//===---- OrcMCJITReplacement.h - Orc based MCJIT replacement ---*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // Orc based MCJIT replacement. // //===----------------------------------------------------------------------===// #ifndef LLVM_LIB_EXECUTIONENGINE_ORC_ORCMCJITREPLACEMENT_H #define LLVM_LIB_EXECUTIONENGINE_ORC_ORCMCJITREPLACEMENT_H #include "llvm/ExecutionEngine/ExecutionEngine.h" #include "llvm/ExecutionEngine/Orc/CompileUtils.h" #include "llvm/ExecutionEngine/Orc/IRCompileLayer.h" #include "llvm/ExecutionEngine/Orc/LazyEmittingLayer.h" #include "llvm/ExecutionEngine/Orc/ObjectLinkingLayer.h" #include "llvm/Object/Archive.h" namespace llvm { namespace orc { class OrcMCJITReplacement : public ExecutionEngine { // OrcMCJITReplacement needs to do a little extra book-keeping to ensure that // Orc's automatic finalization doesn't kick in earlier than MCJIT clients are // expecting - see finalizeMemory. class MCJITReplacementMemMgr : public MCJITMemoryManager { public: MCJITReplacementMemMgr(OrcMCJITReplacement &M, std::shared_ptr<MCJITMemoryManager> ClientMM) : M(M), ClientMM(std::move(ClientMM)) {} uint8_t *allocateCodeSection(uintptr_t Size, unsigned Alignment, unsigned SectionID, StringRef SectionName) override { uint8_t *Addr = ClientMM->allocateCodeSection(Size, Alignment, SectionID, SectionName); M.SectionsAllocatedSinceLastLoad.insert(Addr); return Addr; } uint8_t *allocateDataSection(uintptr_t Size, unsigned Alignment, unsigned SectionID, StringRef SectionName, bool IsReadOnly) override { uint8_t *Addr = ClientMM->allocateDataSection(Size, Alignment, SectionID, SectionName, IsReadOnly); M.SectionsAllocatedSinceLastLoad.insert(Addr); return Addr; } void reserveAllocationSpace(uintptr_t CodeSize, uint32_t CodeAlign, uintptr_t RODataSize, uint32_t RODataAlign, uintptr_t RWDataSize, uint32_t RWDataAlign) override { return ClientMM->reserveAllocationSpace(CodeSize, CodeAlign, RODataSize, RODataAlign, RWDataSize, RWDataAlign); } bool needsToReserveAllocationSpace() override { return ClientMM->needsToReserveAllocationSpace(); } void registerEHFrames(uint8_t *Addr, uint64_t LoadAddr, size_t Size) override { return ClientMM->registerEHFrames(Addr, LoadAddr, Size); } void deregisterEHFrames(uint8_t *Addr, uint64_t LoadAddr, size_t Size) override { return ClientMM->deregisterEHFrames(Addr, LoadAddr, Size); } void notifyObjectLoaded(RuntimeDyld &RTDyld, const object::ObjectFile &O) override { return ClientMM->notifyObjectLoaded(RTDyld, O); } void notifyObjectLoaded(ExecutionEngine *EE, const object::ObjectFile &O) override { return ClientMM->notifyObjectLoaded(EE, O); } bool finalizeMemory(std::string *ErrMsg = nullptr) override { // Each set of objects loaded will be finalized exactly once, but since // symbol lookup during relocation may recursively trigger the // loading/relocation of other modules, and since we're forwarding all // finalizeMemory calls to a single underlying memory manager, we need to // defer forwarding the call on until all necessary objects have been // loaded. Otherwise, during the relocation of a leaf object, we will end // up finalizing memory, causing a crash further up the stack when we // attempt to apply relocations to finalized memory. // To avoid finalizing too early, look at how many objects have been // loaded but not yet finalized. This is a bit of a hack that relies on // the fact that we're lazily emitting object files: The only way you can // get more than one set of objects loaded but not yet finalized is if // they were loaded during relocation of another set. if (M.UnfinalizedSections.size() == 1) return ClientMM->finalizeMemory(ErrMsg); return false; } private: OrcMCJITReplacement &M; std::shared_ptr<MCJITMemoryManager> ClientMM; }; class LinkingResolver : public RuntimeDyld::SymbolResolver { public: LinkingResolver(OrcMCJITReplacement &M) : M(M) {} RuntimeDyld::SymbolInfo findSymbol(const std::string &Name) override { return M.findMangledSymbol(Name); } RuntimeDyld::SymbolInfo findSymbolInLogicalDylib(const std::string &Name) override { return M.ClientResolver->findSymbol(Name); } private: OrcMCJITReplacement &M; }; private: static ExecutionEngine * createOrcMCJITReplacement(std::string *ErrorMsg, std::shared_ptr<MCJITMemoryManager> MemMgr, std::shared_ptr<RuntimeDyld::SymbolResolver> Resolver, std::unique_ptr<TargetMachine> TM) { return new OrcMCJITReplacement(std::move(MemMgr), std::move(Resolver), std::move(TM)); } public: static void Register() { OrcMCJITReplacementCtor = createOrcMCJITReplacement; } OrcMCJITReplacement( std::shared_ptr<MCJITMemoryManager> MemMgr, std::shared_ptr<RuntimeDyld::SymbolResolver> ClientResolver, std::unique_ptr<TargetMachine> TM) : ExecutionEngine(TM->createDataLayout()), TM(std::move(TM)), MemMgr(*this, std::move(MemMgr)), Resolver(*this), ClientResolver(std::move(ClientResolver)), NotifyObjectLoaded(*this), NotifyFinalized(*this), ObjectLayer(NotifyObjectLoaded, NotifyFinalized), CompileLayer(ObjectLayer, SimpleCompiler(*this->TM)), LazyEmitLayer(CompileLayer) {} void addModule(std::unique_ptr<Module> M) override { // If this module doesn't have a DataLayout attached then attach the // default. if (M->getDataLayout().isDefault()) { M->setDataLayout(getDataLayout()); } else { assert(M->getDataLayout() == getDataLayout() && "DataLayout Mismatch"); } Modules.push_back(std::move(M)); std::vector<Module *> Ms; Ms.push_back(&*Modules.back()); LazyEmitLayer.addModuleSet(std::move(Ms), &MemMgr, &Resolver); } void addObjectFile(std::unique_ptr<object::ObjectFile> O) override { std::vector<std::unique_ptr<object::ObjectFile>> Objs; Objs.push_back(std::move(O)); ObjectLayer.addObjectSet(std::move(Objs), &MemMgr, &Resolver); } void addObjectFile(object::OwningBinary<object::ObjectFile> O) override { std::vector<std::unique_ptr<object::OwningBinary<object::ObjectFile>>> Objs; Objs.push_back( llvm::make_unique<object::OwningBinary<object::ObjectFile>>( std::move(O))); ObjectLayer.addObjectSet(std::move(Objs), &MemMgr, &Resolver); } void addArchive(object::OwningBinary<object::Archive> A) override { Archives.push_back(std::move(A)); } uint64_t getSymbolAddress(StringRef Name) { return findSymbol(Name).getAddress(); } RuntimeDyld::SymbolInfo findSymbol(StringRef Name) { return findMangledSymbol(Mangle(Name)); } void finalizeObject() override { // This is deprecated - Aim to remove in ExecutionEngine. // REMOVE IF POSSIBLE - Doesn't make sense for New JIT. } void mapSectionAddress(const void *LocalAddress, uint64_t TargetAddress) override { for (auto &P : UnfinalizedSections) if (P.second.count(LocalAddress)) ObjectLayer.mapSectionAddress(P.first, LocalAddress, TargetAddress); } uint64_t getGlobalValueAddress(const std::string &Name) override { return getSymbolAddress(Name); } uint64_t getFunctionAddress(const std::string &Name) override { return getSymbolAddress(Name); } void *getPointerToFunction(Function *F) override { uint64_t FAddr = getSymbolAddress(F->getName()); return reinterpret_cast<void *>(static_cast<uintptr_t>(FAddr)); } void *getPointerToNamedFunction(StringRef Name, bool AbortOnFailure = true) override { uint64_t Addr = getSymbolAddress(Name); if (!Addr && AbortOnFailure) llvm_unreachable("Missing symbol!"); return reinterpret_cast<void *>(static_cast<uintptr_t>(Addr)); } GenericValue runFunction(Function *F, ArrayRef<GenericValue> ArgValues) override; void setObjectCache(ObjectCache *NewCache) override { CompileLayer.setObjectCache(NewCache); } void setProcessAllSections(bool ProcessAllSections) override { ObjectLayer.setProcessAllSections(ProcessAllSections); } private: RuntimeDyld::SymbolInfo