//===-- TargetLowering.cpp - Implement the TargetLowering class -----------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This implements the TargetLowering class. // //===----------------------------------------------------------------------===// #include "llvm/Target/TargetLowering.h" #include "llvm/ADT/BitVector.h" #include "llvm/ADT/STLExtras.h" #include "llvm/CodeGen/CallingConvLower.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineJumpTableInfo.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/SelectionDAG.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/GlobalVariable.h" #include "llvm/IR/LLVMContext.h" #include "llvm/MC/MCAsmInfo.h" #include "llvm/MC/MCExpr.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/MathExtras.h" #include "llvm/Target/TargetLoweringObjectFile.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetRegisterInfo.h" #include "llvm/Target/TargetSubtargetInfo.h" #include <cctype> using namespace llvm; /// NOTE: The TargetMachine owns TLOF. TargetLowering::TargetLowering(const TargetMachine &tm) : TargetLoweringBase(tm) {} const char *TargetLowering::getTargetNodeName(unsigned Opcode) const { return nullptr; } bool TargetLowering::isPositionIndependent() const { return getTargetMachine().isPositionIndependent(); } /// Check whether a given call node is in tail position within its function. If /// so, it sets Chain to the input chain of the tail call. bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, SDValue &Chain) const { const Function *F = DAG.getMachineFunction().getFunction(); // Conservatively require the attributes of the call to match those of // the return. Ignore noalias because it doesn't affect the call sequence. AttributeSet CallerAttrs = F->getAttributes(); if (AttrBuilder(CallerAttrs, AttributeSet::ReturnIndex) .removeAttribute(Attribute::NoAlias).hasAttributes()) return false; // It's not safe to eliminate the sign / zero extension of the return value. if (CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt) || CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt)) return false; // Check if the only use is a function return node. return isUsedByReturnOnly(Node, Chain); } bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI, const uint32_t *CallerPreservedMask, const SmallVectorImpl<CCValAssign> &ArgLocs, const SmallVectorImpl<SDValue> &OutVals) const { for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { const CCValAssign &ArgLoc = ArgLocs[I]; if (!ArgLoc.isRegLoc()) continue; unsigned Reg = ArgLoc.getLocReg(); // Only look at callee saved registers. if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg)) continue; // Check that we pass the value used for the caller. // (We look for a CopyFromReg reading a virtual register that is used // for the function live-in value of register Reg) SDValue Value = OutVals[I]; if (Value->getOpcode() != ISD::CopyFromReg) return false; unsigned ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg(); if (MRI.getLiveInPhysReg(ArgReg) != Reg) return false; } return true; } /// \brief Set CallLoweringInfo attribute flags based on a call instruction /// and called function attributes. void TargetLowering::ArgListEntry::setAttributes(ImmutableCallSite *CS, unsigned AttrIdx) { isSExt = CS->paramHasAttr(AttrIdx, Attribute::SExt); isZExt = CS->paramHasAttr(AttrIdx, Attribute::ZExt); isInReg = CS->paramHasAttr(AttrIdx, Attribute::InReg); isSRet = CS->paramHasAttr(AttrIdx, Attribute::StructRet); isNest = CS->paramHasAttr(AttrIdx, Attribute::Nest); isByVal = CS->paramHasAttr(AttrIdx, Attribute::ByVal); isInAlloca = CS->paramHasAttr(AttrIdx, Attribute::InAlloca); isReturned = CS->paramHasAttr(AttrIdx, Attribute::Returned); isSwiftSelf = CS->paramHasAttr(AttrIdx, Attribute::SwiftSelf); isSwiftError = CS->paramHasAttr(AttrIdx, Attribute::SwiftError); Alignment = CS->getParamAlignment(AttrIdx); } /// Generate a libcall taking the given operands as arguments and returning a /// result of type RetVT. std::pair<SDValue, SDValue> TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT, ArrayRef<SDValue> Ops, bool isSigned, const SDLoc &dl, bool doesNotReturn, bool isReturnValueUsed) const { TargetLowering::ArgListTy Args; Args.reserve(Ops.size()); TargetLowering::ArgListEntry Entry; for (SDValue Op : Ops) { Entry.Node = Op; Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); Entry.isSExt = shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned); Entry.isZExt = !shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned); Args.push_back(Entry); } if (LC == RTLIB::UNKNOWN_LIBCALL) report_fatal_error("Unsupported library call operation!"); SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), getPointerTy(DAG.getDataLayout())); Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); TargetLowering::CallLoweringInfo CLI(DAG); bool signExtend = shouldSignExtendTypeInLibCall(RetVT, isSigned); CLI.setDebugLoc(dl).setChain(DAG.getEntryNode()) .setCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args)) .setNoReturn(doesNotReturn).setDiscardResult(!isReturnValueUsed) .setSExtResult(signExtend).setZExtResult(!signExtend); return