tombstone. Reprobe. Bucket = (Bucket + ProbeAmt++) & (ArraySize-1); } } /// Grow - Allocate a larger backing store for the buckets and move it over. /// void SmallPtrSetImplBase::Grow(unsigned NewSize) { const void **OldBuckets = CurArray; const void **OldEnd = EndPointer(); bool WasSmall = isSmall(); // Install the new array. Clear all the buckets to empty. CurArray = (const void**)malloc(sizeof(void*) * NewSize); assert(CurArray && "Failed to allocate memory?"); CurArraySize = NewSize; memset(CurArray, -1, NewSize*sizeof(void*)); // Copy over all valid entries. for (const void **BucketPtr = OldBuckets; BucketPtr != OldEnd; ++BucketPtr) { // Copy over the element if it is valid. const void *Elt = *BucketPtr; if (Elt != getTombstoneMarker() && Elt != getEmptyMarker()) *const_cast<void**>(FindBucketFor(Elt)) = const_cast<void*>(Elt); } if (!WasSmall) free(OldBuckets); NumNonEmpty -= NumTombstones; NumTombstones = 0; } SmallPtrSetImplBase::SmallPtrSetImplBase(const void **SmallStorage, const SmallPtrSetImplBase &that) { SmallArray = SmallStorage; // If we're becoming small, prepare to insert into our stack space if (that.isSmall()) { CurArray = SmallArray; // Otherwise, allocate new heap space (unless we were the same size) } else { CurArray = (const void**)malloc(sizeof(void*) * that.CurArraySize); assert(CurArray && "Failed to allocate memory?"); } // Copy over the that array. CopyHelper(that); } SmallPtrSetImplBase::SmallPtrSetImplBase(const void **SmallStorage, unsigned SmallSize, SmallPtrSetImplBase &&that) { SmallArray = SmallStorage; MoveHelper(SmallSize, std::move(that)); } void SmallPtrSetImplBase::CopyFrom(const SmallPtrSetImplBase &RHS) { assert(&RHS != this && "Self-copy should be handled by the caller."); if (isSmall() && RHS.isSmall()) assert(CurArraySize == RHS.CurArraySize && "Cannot assign sets with different small sizes"); // If we're becoming small, prepare to insert into our stack space if (RHS.isSmall()) { if (!isSmall()) free(CurArray); CurArray = SmallArray; // Otherwise, allocate new heap space (unless we were the same size) } else if (CurArraySize != RHS.CurArraySize) { if (isSmall()) CurArray = (const void**)malloc(sizeof(void*) * RHS.CurArraySize); else { const void **T = (const void**)realloc(CurArray, sizeof(void*) * RHS.CurArraySize); if (!T) free(CurArray); CurArray = T; } assert(CurArray && "Failed to allocate memory?"); } CopyHelper(RHS); } void SmallPtrSetImplBase::CopyHelper(const SmallPtrSetImplBase &RHS) { // Copy over the new array size CurArraySize = RHS.CurArraySize; // Copy over the contents from the other set std::copy(RHS.CurArray, RHS.EndPointer(), CurArray); NumNonEmpty = RHS.NumNonEmpty; NumTombstones = RHS.NumTombstones; } void SmallPtrSetImplBase::MoveFrom(unsigned SmallSize, SmallPtrSetImplBase &&RHS) { if (!isSmall()) free(CurArray); MoveHelper(SmallSize, std::move(RHS)); } void SmallPtrSetImplBase::MoveHelper(unsigned SmallSize, SmallPtrSetImplBase &&RHS) { assert(&RHS != this && "Self-move should be handled by the caller."); if (RHS.isSmall()) { // Copy a small RHS rather than moving. CurArray = SmallArray; std::copy(RHS.CurArray, RHS.CurArray + RHS.NumNonEmpty, CurArray); } else { CurArray = RHS.CurArray; RHS.CurArray = RHS.SmallArray; } // Copy the rest of the trivial members. CurArraySize = RHS.CurArraySize; NumNonEmpty = RHS.NumNonEmpty; NumTombstones = RHS.NumTombstones; // Make the RHS small and empty. RHS.CurArraySize = SmallSize; assert(RHS.CurArray == RHS.SmallArray); RHS.NumNonEmpty = 0; RHS.NumTombstones = 0; } void SmallPtrSetImplBase::swap(SmallPtrSetImplBase &RHS) { if (this == &RHS) return; // We can only avoid copying elements if neither set is small. if (!this->isSmall() && !RHS.isSmall()) { std::swap(this->CurArray, RHS.CurArray); std::swap(this->CurArraySize, RHS.CurArraySize); std::swap(this->NumNonEmpty, RHS.NumNonEmpty); std::swap(this->NumTombstones, RHS.NumTombstones); return; } // FIXME: From here on we assume that both sets have the same small size. // If only RHS is small, copy the small elements into LHS and move the pointer // from LHS to RHS. if (!this->isSmall() && RHS.isSmall()) { assert(RHS.CurArray == RHS.SmallArray); std::copy(RHS.CurArray, RHS.CurArray + RHS.NumNonEmpty, this->SmallArray); std::swap(RHS.CurArraySize, this->CurArraySize); std::swap(this->NumNonEmpty, RHS.NumNonEmpty); std::swap(this->NumTombstones, RHS.NumTombstones); RHS.CurArray = this->CurArray; this->CurArray = this->SmallArray; return; } // If only LHS is small, copy the small elements into RHS and move the pointer // from RHS to LHS. if (this->isSmall() && !RHS.isSmall()) { assert(this->CurArray == this->SmallArray); std::copy(this->CurArray, this->CurArray + this->NumNonEmpty, RHS.SmallArray); std::swap(RHS.CurArraySize, this->CurArraySize); std::swap(RHS.NumNonEmpty, this->NumNonEmpty); std::swap(RHS.NumTombstones, this->NumTombstones); this->CurArray = RHS.CurArray; RHS.CurArray = RHS.SmallArray; return; } // Both a small, just swap the small elements. assert(this->isSmall() && RHS.isSmall()); unsigned MinNonEmpty = std::min(this->NumNonEmpty, RHS.NumNonEmpty); std::swap_ranges(this->SmallArray, this->SmallArray + MinNonEmpty, RHS.SmallArray); if (this->NumNonEmpty > MinNonEmpty) { std::copy(this->SmallArray + MinNonEmpty, this->SmallArray + this->NumNonEmpty, RHS.SmallArray + MinNonEmpty); } else { std::copy(RHS.SmallArray + MinNonEmpty, RHS.SmallArray + RHS.NumNonEmpty, this->SmallArray + MinNonEmpty); } assert(this->CurArraySize == RHS.CurArraySize); std::swap(this->NumNonEmpty, RHS.NumNonEmpty); std::swap(this->NumTombstones, RHS.NumTombstones); }