//===-- llvm/MC/WinCOFFObjectWriter.cpp -------------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains an implementation of a Win32 COFF object file writer. // //===----------------------------------------------------------------------===// #include "llvm/MC/MCWinCOFFObjectWriter.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/StringMap.h" #include "llvm/ADT/StringRef.h" #include "llvm/ADT/Twine.h" #include "llvm/Config/config.h" #include "llvm/MC/MCAsmLayout.h" #include "llvm/MC/MCAssembler.h" #include "llvm/MC/MCContext.h" #include "llvm/MC/MCExpr.h" #include "llvm/MC/MCObjectFileInfo.h" #include "llvm/MC/MCObjectWriter.h" #include "llvm/MC/MCSection.h" #include "llvm/MC/MCSectionCOFF.h" #include "llvm/MC/MCSymbolCOFF.h" #include "llvm/MC/MCValue.h" #include "llvm/MC/StringTableBuilder.h" #include "llvm/Support/COFF.h" #include "llvm/Support/Debug.h" #include "llvm/Support/Endian.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/JamCRC.h" #include "llvm/Support/TimeValue.h" #include <cstdio> #include <ctime> using namespace llvm; #define DEBUG_TYPE "WinCOFFObjectWriter" namespace { typedef SmallString<COFF::NameSize> name; enum AuxiliaryType { ATFunctionDefinition, ATbfAndefSymbol, ATWeakExternal, ATFile, ATSectionDefinition }; struct AuxSymbol { AuxiliaryType AuxType; COFF::Auxiliary Aux; }; class COFFSymbol; class COFFSection; class COFFSymbol { public: COFF::symbol Data; typedef SmallVector<AuxSymbol, 1> AuxiliarySymbols; name Name; int Index; AuxiliarySymbols Aux; COFFSymbol *Other; COFFSection *Section; int Relocations; const MCSymbol *MC; COFFSymbol(StringRef name); void set_name_offset(uint32_t Offset); int64_t getIndex() const { return Index; } void setIndex(int Value) { Index = Value; if (MC) MC->setIndex(static_cast<uint32_t>(Value)); } }; // This class contains staging data for a COFF relocation entry. struct COFFRelocation { COFF::relocation Data; COFFSymbol *Symb; COFFRelocation() : Symb(nullptr) {} static size_t size() { return COFF::RelocationSize; } }; typedef std::vector<COFFRelocation> relocations; class COFFSection { public: COFF::section Header; std::string Name; int Number; MCSectionCOFF const *MCSection; COFFSymbol *Symbol; relocations Relocations; COFFSection(StringRef name); }; class WinCOFFObjectWriter : public MCObjectWriter { public: typedef std::vector<std::unique_ptr<COFFSymbol>> symbols; typedef std::vector<std::unique_ptr<COFFSection>> sections; typedef DenseMap<MCSymbol const *, COFFSymbol *> symbol_map; typedef DenseMap<MCSection const *, COFFSection *> section_map; std::unique_ptr<MCWinCOFFObjectTargetWriter> TargetObjectWriter; // Root level file contents. COFF::header Header; sections Sections; symbols Symbols; StringTableBuilder Strings{StringTableBuilder::WinCOFF}; // Maps used during object file creation. section_map SectionMap; symbol_map SymbolMap; bool UseBigObj; WinCOFFObjectWriter(MCWinCOFFObjectTargetWriter *MOTW, raw_pwrite_stream &OS); void reset() override { memset(&Header, 0, sizeof(Header)); Header.Machine = TargetObjectWriter->getMachine(); Sections.clear(); Symbols.clear(); Strings.clear(); SectionMap.clear(); SymbolMap.clear(); MCObjectWriter::reset(); } COFFSymbol *createSymbol(StringRef Name); COFFSymbol *GetOrCreateCOFFSymbol(const MCSymbol *Symbol); COFFSection *createSection(StringRef Name); template <typename object_t, typename list_t> object_t *createCOFFEntity(StringRef Name, list_t &List); void defineSection(MCSectionCOFF const &Sec); COFFSymbol *getLinkedSymbol(const MCSymbol &Symbol); void DefineSymbol(const MCSymbol &Symbol, MCAssembler &Assembler, const MCAsmLayout &Layout); void SetSymbolName(COFFSymbol &S); void SetSectionName(COFFSection &S); bool IsPhysicalSection(COFFSection *S); // Entity writing methods. void WriteFileHeader(const COFF::header &Header); void WriteSymbol(const COFFSymbol &S); void WriteAuxiliarySymbols(const COFFSymbol::AuxiliarySymbols &S); void writeSectionHeader(const COFF::section &S); void WriteRelocation(const COFF::relocation &R); // MCObjectWriter interface implementation. void