findMangledSymbol(StringRef Name) { if (auto Sym = LazyEmitLayer.findSymbol(Name, false)) return Sym.toRuntimeDyldSymbol(); if (auto Sym = ClientResolver->findSymbol(Name)) return Sym; if (auto Sym = scanArchives(Name)) return Sym.toRuntimeDyldSymbol(); return nullptr; } JITSymbol scanArchives(StringRef Name) { for (object::OwningBinary<object::Archive> &OB : Archives) { object::Archive *A = OB.getBinary(); // Look for our symbols in each Archive auto OptionalChildOrErr = A->findSym(Name); if (!OptionalChildOrErr) report_fatal_error(OptionalChildOrErr.takeError()); auto &OptionalChild = *OptionalChildOrErr; if (OptionalChild) { // FIXME: Support nested archives? Expected<std::unique_ptr<object::Binary>> ChildBinOrErr = OptionalChild->getAsBinary(); if (!ChildBinOrErr) { // TODO: Actually report errors helpfully. consumeError(ChildBinOrErr.takeError()); continue; } std::unique_ptr<object::Binary> &ChildBin = ChildBinOrErr.get(); if (ChildBin->isObject()) { std::vector<std::unique_ptr<object::ObjectFile>> ObjSet; ObjSet.push_back(std::unique_ptr<object::ObjectFile>( static_cast<object::ObjectFile *>(ChildBin.release()))); ObjectLayer.addObjectSet(std::move(ObjSet), &MemMgr, &Resolver); if (auto Sym = ObjectLayer.findSymbol(Name, true)) return Sym; } } } return nullptr; } class NotifyObjectLoadedT { public: typedef std::vector<std::unique_ptr<RuntimeDyld::LoadedObjectInfo>> LoadedObjInfoListT; NotifyObjectLoadedT(OrcMCJITReplacement &M) : M(M) {} template <typename ObjListT> void operator()(ObjectLinkingLayerBase::ObjSetHandleT H, const ObjListT &Objects, const LoadedObjInfoListT &Infos) const { M.UnfinalizedSections[H] = std::move(M.SectionsAllocatedSinceLastLoad); M.SectionsAllocatedSinceLastLoad = SectionAddrSet(); assert(Objects.size() == Infos.size() && "Incorrect number of Infos for Objects."); for (unsigned I = 0; I < Objects.size(); ++I) M.MemMgr.notifyObjectLoaded(&M, getObject(*Objects[I])); } private: static const object::ObjectFile& getObject(const object::ObjectFile &Obj) { return Obj; } template <typename ObjT> static const object::ObjectFile& getObject(const object::OwningBinary<ObjT> &Obj) { return *Obj.getBinary(); } OrcMCJITReplacement &M; }; class NotifyFinalizedT { public: NotifyFinalizedT(OrcMCJITReplacement &M) : M(M) {} void operator()(ObjectLinkingLayerBase::ObjSetHandleT H) { M.UnfinalizedSections.erase(H); } private: OrcMCJITReplacement &M; }; std::string Mangle(StringRef Name) { std::string MangledName; { raw_string_ostream MangledNameStream(MangledName); Mang.getNameWithPrefix(MangledNameStream, Name, getDataLayout()); } return MangledName; } typedef ObjectLinkingLayer<NotifyObjectLoadedT> ObjectLayerT; typedef IRCompileLayer<ObjectLayerT> CompileLayerT; typedef LazyEmittingLayer<CompileLayerT> LazyEmitLayerT; std::unique_ptr<TargetMachine> TM; MCJITReplacementMemMgr MemMgr; LinkingResolver Resolver; std::shared_ptr<RuntimeDyld::SymbolResolver> ClientResolver; Mangler Mang; NotifyObjectLoadedT NotifyObjectLoaded; NotifyFinalizedT NotifyFinalized; ObjectLayerT ObjectLayer; CompileLayerT CompileLayer; LazyEmitLayerT LazyEmitLayer; // We need to store ObjLayerT::ObjSetHandles for each of the object sets // that have been emitted but not yet finalized so that we can forward the // mapSectionAddress calls appropriately. typedef std::set<const void *> SectionAddrSet; struct ObjSetHandleCompare { bool operator()(ObjectLayerT::ObjSetHandleT H1, ObjectLayerT::ObjSetHandleT H2) const { return &*H1 < &*H2; } }; SectionAddrSet SectionsAllocatedSinceLastLoad; std::map<ObjectLayerT::ObjSetHandleT, SectionAddrSet, ObjSetHandleCompare> UnfinalizedSections; std::vector<object::OwningBinary<object::Archive>> Archives; }; } // End namespace orc. } // End namespace llvm. #endif // LLVM_LIB_EXECUTIONENGINE_ORC_MCJITREPLACEMENT_H