LowerCallTo(CLI); } /// Soften the operands of a comparison. This code is shared among BR_CC, /// SELECT_CC, and SETCC handlers. void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, SDValue &NewLHS, SDValue &NewRHS, ISD::CondCode &CCCode, const SDLoc &dl) const { assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128) && "Unsupported setcc type!"); // Expand into one or more soft-fp libcall(s). RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL; bool ShouldInvertCC = false; switch (CCCode) { case ISD::SETEQ: case ISD::SETOEQ: LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : (VT == MVT::f64) ? RTLIB::OEQ_F64 : (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; break; case ISD::SETNE: case ISD::SETUNE: LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : (VT == MVT::f64) ? RTLIB::UNE_F64 : (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128; break; case ISD::SETGE: case ISD::SETOGE: LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : (VT == MVT::f64) ? RTLIB::OGE_F64 : (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; break; case ISD::SETLT: case ISD::SETOLT: LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : (VT == MVT::f64) ? RTLIB::OLT_F64 : (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; break; case ISD::SETLE: case ISD::SETOLE: LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : (VT == MVT::f64) ? RTLIB::OLE_F64 : (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; break; case ISD::SETGT: case ISD::SETOGT: LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : (VT == MVT::f64) ? RTLIB::OGT_F64 : (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; break; case ISD::SETUO: LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : (VT == MVT::f64) ? RTLIB::UO_F64 : (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; break; case ISD::SETO: LC1 = (VT == MVT::f32) ? RTLIB::O_F32 : (VT == MVT::f64) ? RTLIB::O_F64 : (VT == MVT::f128) ? RTLIB::O_F128 : RTLIB::O_PPCF128; break; case ISD::SETONE: // SETONE = SETOLT | SETOGT LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : (VT == MVT::f64) ? RTLIB::OLT_F64 : (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; LC2 = (VT == MVT::f32) ? RTLIB::OGT_F32 : (VT == MVT::f64) ? RTLIB::OGT_F64 : (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; break; case ISD::SETUEQ: LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : (VT == MVT::f64) ? RTLIB::UO_F64 : (VT == MVT::f128) ? RTLIB::UO_F64 : RTLIB::UO_PPCF128; LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : (VT == MVT::f64) ? RTLIB::OEQ_F64 : (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; break; default: // Invert CC for unordered comparisons ShouldInvertCC = true; switch (CCCode) { case ISD::SETULT: LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : (VT == MVT::f64) ? RTLIB::OGE_F64 : (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; break; case ISD::SETULE: LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : (VT == MVT::f64) ? RTLIB::OGT_F64 : (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; break; case ISD::SETUGT: LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : (VT == MVT::f64) ? RTLIB::OLE_F64 : (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; break; case ISD::SETUGE: LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : (VT == MVT::f64) ? RTLIB::OLT_F64 : (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; break; default: llvm_unreachable("Do not know how to soften this setcc!"); } } // Use the target specific return value for comparions lib calls. EVT RetVT = getCmpLibcallReturnType(); SDValue Ops[2] = {NewLHS, NewRHS}; NewLHS = makeLibCall(DAG, LC1, RetVT, Ops, false /*sign irrelevant*/, dl).first; NewRHS = DAG.getConstant(0, dl, RetVT); CCCode = getCmpLibcallCC(LC1); if (ShouldInvertCC) CCCode = getSetCCInverse(CCCode, /*isInteger=*/true); if (LC2 != RTLIB::UNKNOWN_LIBCALL) { SDValue Tmp = DAG.getNode( ISD::SETCC, dl, getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT), NewLHS, NewRHS, DAG.getCondCode(CCCode)); NewLHS = makeLibCall(DAG, LC2, RetVT, Ops, false/*sign irrelevant*/, dl).first; NewLHS = DAG.getNode( ISD::SETCC, dl, getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT), NewLHS, NewRHS, DAG.getCondCode(getCmpLibcallCC(LC2))); NewLHS = DAG.getNode(ISD::OR, dl, Tmp.getValueType(), Tmp, NewLHS); NewRHS = SDValue(); } } /// Return the entry encoding for a jump table in the current function. The /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum. unsigned TargetLowering::getJumpTableEncoding() const { // In non-pic modes, just use the address of a block. if (!isPositionIndependent()) return MachineJumpTableInfo::EK_BlockAddress; // In PIC mode, if the target supports a GPRel32 directive, use it. if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr) return MachineJumpTableInfo::EK_GPRel32BlockAddress; // Otherwise, use a label difference. return