executePostLayoutBinding(MCAssembler &Asm, const MCAsmLayout &Layout) override; bool isSymbolRefDifferenceFullyResolvedImpl(const MCAssembler &Asm, const MCSymbol &SymA, const MCFragment &FB, bool InSet, bool IsPCRel) const override; bool isWeak(const MCSymbol &Sym) const override; void recordRelocation(MCAssembler &Asm, const MCAsmLayout &Layout, const MCFragment *Fragment, const MCFixup &Fixup, MCValue Target, bool &IsPCRel, uint64_t &FixedValue) override; void writeObject(MCAssembler &Asm, const MCAsmLayout &Layout) override; }; } static inline void write_uint32_le(void *Data, uint32_t Value) { support::endian::write<uint32_t, support::little, support::unaligned>(Data, Value); } //------------------------------------------------------------------------------ // Symbol class implementation COFFSymbol::COFFSymbol(StringRef name) : Name(name.begin(), name.end()), Other(nullptr), Section(nullptr), Relocations(0), MC(nullptr) { memset(&Data, 0, sizeof(Data)); } // In the case that the name does not fit within 8 bytes, the offset // into the string table is stored in the last 4 bytes instead, leaving // the first 4 bytes as 0. void COFFSymbol::set_name_offset(uint32_t Offset) { write_uint32_le(Data.Name + 0, 0); write_uint32_le(Data.Name + 4, Offset); } //------------------------------------------------------------------------------ // Section class implementation COFFSection::COFFSection(StringRef name) : Name(name), MCSection(nullptr), Symbol(nullptr) { memset(&Header, 0, sizeof(Header)); } //------------------------------------------------------------------------------ // WinCOFFObjectWriter class implementation WinCOFFObjectWriter::WinCOFFObjectWriter(MCWinCOFFObjectTargetWriter *MOTW, raw_pwrite_stream &OS) : MCObjectWriter(OS, true), TargetObjectWriter(MOTW) { memset(&Header, 0, sizeof(Header)); Header.Machine = TargetObjectWriter->getMachine(); } COFFSymbol *WinCOFFObjectWriter::createSymbol(StringRef Name) { return createCOFFEntity<COFFSymbol>(Name, Symbols); } COFFSymbol *WinCOFFObjectWriter::GetOrCreateCOFFSymbol(const MCSymbol *Symbol) { symbol_map::iterator i = SymbolMap.find(Symbol); if (i != SymbolMap.end()) return i->second; COFFSymbol *RetSymbol = createCOFFEntity<COFFSymbol>(Symbol->getName(), Symbols); SymbolMap[Symbol] = RetSymbol; return RetSymbol; } COFFSection *WinCOFFObjectWriter::createSection(StringRef Name) { return createCOFFEntity<COFFSection>(Name, Sections); } /// A template used to lookup or create a symbol/section, and initialize it if /// needed. template <typename object_t, typename list_t> object_t *WinCOFFObjectWriter::createCOFFEntity(StringRef Name, list_t &List) { List.push_back(make_unique<object_t>(Name)); return List.back().get(); } /// This function takes a section data object from the assembler /// and creates the associated COFF section staging object. void WinCOFFObjectWriter::defineSection(MCSectionCOFF const &Sec) { COFFSection *coff_section = createSection(Sec.getSectionName()); COFFSymbol *coff_symbol = createSymbol(Sec.getSectionName()); if (Sec.getSelection() != COFF::IMAGE_COMDAT_SELECT_ASSOCIATIVE) { if (const MCSymbol *S = Sec.getCOMDATSymbol()) { COFFSymbol *COMDATSymbol = GetOrCreateCOFFSymbol(S); if (COMDATSymbol->Section) report_fatal_error("two sections have the same comdat"); COMDATSymbol->Section = coff_section; } } coff_section->Symbol = coff_symbol; coff_symbol->Section = coff_section; coff_symbol->Data.StorageClass = COFF::IMAGE_SYM_CLASS_STATIC; // In this case the auxiliary symbol is a Section Definition. coff_symbol->Aux.resize(1); memset(&coff_symbol->Aux[0], 0, sizeof(coff_symbol->Aux[0])); coff_symbol->Aux[0].AuxType = ATSectionDefinition; coff_symbol->Aux[0].Aux.SectionDefinition.Selection = Sec.getSelection(); coff_section->Header.Characteristics = Sec.getCharacteristics(); uint32_t &Characteristics = coff_section->Header.Characteristics; switch (Sec.getAlignment()) { case 1: Characteristics |= COFF::IMAGE_SCN_ALIGN_1BYTES; break; case 2: Characteristics |= COFF::IMAGE_SCN_ALIGN_2BYTES; break; case 4: Characteristics |= COFF::IMAGE_SCN_ALIGN_4BYTES; break; case 8: Characteristics |= COFF::IMAGE_SCN_ALIGN_8BYTES; break; case 16: Characteristics |= COFF::IMAGE_SCN_ALIGN_16BYTES; break; case 32: Characteristics |= COFF::IMAGE_SCN_ALIGN_32BYTES; break; case 64: Characteristics |= COFF::IMAGE_SCN_ALIGN_64BYTES; break; case 128: Characteristics |= COFF::IMAGE_SCN_ALIGN_128BYTES; break; case 256: Characteristics |= COFF::IMAGE_SCN_ALIGN_256BYTES; break; case 512: Characteristics |= COFF::IMAGE_SCN_ALIGN_512BYTES; break; case 1024: Characteristics |= COFF::IMAGE_SCN_ALIGN_1024BYTES; break; case 2048: Characteristics |= COFF::IMAGE_SCN_ALIGN_2048BYTES; break; case 4096: Characteristics |= COFF::IMAGE_SCN_ALIGN_4096BYTES; break; case 8192: Characteristics |= COFF::IMAGE_SCN_ALIGN_8192BYTES; break; default: llvm_unreachable("unsupported section alignment"); } // Bind internal COFF section to MC section. coff_section->MCSection = &Sec; SectionMap[&Sec] = coff_section; } static uint64_t getSymbolValue(const MCSymbol &Symbol, const MCAsmLayout &Layout) { if (Symbol.isCommon() && Symbol.isExternal()) return Symbol.getCommonSize(); uint64_t Res; if (!Layout.getSymbolOffset(Symbol, Res)) return 0; return Res; } COFFSymbol *WinCOFFObjectWriter::getLinkedSymbol(const MCSymbol &Symbol) { if (!Symbol.isVariable()) return nullptr; const MCSymbolRefExpr *SymRef = dyn_cast<MCSymbolRefExpr>(Symbol.getVariableValue()); if (!SymRef) return nullptr; const MCSymbol &Aliasee = SymRef->getSymbol(); if (!Aliasee.isUndefined()) return nullptr; return GetOrCreateCOFFSymbol(&Aliasee); } /// This function takes a symbol data object from the assembler /// and creates the associated COFF symbol staging object. void WinCOFFObjectWriter::DefineSymbol(const MCSymbol &Symbol, MCAssembler &Assembler, const MCAsmLayout &Layout) { COFFSymbol *coff_symbol = GetOrCreateCOFFSymbol(&Symbol); const MCSymbol *Base = Layout.getBaseSymbol(Symbol); COFFSection *Sec = nullptr; if (Base && Base->getFragment()) { Sec = SectionMap[Base->getFragment()->getParent()]; if (coff_symbol->Section && coff_symbol->Section != Sec) report_fatal_error("conflicting sections for symbol"); } COFFSymbol *Local = nullptr; if (cast<MCSymbolCOFF>(Symbol).isWeakExternal()) { coff_symbol->Data.StorageClass = COFF::IMAGE_SYM_CLASS_WEAK_EXTERNAL; COFFSymbol *WeakDefault = getLinkedSymbol(Symbol); if (!WeakDefault) { std::string WeakName = (".weak." + Symbol.getName() + ".default").str(); WeakDefault = createSymbol(WeakName); if (!Sec) WeakDefault->Data.SectionNumber = COFF::IMAGE_SYM_ABSOLUTE; else WeakDefault->Section = Sec; Local = WeakDefault; } coff_symbol->Other = WeakDefault; // Setup the Weak External auxiliary symbol. coff_symbol->Aux.resize(1); memset(&coff_symbol->Aux[0], 0, sizeof(coff_symbol->Aux[0])); coff_symbol->Aux[0].AuxType = ATWeakExternal; coff_symbol->Aux[0].Aux.WeakExternal.TagIndex = 0; coff_symbol->Aux[0].Aux.WeakExternal.Characteristics = COFF::IMAGE_WEAK_EXTERN_SEARCH_LIBRARY; } else { if (!Base) coff_symbol->Data.SectionNumber = COFF::IMAGE_SYM_ABSOLUTE; else coff_symbol->Section = Sec; Local = coff_symbol; } if (Local) { Local->Data.Value = getSymbolValue(Symbol, Layout); const MCSymbolCOFF &SymbolCOFF = cast<MCSymbolCOFF>(Symbol); Local->Data.Type = SymbolCOFF.getType(); Local->Data.StorageClass = SymbolCOFF.getClass(); // If no storage class was specified in the streamer, define it here. if (Local->Data.StorageClass == COFF::IMAGE_SYM_CLASS_NULL) { bool IsExternal = Symbol.isExternal() || (!Symbol.getFragment() && !Symbol.isVariable()); Local->Data.StorageClass = IsExternal ? COFF::IMAGE_SYM_CLASS_EXTERNAL : COFF::IMAGE_SYM_CLASS_STATIC; } } coff_symbol->MC = &Symbol; } // Maximum offsets for different string table entry encodings. enum : unsigned { Max7DecimalOffset = 9999999U }; enum : uint64_t { MaxBase64Offset = 0xFFFFFFFFFULL }; // 64^6, including 0 // Encode a string table entry offset in base 64, padded to 6 chars, and // prefixed with a double slash: '//AAAAAA', '//AAAAAB', ... // Buffer must be at least 8 bytes large. No terminating null