//===- FuzzerMutate.cpp - Mutate a test input -----------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // Mutate a test input. //===----------------------------------------------------------------------===// #include <cstring> #include "FuzzerInternal.h" namespace fuzzer { const size_t Dictionary::kMaxDictSize; MutationDispatcher::MutationDispatcher(Random &Rand, const FuzzingOptions &Options) : Rand(Rand), Options(Options) { DefaultMutators.insert( DefaultMutators.begin(), { {&MutationDispatcher::Mutate_EraseByte, "EraseByte"}, {&MutationDispatcher::Mutate_InsertByte, "InsertByte"}, {&MutationDispatcher::Mutate_ChangeByte, "ChangeByte"}, {&MutationDispatcher::Mutate_ChangeBit, "ChangeBit"}, {&MutationDispatcher::Mutate_ShuffleBytes, "ShuffleBytes"}, {&MutationDispatcher::Mutate_ChangeASCIIInteger, "ChangeASCIIInt"}, {&MutationDispatcher::Mutate_CrossOver, "CrossOver"}, {&MutationDispatcher::Mutate_AddWordFromManualDictionary, "AddFromManualDict"}, {&MutationDispatcher::Mutate_AddWordFromTemporaryAutoDictionary, "AddFromTempAutoDict"}, {&MutationDispatcher::Mutate_AddWordFromPersistentAutoDictionary, "AddFromPersAutoDict"}, }); if (EF->LLVMFuzzerCustomMutator) Mutators.push_back({&MutationDispatcher::Mutate_Custom, "Custom"}); else Mutators = DefaultMutators; if (EF->LLVMFuzzerCustomCrossOver) Mutators.push_back( {&MutationDispatcher::Mutate_CustomCrossOver, "CustomCrossOver"}); } static char FlipRandomBit(char X, Random &Rand) { int Bit = Rand(8); char Mask = 1 << Bit; char R; if (X & (1 << Bit)) R = X & ~Mask; else R = X | Mask; assert(R != X); return R; } static char RandCh(Random &Rand) { if (Rand.RandBool()) return Rand(256); const char *Special = "!*'();:@&=+$,/?%#[]123ABCxyz-`~."; return Special[Rand(sizeof(Special) - 1)]; } size_t MutationDispatcher::Mutate_Custom(uint8_t *Data, size_t Size, size_t MaxSize) { return EF->LLVMFuzzerCustomMutator(Data, Size, MaxSize, Rand.Rand()); } size_t MutationDispatcher::Mutate_CustomCrossOver(uint8_t *Data, size_t Size, size_t MaxSize) { if (!Corpus || Corpus->size() < 2 || Size == 0) return 0; size_t Idx = Rand(Corpus->size()); const Unit &Other = (*Corpus)[Idx]; if (Other.empty()) return 0; MutateInPlaceHere.resize(MaxSize); auto &U = MutateInPlaceHere; size_t NewSize = EF->LLVMFuzzerCustomCrossOver( Data, Size, Other.data(), Other.size(), U.data(), U.size(), Rand.Rand()); if (!NewSize) return 0; assert(NewSize <= MaxSize && "CustomCrossOver returned overisized unit"); memcpy(Data, U.data(), NewSize); return NewSize; } size_t MutationDispatcher::Mutate_ShuffleBytes(uint8_t *Data, size_t Size, size_t MaxSize) { assert(Size); size_t ShuffleAmount = Rand(std::min(Size, (size_t)8)) + 1; // [1,8] and <= Size. size_t ShuffleStart = Rand(Size - ShuffleAmount); assert(ShuffleStart + ShuffleAmount <= Size); std::random_shuffle(Data + ShuffleStart, Data + ShuffleStart + ShuffleAmount, Rand); return Size; } size_t MutationDispatcher::Mutate_EraseByte(uint8_t *Data, size_t Size, size_t MaxSize) { assert(Size); if (Size == 1) return 0; size_t Idx = Rand(Size); // Erase Data[Idx]. memmove(Data + Idx, Data + Idx + 1, Size - Idx - 1); return Size - 1; } size_t