MachineJumpTableInfo::EK_LabelDifference32; } SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table, SelectionDAG &DAG) const { // If our PIC model is GP relative, use the global offset table as the base. unsigned JTEncoding = getJumpTableEncoding(); if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) || (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress)) return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout())); return Table; } /// This returns the relocation base for the given PIC jumptable, the same as /// getPICJumpTableRelocBase, but as an MCExpr. const MCExpr * TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI,MCContext &Ctx) const{ // The normal PIC reloc base is the label at the start of the jump table. return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx); } bool TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { const TargetMachine &TM = getTargetMachine(); const GlobalValue *GV = GA->getGlobal(); // If the address is not even local to this DSO we will have to load it from // a got and then add the offset. if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV)) return false; // If the code is position independent we will have to add a base register. if (isPositionIndependent()) return false; // Otherwise we can do it. return true; } //===----------------------------------------------------------------------===// // Optimization Methods //===----------------------------------------------------------------------===// /// Check to see if the specified operand of the specified instruction is a /// constant integer. If so, check to see if there are any bits set in the /// constant that are not demanded. If so, shrink the constant and return true. bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDValue Op, const APInt &Demanded) { SDLoc dl(Op); // FIXME: ISD::SELECT, ISD::SELECT_CC switch (Op.getOpcode()) { default: break; case ISD::XOR: case ISD::AND: case ISD::OR: { ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); if (!C) return false; if (Op.getOpcode() == ISD::XOR && (C->getAPIntValue() | (~Demanded)).isAllOnesValue()) return false; // if we can expand it to have all bits set, do it if (C->getAPIntValue().intersects(~Demanded)) { EVT VT = Op.getValueType(); SDValue New = DAG.getNode(Op.getOpcode(), dl, VT, Op.getOperand(0), DAG.getConstant(Demanded & C->getAPIntValue(), dl, VT)); return CombineTo(Op, New); } break; } } return false; } /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free. /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be /// generalized for targets with other types of implicit widening casts. bool TargetLowering::TargetLoweringOpt::ShrinkDemandedOp(SDValue Op, unsigned BitWidth, const APInt &Demanded, const SDLoc &dl) { assert(Op.getNumOperands() == 2 && "ShrinkDemandedOp only supports binary operators!"); assert(Op.getNode()->getNumValues() == 1 && "ShrinkDemandedOp only supports nodes with one result!"); // Early return, as this function cannot handle vector types. if (Op.getValueType().isVector()) return false; // Don't do this if the node has another user, which may require the // full value. if (!Op.getNode()->hasOneUse()) return false; // Search for the smallest integer type with free casts to and from // Op's type. For expedience, just check power-of-2 integer types. const TargetLowering &TLI = DAG.getTargetLoweringInfo(); unsigned DemandedSize = BitWidth - Demanded.countLeadingZeros(); unsigned SmallVTBits = DemandedSize; if (!isPowerOf2_32(SmallVTBits)) SmallVTBits = NextPowerOf2(SmallVTBits); for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) { EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits); if (TLI.isTruncateFree(Op.getValueType(), SmallVT) && TLI.isZExtFree(SmallVT, Op.getValueType())) { // We found a type with free casts. SDValue X = DAG.getNode(Op.getOpcode(), dl, SmallVT, DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getNode()->getOperand(0)), DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getNode()->getOperand(1))); bool NeedZext = DemandedSize > SmallVTBits; SDValue Z = DAG.getNode(NeedZext ? ISD::ZERO_EXTEND : ISD::ANY_EXTEND, dl, Op.getValueType(), X); return CombineTo(Op, Z); } } return false; } /// Look at Op. At this point, we know that only the DemandedMask bits of the /// result of Op are ever used downstream. If we can use this information to /// simplify Op, create a new simplified DAG node and return true, returning the /// original and new nodes in Old and New. Otherwise, analyze the expression and /// return a mask of KnownOne and KnownZero bits for the expression (used to /// simplify the caller). The KnownZero/One bits may only be accurate for those /// bits in the DemandedMask. bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedMask, APInt &KnownZero, APInt &KnownOne, TargetLoweringOpt &TLO, unsigned Depth) const { unsigned BitWidth = DemandedMask.getBitWidth(); assert(Op.getValueType().getScalarType().getSizeInBits() == BitWidth && "Mask size mismatches value type size!"); APInt