appended. static void encodeBase64StringEntry(char *Buffer, uint64_t Value) { assert(Value > Max7DecimalOffset && Value <= MaxBase64Offset && "Illegal section name encoding for value"); static const char Alphabet[] = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" "abcdefghijklmnopqrstuvwxyz" "0123456789+/"; Buffer[0] = '/'; Buffer[1] = '/'; char *Ptr = Buffer + 7; for (unsigned i = 0; i < 6; ++i) { unsigned Rem = Value % 64; Value /= 64; *(Ptr--) = Alphabet[Rem]; } } void WinCOFFObjectWriter::SetSectionName(COFFSection &S) { if (S.Name.size() > COFF::NameSize) { uint64_t StringTableEntry = Strings.getOffset(S.Name); if (StringTableEntry <= Max7DecimalOffset) { SmallVector<char, COFF::NameSize> Buffer; Twine('/').concat(Twine(StringTableEntry)).toVector(Buffer); assert(Buffer.size() <= COFF::NameSize && Buffer.size() >= 2); std::memcpy(S.Header.Name, Buffer.data(), Buffer.size()); } else if (StringTableEntry <= MaxBase64Offset) { // Starting with 10,000,000, offsets are encoded as base64. encodeBase64StringEntry(S.Header.Name, StringTableEntry); } else { report_fatal_error("COFF string table is greater than 64 GB."); } } else { std::memcpy(S.Header.Name, S.Name.c_str(), S.Name.size()); } } void WinCOFFObjectWriter::SetSymbolName(COFFSymbol &S) { if (S.Name.size() > COFF::NameSize) S.set_name_offset(Strings.getOffset(S.Name)); else std::memcpy(S.Data.Name, S.Name.c_str(), S.Name.size()); } bool WinCOFFObjectWriter::IsPhysicalSection(COFFSection *S) { return (S->Header.Characteristics & COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA) == 0; } //------------------------------------------------------------------------------ // entity writing methods void WinCOFFObjectWriter::WriteFileHeader(const COFF::header &Header) { if (UseBigObj) { writeLE16(COFF::IMAGE_FILE_MACHINE_UNKNOWN); writeLE16(0xFFFF); writeLE16(COFF::BigObjHeader::MinBigObjectVersion); writeLE16(Header.Machine); writeLE32(Header.TimeDateStamp); writeBytes(StringRef(COFF::BigObjMagic, sizeof(COFF::BigObjMagic))); writeLE32(0); writeLE32(0); writeLE32(0); writeLE32(0); writeLE32(Header.NumberOfSections); writeLE32(Header.PointerToSymbolTable); writeLE32(Header.NumberOfSymbols); } else { writeLE16(Header.Machine); writeLE16(static_cast<int16_t>(Header.NumberOfSections)); writeLE32(Header.TimeDateStamp); writeLE32(Header.PointerToSymbolTable); writeLE32(Header.NumberOfSymbols); writeLE16(Header.SizeOfOptionalHeader); writeLE16(Header.Characteristics); } } void WinCOFFObjectWriter::WriteSymbol(const COFFSymbol &S) { writeBytes(StringRef(S.Data.Name, COFF::NameSize)); writeLE32(S.Data.Value); if (UseBigObj) writeLE32(S.Data.SectionNumber); else writeLE16(static_cast<int16_t>(S.Data.SectionNumber)); writeLE16(S.Data.Type); write8(S.Data.StorageClass); write8(S.Data.NumberOfAuxSymbols); WriteAuxiliarySymbols(S.Aux); } void WinCOFFObjectWriter::WriteAuxiliarySymbols( const COFFSymbol::AuxiliarySymbols &S) { for (const AuxSymbol &i : S) { switch (i.AuxType) { case ATFunctionDefinition: writeLE32(i.Aux.FunctionDefinition.TagIndex); writeLE32(i.Aux.FunctionDefinition.TotalSize); writeLE32(i.Aux.FunctionDefinition.PointerToLinenumber); writeLE32(i.Aux.FunctionDefinition.PointerToNextFunction); WriteZeros(sizeof(i.Aux.FunctionDefinition.unused)); if (UseBigObj) WriteZeros(COFF::Symbol32Size - COFF::Symbol16Size); break; case ATbfAndefSymbol: WriteZeros(sizeof(i.Aux.bfAndefSymbol.unused1)); writeLE16(i.Aux.bfAndefSymbol.Linenumber); WriteZeros(sizeof(i.Aux.bfAndefSymbol.unused2)); writeLE32(i.Aux.bfAndefSymbol.PointerToNextFunction); WriteZeros(sizeof(i.Aux.bfAndefSymbol.unused3)); if (UseBigObj) WriteZeros(COFF::Symbol32Size - COFF::Symbol16Size); break; case ATWeakExternal: writeLE32(i.Aux.WeakExternal.TagIndex); writeLE32(i.Aux.WeakExternal.Characteristics); WriteZeros(sizeof(i.Aux.WeakExternal.unused)); if (UseBigObj) WriteZeros(COFF::Symbol32Size - COFF::Symbol16Size); break; case ATFile: writeBytes( StringRef(reinterpret_cast<const char *>(&i.Aux), UseBigObj ? COFF::Symbol32Size : COFF::Symbol16Size)); break; case