MutationDispatcher::Mutate_InsertByte(uint8_t *Data, size_t Size, size_t MaxSize) { if (Size == MaxSize) return 0; size_t Idx = Rand(Size + 1); // Insert new value at Data[Idx]. memmove(Data + Idx + 1, Data + Idx, Size - Idx); Data[Idx] = RandCh(Rand); return Size + 1; } size_t MutationDispatcher::Mutate_ChangeByte(uint8_t *Data, size_t Size, size_t MaxSize) { size_t Idx = Rand(Size); Data[Idx] = RandCh(Rand); return Size; } size_t MutationDispatcher::Mutate_ChangeBit(uint8_t *Data, size_t Size, size_t MaxSize) { size_t Idx = Rand(Size); Data[Idx] = FlipRandomBit(Data[Idx], Rand); return Size; } size_t MutationDispatcher::Mutate_AddWordFromManualDictionary(uint8_t *Data, size_t Size, size_t MaxSize) { return AddWordFromDictionary(ManualDictionary, Data, Size, MaxSize); } size_t MutationDispatcher::Mutate_AddWordFromTemporaryAutoDictionary( uint8_t *Data, size_t Size, size_t MaxSize) { return AddWordFromDictionary(TempAutoDictionary, Data, Size, MaxSize); } size_t MutationDispatcher::Mutate_AddWordFromPersistentAutoDictionary( uint8_t *Data, size_t Size, size_t MaxSize) { return AddWordFromDictionary(PersistentAutoDictionary, Data, Size, MaxSize); } size_t MutationDispatcher::AddWordFromDictionary(Dictionary &D, uint8_t *Data, size_t Size, size_t MaxSize) { if (D.empty()) return 0; DictionaryEntry &DE = D[Rand(D.size())]; const Word &W = DE.GetW(); bool UsePositionHint = DE.HasPositionHint() && DE.GetPositionHint() + W.size() < Size && Rand.RandBool(); if (Rand.RandBool()) { // Insert W. if (Size + W.size() > MaxSize) return 0; size_t Idx = UsePositionHint ? DE.GetPositionHint() : Rand(Size + 1); memmove(Data + Idx + W.size(), Data + Idx, Size - Idx); memcpy(Data + Idx, W.data(), W.size()); Size += W.size(); } else { // Overwrite some bytes with W. if (W.size() > Size) return 0; size_t Idx = UsePositionHint ? DE.GetPositionHint() : Rand(Size - W.size()); memcpy(Data + Idx, W.data(), W.size()); } DE.IncUseCount(); CurrentDictionaryEntrySequence.push_back(&DE); return Size; } size_t MutationDispatcher::Mutate_ChangeASCIIInteger(uint8_t *Data, size_t Size, size_t MaxSize) { size_t B = Rand(Size); while (B < Size && !isdigit(Data[B])) B++; if (B == Size) return 0; size_t E = B; while (E < Size && isdigit(Data[E])) E++; assert(B < E); // now we have digits in [B, E). // strtol and friends don't accept non-zero-teminated data, parse it manually. uint64_t Val = Data[B] - '0'; for (size_t i = B + 1; i < E; i++) Val = Val * 10 + Data[i] - '0'; // Mutate the integer value. switch(Rand(5)) { case 0: Val++; break; case 1: Val--; break; case 2: Val /= 2; break; case 3: Val *= 2; break; case 4: Val = Rand(Val * Val); break; default: assert(0); } // Just replace the bytes with the new ones, don't bother moving bytes. for (size_t i = B; i < E; i++) { size_t Idx = E + B - i - 1; assert(Idx >= B && Idx < E); Data[Idx] = (Val % 10) + '0'; Val /= 10; } return Size; } size_t MutationDispatcher::Mutate_CrossOver(uint8_t *Data, size_t Size, size_t MaxSize) { if (!Corpus || Corpus->size() < 2 || Size == 0) return 0; size_t Idx = Rand(Corpus->size()); const Unit &Other = (*Corpus)[Idx]; if (Other.empty()) return 0; MutateInPlaceHere.resize(MaxSize); auto &U = MutateInPlaceHere; size_t NewSize = CrossOver(Data, Size, Other.data(), Other.size(), U.data(), U.size()); assert(NewSize > 0 && "CrossOver returned empty unit"); assert(NewSize <= MaxSize && "CrossOver returned overisized unit"); memcpy(Data, U.data(), NewSize); return NewSize; } void MutationDispatcher::StartMutationSequence() { CurrentMutatorSequence.clear(); CurrentDictionaryEntrySequence.clear(); } // Copy successful dictionary entries to PersistentAutoDictionary. void MutationDispatcher::RecordSuccessfulMutationSequence() { for (auto DE : CurrentDictionaryEntrySequence) { // PersistentAutoDictionary.AddWithSuccessCountOne(DE); DE->IncSuccessCount(); // Linear search is fine here as this happens seldom. if (!PersistentAutoDictionary.ContainsWord(DE->GetW())) PersistentAutoDictionary.push_back({DE->GetW(), 1}); } } void MutationDispatcher::PrintRecommendedDictionary() { std::vector<DictionaryEntry> V; for (auto &DE : PersistentAutoDictionary) if (!ManualDictionary.ContainsWord(DE.GetW())) V.push_back(DE); if (V.empty()) return; Printf("###### Recommended dictionary. ######\n"); for (auto &DE: V) { Printf("\""); PrintASCII(DE.GetW(), "\""); Printf(" # Uses: %zd\n", DE.GetUseCount()); } Printf("###### End of recommended dictionary. ######\n"); } void MutationDispatcher::PrintMutationSequence() { Printf("MS: %zd ", CurrentMutatorSequence.size()); for (auto M : CurrentMutatorSequence) Printf("%s-", M.Name); if (!CurrentDictionaryEntrySequence.empty()) { Printf(" DE: "); for (auto DE : CurrentDictionaryEntrySequence) { Printf("\""); PrintASCII(DE->GetW(), "\"-"); } } } size_t MutationDispatcher::Mutate(uint8_t *Data, size_t Size, size_t MaxSize) { return MutateImpl(Data, Size, MaxSize, Mutators); } size_t MutationDispatcher::DefaultMutate(uint8_t *Data, size_t Size, size_t MaxSize) { return MutateImpl(Data, Size, MaxSize, DefaultMutators); } // Mutates Data in place, returns new size. size_t MutationDispatcher::MutateImpl(uint8_t *Data, size_t Size, size_t MaxSize, const std::vector<Mutator> &Mutators) { assert(MaxSize > 0); assert(Size <= MaxSize); if (Size == 0) { for (size_t i = 0; i < MaxSize; i++) Data[i] = RandCh(Rand); if (Options.OnlyASCII) ToASCII(Data, MaxSize); return MaxSize; } assert(Size > 0); // Some mutations may fail (e.g. can't insert more bytes if Size == MaxSize), // in which case they will return 0. // Try several times before returning un-mutated data. for (int Iter = 0; Iter < 10; Iter++) { auto M = Mutators[Rand(Mutators.size())]; size_t NewSize = (this->*(M.Fn))(Data, Size, MaxSize); if (NewSize) { if (Options.OnlyASCII) ToASCII(Data, NewSize); CurrentMutatorSequence.push_back(M); return NewSize; } } return Size; } void MutationDispatcher::AddWordToManualDictionary(const Word &W) { ManualDictionary.push_back( {W, std::numeric_limits<size_t>::max()}); } void MutationDispatcher::AddWordToAutoDictionary(const Word &W, size_t PositionHint) { static const size_t kMaxAutoDictSize = 1 << 14; if (TempAutoDictionary.size() >= kMaxAutoDictSize) return; TempAutoDictionary.push_back({W, PositionHint}); } void MutationDispatcher::ClearAutoDictionary() { TempAutoDictionary.clear(); } } // namespace fuzzer