NewMask = DemandedMask; SDLoc dl(Op); auto &DL = TLO.DAG.getDataLayout(); // Don't know anything. KnownZero = KnownOne = APInt(BitWidth, 0); // Other users may use these bits. if (!Op.getNode()->hasOneUse()) { if (Depth != 0) { // If not at the root, Just compute the KnownZero/KnownOne bits to // simplify things downstream. TLO.DAG.computeKnownBits(Op, KnownZero, KnownOne, Depth); return false; } // If this is the root being simplified, allow it to have multiple uses, // just set the NewMask to all bits. NewMask = APInt::getAllOnesValue(BitWidth); } else if (DemandedMask == 0) { // Not demanding any bits from Op. if (!Op.isUndef()) return TLO.CombineTo(Op, TLO.DAG.getUNDEF(Op.getValueType())); return false; } else if (Depth == 6) { // Limit search depth. return false; } APInt KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut; switch (Op.getOpcode()) { case ISD::Constant: // We know all of the bits for a constant! KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue(); KnownZero = ~KnownOne; return false; // Don't fall through, will infinitely loop. case ISD::AND: // If the RHS is a constant, check to see if the LHS would be zero without // using the bits from the RHS. Below, we use knowledge about the RHS to // simplify the LHS, here we're using information from the LHS to simplify // the RHS. if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { APInt LHSZero, LHSOne; // Do not increment Depth here; that can cause an infinite loop. TLO.DAG.computeKnownBits(Op.getOperand(0), LHSZero, LHSOne, Depth); // If the LHS already has zeros where RHSC does, this and is dead. if ((LHSZero & NewMask) == (~RHSC->getAPIntValue() & NewMask)) return TLO.CombineTo(Op, Op.getOperand(0)); // If any of the set bits in the RHS are known zero on the LHS, shrink // the constant. if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & NewMask)) return true; } if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero, KnownOne, TLO, Depth+1)) return true; assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); if (SimplifyDemandedBits(Op.getOperand(0), ~KnownZero & NewMask, KnownZero2, KnownOne2, TLO, Depth+1)) return true; assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); // If all of the demanded bits are known one on one side, return the other. // These bits cannot contribute to the result of the 'and'. if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask)) return TLO.CombineTo(Op, Op.getOperand(0)); if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask)) return TLO.CombineTo(Op, Op.getOperand(1)); // If all of the demanded bits in the inputs are known zeros, return zero. if ((NewMask & (KnownZero|KnownZero2)) == NewMask) return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, Op.getValueType())); // If the RHS is a constant, see if we can simplify it. if (TLO.ShrinkDemandedConstant(Op, ~KnownZero2 & NewMask)) return true; // If the operation can be done in a smaller type, do so. if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl)) return true; // Output known-1 bits are only known if set in both the LHS & RHS. KnownOne &= KnownOne2; // Output known-0 are known to be clear if zero in either the LHS | RHS. KnownZero |= KnownZero2; break; case ISD::OR: if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero, KnownOne, TLO, Depth+1)) return true; assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); if (SimplifyDemandedBits(Op.getOperand(0), ~KnownOne & NewMask, KnownZero2, KnownOne2, TLO, Depth+1)) return true; assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); // If all of the demanded bits are known zero on one side, return the other. // These bits cannot contribute to the result of the 'or'. if ((NewMask & ~KnownOne2 & KnownZero) == (~KnownOne2 & NewMask)) return TLO.CombineTo(Op, Op.getOperand(0)); if ((NewMask & ~KnownOne & KnownZero2) == (~KnownOne & NewMask)) return TLO.CombineTo(Op, Op.getOperand(1)); // If all of the potentially set bits on one side are known to be set on // the other side, just use the 'other' side. if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask)) return TLO.CombineTo(Op, Op.getOperand(0)); if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask)) return TLO.CombineTo(Op, Op.getOperand(1)); // If the RHS is a constant, see if we can simplify it. if (TLO.ShrinkDemandedConstant(Op, NewMask)) return true; // If the operation can be done in a smaller type, do so. if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl)) return true; // Output known-0 bits are only known if clear in both the LHS & RHS. KnownZero &= KnownZero2; // Output known-1 are known to be set if set in either the LHS | RHS. KnownOne |= KnownOne2; break; case ISD::XOR: if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero, KnownOne, TLO, Depth+1)) return true; assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); if (SimplifyDemandedBits(Op.getOperand(0), NewMask, KnownZero2, KnownOne2, TLO, Depth+1)) return true; assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); // If