ATSectionDefinition: writeLE32(i.Aux.SectionDefinition.Length); writeLE16(i.Aux.SectionDefinition.NumberOfRelocations); writeLE16(i.Aux.SectionDefinition.NumberOfLinenumbers); writeLE32(i.Aux.SectionDefinition.CheckSum); writeLE16(static_cast<int16_t>(i.Aux.SectionDefinition.Number)); write8(i.Aux.SectionDefinition.Selection); WriteZeros(sizeof(i.Aux.SectionDefinition.unused)); writeLE16(static_cast<int16_t>(i.Aux.SectionDefinition.Number >> 16)); if (UseBigObj) WriteZeros(COFF::Symbol32Size - COFF::Symbol16Size); break; } } } void WinCOFFObjectWriter::writeSectionHeader(const COFF::section &S) { writeBytes(StringRef(S.Name, COFF::NameSize)); writeLE32(S.VirtualSize); writeLE32(S.VirtualAddress); writeLE32(S.SizeOfRawData); writeLE32(S.PointerToRawData); writeLE32(S.PointerToRelocations); writeLE32(S.PointerToLineNumbers); writeLE16(S.NumberOfRelocations); writeLE16(S.NumberOfLineNumbers); writeLE32(S.Characteristics); } void WinCOFFObjectWriter::WriteRelocation(const COFF::relocation &R) { writeLE32(R.VirtualAddress); writeLE32(R.SymbolTableIndex); writeLE16(R.Type); } //////////////////////////////////////////////////////////////////////////////// // MCObjectWriter interface implementations void WinCOFFObjectWriter::executePostLayoutBinding(MCAssembler &Asm, const MCAsmLayout &Layout) { // "Define" each section & symbol. This creates section & symbol // entries in the staging area. for (const auto &Section : Asm) defineSection(static_cast<const MCSectionCOFF &>(Section)); for (const MCSymbol &Symbol : Asm.symbols()) if (!Symbol.isTemporary()) DefineSymbol(Symbol, Asm, Layout); } bool WinCOFFObjectWriter::isSymbolRefDifferenceFullyResolvedImpl( const MCAssembler &Asm, const MCSymbol &SymA, const MCFragment &FB, bool InSet, bool IsPCRel) const { // MS LINK expects to be able to replace all references to a function with a // thunk to implement their /INCREMENTAL feature. Make sure we don't optimize // away any relocations to functions. uint16_t Type = cast<MCSymbolCOFF>(SymA).getType(); if (Asm.isIncrementalLinkerCompatible() && (Type >> COFF::SCT_COMPLEX_TYPE_SHIFT) == COFF::IMAGE_SYM_DTYPE_FUNCTION) return false; return MCObjectWriter::isSymbolRefDifferenceFullyResolvedImpl(Asm, SymA, FB, InSet, IsPCRel); } bool WinCOFFObjectWriter::isWeak(const MCSymbol &Sym) const { if (!Sym.isExternal()) return false; if (!Sym.isInSection()) return false; const auto &Sec = cast<MCSectionCOFF>(Sym.getSection()); if (!Sec.getCOMDATSymbol()) return false; // It looks like for COFF it is invalid to replace a reference to a global // in a comdat with a reference to a local. // FIXME: Add a specification reference if available. return true; } void WinCOFFObjectWriter::recordRelocation( MCAssembler &Asm, const MCAsmLayout &Layout, const MCFragment *Fragment, const MCFixup &Fixup, MCValue Target, bool &IsPCRel, uint64_t &FixedValue) { assert(Target.getSymA() && "Relocation must reference a symbol!"); const MCSymbol &A = Target.getSymA()->getSymbol(); if (!A.isRegistered()) { Asm.getContext().reportError(Fixup.getLoc(), Twine("symbol '") + A.getName() + "' can not be undefined"); return; } if (A.isTemporary() && A.isUndefined()) { Asm.getContext().reportError(Fixup.getLoc(), Twine("assembler label '") + A.getName() + "' can not be undefined"); return; } MCSection *Section = Fragment->getParent(); // Mark this symbol as requiring an entry in the symbol table. assert(SectionMap.find(Section) != SectionMap.end() && "Section must already have been defined in executePostLayoutBinding!"); COFFSection *coff_section = SectionMap[Section]; const MCSymbolRefExpr *SymB = Target.getSymB(); bool CrossSection = false; if (SymB) { const MCSymbol *B = &SymB->getSymbol(); if (!B->getFragment()) { Asm.getContext().reportError( Fixup.getLoc(), Twine("symbol '") + B->getName() + "' can not be undefined in a subtraction expression"); return; } if (!A.getFragment()) { Asm.getContext().reportError( Fixup.getLoc(), Twine("symbol '") + A.getName() + "' can not be undefined in a subtraction expression"); return; } CrossSection = &A.getSection() != &B->getSection(); // Offset of the symbol in the section int64_t OffsetOfB = Layout.getSymbolOffset(*B); // In the case where we have SymbA and SymB, we just need to store the delta // between the two symbols. Update FixedValue to account for the delta, and // skip recording the relocation. if (!CrossSection) { int64_t OffsetOfA = Layout.getSymbolOffset(A); FixedValue = (OffsetOfA - OffsetOfB) + Target.getConstant(); return; } // Offset of the relocation in the section int64_t OffsetOfRelocation = Layout.getFragmentOffset(Fragment) + Fixup.getOffset(); FixedValue = (OffsetOfRelocation - OffsetOfB) + Target.getConstant(); } else { FixedValue = Target.getConstant(); } COFFRelocation Reloc; Reloc.Data.SymbolTableIndex = 0; Reloc.Data.VirtualAddress = Layout.getFragmentOffset(Fragment); // Turn relocations for temporary symbols into section relocations. if (A.isTemporary() || CrossSection) { MCSection *TargetSection = &A.getSection(); assert( SectionMap.find(TargetSection) != SectionMap.end() && "Section must already have been defined in executePostLayoutBinding!"); Reloc.Symb = SectionMap[TargetSection]->Symbol; FixedValue += Layout.getSymbolOffset(A); } else { assert( SymbolMap.find(&A) != SymbolMap.end() && "Symbol must already have been defined in executePostLayoutBinding!"); Reloc.Symb = SymbolMap[&A]; } ++Reloc.Symb->Relocations; Reloc.Data.VirtualAddress += Fixup.getOffset(); Reloc.Data.Type = TargetObjectWriter->getRelocType( Target, Fixup, CrossSection, Asm.getBackend()); // FIXME: Can anyone explain what this does other than adjust for the size // of the offset? if ((Header.Machine == COFF::IMAGE_FILE_MACHINE_AMD64 && Reloc.Data.Type == COFF::IMAGE_REL_AMD64_REL32) || (Header.Machine == COFF::IMAGE_FILE_MACHINE_I386 && Reloc.Data.Type == COFF::IMAGE_REL_I386_REL32)) FixedValue += 4; if (Header.Machine == COFF::IMAGE_FILE_MACHINE_ARMNT) { switch (Reloc.Data.Type) { case COFF::IMAGE_REL_ARM_ABSOLUTE: case COFF::IMAGE_REL_ARM_ADDR32: case COFF::IMAGE_REL_ARM_ADDR32NB: case COFF::IMAGE_REL_ARM_TOKEN: case COFF::IMAGE_REL_ARM_SECTION: case COFF::IMAGE_REL_ARM_SECREL: break; case COFF::IMAGE_REL_ARM_BRANCH11: case COFF::IMAGE_REL_ARM_BLX11: // IMAGE_REL_ARM_BRANCH11 and IMAGE_REL_ARM_BLX11 are only used for // pre-ARMv7, which implicitly rules it out of ARMNT (it would be valid // for Windows CE). case COFF::IMAGE_REL_ARM_BRANCH24: case COFF::IMAGE_REL_ARM_BLX24: case COFF::IMAGE_REL_ARM_MOV32A: // IMAGE_REL_ARM_BRANCH24, IMAGE_REL_ARM_BLX24, IMAGE_REL_ARM_MOV32A are // only used for ARM mode code, which is documented as being unsupported // by Windows on ARM. Empirical proof indicates that masm is able to // generate the relocations however the rest of the MSVC toolchain is // unable to handle it. llvm_unreachable("unsupported relocation"); break; case COFF::IMAGE_REL_ARM_MOV32T: break; case COFF::IMAGE_REL_ARM_BRANCH20T: case COFF::IMAGE_REL_ARM_BRANCH24T: case COFF::IMAGE_REL_ARM_BLX23T: // IMAGE_REL_BRANCH20T, IMAGE_REL_ARM_BRANCH24T, IMAGE_REL_ARM_BLX23T all // perform a 4 byte adjustment to the relocation. Relative branches are // offset by 4 on ARM, however, because there is no RELA relocations, all // branches are offset by 4. FixedValue = FixedValue + 4; break; } } // The fixed value never makes sense for section indicies, ignore it. if (Fixup.getKind() == FK_SecRel_2) FixedValue = 0; if (TargetObjectWriter->recordRelocation(Fixup)) coff_section->Relocations.push_back(Reloc); } void WinCOFFObjectWriter::writeObject(MCAssembler &Asm, const MCAsmLayout &Layout) { size_t SectionsSize = Sections.size(); if (SectionsSize > static_cast<size_t>(INT32_MAX)) report_fatal_error( "PE COFF object files can't have more than 2147483647 sections"); // Assign symbol and section indexes and offsets. int32_t NumberOfSections = static_cast<int32_t>(SectionsSize); UseBigObj = NumberOfSections > COFF::MaxNumberOfSections16; // Assign section numbers. size_t Number = 1; for (const auto &Section : Sections) { Section->Number = Number; Section->Symbol->Data.SectionNumber = Number; Section->Symbol->Aux[0].Aux.SectionDefinition.Number = Number; ++Number; } Header.NumberOfSections = NumberOfSections; Header.NumberOfSymbols = 0; for (const std::string &Name : Asm.getFileNames()) { // round up to calculate the number of auxiliary symbols required unsigned SymbolSize = UseBigObj ? COFF::Symbol32Size : COFF::Symbol16Size; unsigned Count = (Name.size() + SymbolSize - 1) / SymbolSize; COFFSymbol *file = createSymbol(".file"); file->Data.SectionNumber = COFF::IMAGE_SYM_DEBUG; file->Data.StorageClass = COFF::IMAGE_SYM_CLASS_FILE; file->Aux.resize(Count); unsigned Offset = 0; unsigned Length = Name.size(); for (auto &Aux : file->Aux) { Aux.AuxType = ATFile; if (Length > SymbolSize) { memcpy(&Aux.Aux, Name.c_str() + Offset, SymbolSize); Length = Length - SymbolSize; } else { memcpy(&Aux.Aux, Name.c_str() + Offset, Length); memset((char *)&Aux.Aux + Length, 0, SymbolSize - Length); break; } Offset += SymbolSize; } } for (auto &Symbol : Symbols) { // Update section number & offset for symbols that have them. if (Symbol->Section) Symbol->Data.SectionNumber = Symbol->Section->Number; Symbol->setIndex(Header.NumberOfSymbols++); // Update auxiliary symbol info. Symbol->Data.NumberOfAuxSymbols = Symbol->Aux.size(); Header.NumberOfSymbols += Symbol->Data.NumberOfAuxSymbols; } // Build string table. for (const auto &S : Sections) if (S->Name.size() > COFF::NameSize) Strings.add(S->Name); for (const auto &S : Symbols) if (S->Name.size() > COFF::NameSize) Strings.add(S->Name); Strings.finalize(); // Set names. for (const auto &S : Sections) SetSectionName(*S); for (auto &S : Symbols) SetSymbolName(*S); // Fixup weak external references. for (auto &Symbol : Symbols) { if (Symbol->Other) { assert(Symbol->getIndex() != -1); assert(Symbol->Aux.size() == 1 && "Symbol must contain one aux symbol!"); assert(Symbol->Aux[0].AuxType == ATWeakExternal && "Symbol's aux symbol must be a Weak External!"); Symbol->Aux[0].Aux.WeakExternal.TagIndex = Symbol->Other->getIndex(); } } // Fixup associative COMDAT sections. for (auto &Section : Sections) { if (Section->Symbol->Aux[0].Aux.SectionDefinition.Selection != COFF::IMAGE_COMDAT_SELECT_ASSOCIATIVE) continue; const MCSectionCOFF &MCSec = *Section->MCSection; const MCSymbol *COMDAT = MCSec.getCOMDATSymbol(); assert(COMDAT); COFFSymbol *COMDATSymbol = GetOrCreateCOFFSymbol(COMDAT); assert(COMDATSymbol); COFFSection *Assoc = COMDATSymbol->Section; if (!Assoc) report_fatal_error( Twine("Missing associated COMDAT section for section ") + MCSec.getSectionName()); // Skip this section if the associated section is unused. if (Assoc->Number == -1) continue; Section->Symbol->Aux[0].Aux.SectionDefinition.Number = Assoc->Number; } // Assign file offsets to COFF object file structures. unsigned offset = getInitialOffset(); if (UseBigObj) offset += COFF::Header32Size; else offset += COFF::Header16Size; offset += COFF::SectionSize * Header.NumberOfSections; for (const auto &Section : Asm) { COFFSection *Sec = SectionMap[&Section]; if (Sec->Number == -1) continue; Sec->Header.SizeOfRawData = Layout.getSectionAddressSize(&Section); if (IsPhysicalSection(Sec)) { // Align the section data to a four byte boundary. offset = alignTo(offset, 4); Sec->Header.PointerToRawData = offset; offset += Sec->Header.SizeOfRawData; } if (Sec->Relocations.size() > 0) { bool RelocationsOverflow = Sec->Relocations.size() >= 0xffff; if (RelocationsOverflow) { // Signal overflow by setting NumberOfRelocations to max value. Actual // size is found in reloc #0. Microsoft tools understand this. Sec->Header.NumberOfRelocations = 0xffff; } else { Sec->Header.NumberOfRelocations = Sec->Relocations.size(); } Sec->Header.PointerToRelocations = offset; if (RelocationsOverflow) { // Reloc #0 will contain actual count, so make room for it. offset += COFF::RelocationSize; } offset += COFF::RelocationSize * Sec->Relocations.size(); for (auto &Relocation : Sec->Relocations) { assert(Relocation.Symb->getIndex() != -1); Relocation.Data.SymbolTableIndex = Relocation.Symb->getIndex(); } } assert(Sec->Symbol->Aux.size() == 1 && "Section's symbol must have one aux!"); AuxSymbol &Aux = Sec->Symbol->Aux[0]; assert(Aux.AuxType == ATSectionDefinition && "Section's symbol's aux symbol must be a Section Definition!"); Aux.Aux.SectionDefinition.Length = Sec->Header.SizeOfRawData; Aux.Aux.SectionDefinition.NumberOfRelocations = Sec->Header.NumberOfRelocations; Aux.Aux.SectionDefinition.NumberOfLinenumbers = Sec->Header.NumberOfLineNumbers; } Header.PointerToSymbolTable = offset; // MS LINK expects to be able to use this timestamp to implement their // /INCREMENTAL feature. if (Asm.isIncrementalLinkerCompatible()) { std::time_t Now = time(nullptr); if (Now < 0 || !isUInt<32>(Now)) Now = UINT32_MAX; Header.TimeDateStamp = Now; } else { // Have deterministic output if /INCREMENTAL isn't needed. Also matches GNU. Header.TimeDateStamp = 0; } // Write it all to disk... WriteFileHeader(Header); { sections::iterator i, ie; MCAssembler::iterator j, je; for (auto &Section : Sections) { if (Section->Number != -1) { if (Section->Relocations.size() >= 0xffff) Section->Header.Characteristics |= COFF::IMAGE_SCN_LNK_NRELOC_OVFL; writeSectionHeader(Section->Header); } } SmallVector<char, 128> SectionContents; for (i = Sections.begin(), ie = Sections.end(), j = Asm.begin(), je = Asm.end(); (i != ie) && (j != je); ++i, ++j) { if ((*i)->Number == -1) continue; if ((*i)->Header.PointerToRawData != 0) { assert(getStream().tell() <= (*i)->Header.PointerToRawData && "Section::PointerToRawData is insane!"); unsigned SectionDataPadding = (*i)->Header.PointerToRawData - getStream().tell(); assert(SectionDataPadding < 4 && "Should only need at most three bytes of padding!"); WriteZeros(SectionDataPadding); // Save the contents of the section to a temporary buffer, we need this // to CRC the data before we dump it into the object file. SectionContents.clear(); raw_svector_ostream VecOS(SectionContents); raw_pwrite_stream &OldStream = getStream(); // Redirect the output stream to our buffer. setStream(VecOS); // Fill our buffer with the section data. Asm.writeSectionData(&*j, Layout); // Reset the stream back to what it was before. setStream(OldStream); // Calculate our CRC with an initial value of '0', this is not how // JamCRC is specified but it aligns with the expected output. JamCRC JC(/*Init=*/0x00000000U); JC.update(SectionContents); // Write the section contents to the object file. getStream() << SectionContents; // Update the section definition auxiliary symbol to record the CRC. COFFSection *Sec = SectionMap[&*j]; COFFSymbol::AuxiliarySymbols &AuxSyms = Sec->Symbol->Aux; assert(AuxSyms.size() == 1 && AuxSyms[0].AuxType == ATSectionDefinition); AuxSymbol &SecDef = AuxSyms[0]; SecDef.Aux.SectionDefinition.CheckSum = JC.getCRC(); } if ((*i)->Relocations.size() > 0) { assert(getStream().tell() == (*i)->Header.PointerToRelocations && "Section::PointerToRelocations is insane!"); if ((*i)->Relocations.size() >= 0xffff) { // In case of overflow, write actual relocation count as first // relocation. Including the synthetic reloc itself (+ 1). COFF::relocation r; r.VirtualAddress = (*i)->Relocations.size() + 1; r.SymbolTableIndex = 0; r.Type = 0; WriteRelocation(r); } for (const auto &Relocation : (*i)->Relocations) WriteRelocation(Relocation.Data); } else assert((*i)->Header.PointerToRelocations == 0 && "Section::PointerToRelocations is insane!"); } } assert(getStream().tell() == Header.PointerToSymbolTable && "Header::PointerToSymbolTable is insane!"); for (auto &Symbol : Symbols) if (Symbol->getIndex() != -1) WriteSymbol(*Symbol); getStream().write(Strings.data().data(), Strings.data().size()); } MCWinCOFFObjectTargetWriter::MCWinCOFFObjectTargetWriter(unsigned Machine_) : Machine(Machine_) {} // Pin the vtable to this file. void MCWinCOFFObjectTargetWriter::anchor() {} //------------------------------------------------------------------------------ // WinCOFFObjectWriter factory function MCObjectWriter * llvm::createWinCOFFObjectWriter(MCWinCOFFObjectTargetWriter *MOTW, raw_pwrite_stream &OS) { return new WinCOFFObjectWriter(MOTW, OS); }