all of the demanded bits are known zero on one side, return the other. // These bits cannot contribute to the result of the 'xor'. if ((KnownZero & NewMask) == NewMask) return TLO.CombineTo(Op, Op.getOperand(0)); if ((KnownZero2 & NewMask) == NewMask) return TLO.CombineTo(Op, Op.getOperand(1)); // If the operation can be done in a smaller type, do so. if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl)) return true; // If all of the unknown bits are known to be zero on one side or the other // (but not both) turn this into an *inclusive* or. // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 if ((NewMask & ~KnownZero & ~KnownZero2) == 0) return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, Op.getValueType(), Op.getOperand(0), Op.getOperand(1))); // Output known-0 bits are known if clear or set in both the LHS & RHS. KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2); // Output known-1 are known to be set if set in only one of the LHS, RHS. KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2); // If all of the demanded bits on one side are known, and all of the set // bits on that side are also known to be set on the other side, turn this // into an AND, as we know the bits will be cleared. // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 // NB: it is okay if more bits are known than are requested if ((NewMask & (KnownZero|KnownOne)) == NewMask) { // all known on one side if (KnownOne == KnownOne2) { // set bits are the same on both sides EVT VT = Op.getValueType(); SDValue ANDC = TLO.DAG.getConstant(~KnownOne & NewMask, dl, VT); return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op.getOperand(0), ANDC)); } } // If the RHS is a constant, see if we can simplify it. // for XOR, we prefer to force bits to 1 if they will make a -1. // if we can't force bits, try to shrink constant if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { APInt Expanded = C->getAPIntValue() | (~NewMask); // if we can expand it to have all bits set, do it if (Expanded.isAllOnesValue()) { if (Expanded != C->getAPIntValue()) { EVT VT = Op.getValueType(); SDValue New = TLO.DAG.getNode(Op.getOpcode(), dl,VT, Op.getOperand(0), TLO.DAG.getConstant(Expanded, dl, VT)); return TLO.CombineTo(Op, New); } // if it already has all the bits set, nothing to change // but don't shrink either! } else if (TLO.ShrinkDemandedConstant(Op, NewMask)) { return true; } } KnownZero = KnownZeroOut; KnownOne = KnownOneOut; break; case ISD::SELECT: if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero, KnownOne, TLO, Depth+1)) return true; if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero2, KnownOne2, TLO, Depth+1)) return true; assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); // If the operands are constants, see if we can simplify them. if (TLO.ShrinkDemandedConstant(Op, NewMask)) return true; // Only known if known in both the LHS and RHS. KnownOne &= KnownOne2; KnownZero &= KnownZero2; break; case ISD::SELECT_CC: if (SimplifyDemandedBits(Op.getOperand(3), NewMask, KnownZero, KnownOne, TLO, Depth+1)) return true; if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero2, KnownOne2, TLO, Depth+1)) return true; assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); // If the operands are constants, see if we can simplify them. if (TLO.ShrinkDemandedConstant(Op, NewMask)) return true; // Only known if known in both the LHS and RHS. KnownOne &= KnownOne2; KnownZero &= KnownZero2; break; case ISD::SHL: if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { unsigned ShAmt = SA->getZExtValue(); SDValue InOp = Op.getOperand(0); // If the shift count is an invalid immediate, don't do anything. if (ShAmt >= BitWidth) break; // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a // single shift. We can do this if the bottom bits (which are shifted // out) are never demanded. if (InOp.getOpcode() == ISD::SRL && isa<ConstantSDNode>(InOp.getOperand(1))) { if (ShAmt && (NewMask & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) { unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue(); unsigned Opc = ISD::SHL; int Diff = ShAmt-C1; if (Diff < 0) { Diff = -Diff; Opc = ISD::SRL; } SDValue NewSA = TLO.DAG.getConstant(Diff, dl, Op.getOperand(1).getValueType()); EVT VT = Op.getValueType(); return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, InOp.getOperand(0), NewSA)); } } if (SimplifyDemandedBits(InOp, NewMask.lshr(ShAmt), KnownZero, KnownOne, TLO, Depth+1)) return true; // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits // are not demanded. This will likely allow the anyext to be folded away. if (InOp.getNode()->getOpcode() == ISD::ANY_EXTEND) { SDValue InnerOp = InOp.getNode()->getOperand(0); EVT InnerVT = InnerOp.getValueType(); unsigned InnerBits = InnerVT.getSizeInBits(); if (ShAmt < InnerBits && NewMask.lshr(InnerBits) == 0 && isTypeDesirableForOp(ISD::SHL, InnerVT)) { EVT ShTy = getShiftAmountTy(InnerVT, DL); if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits())) ShTy = InnerVT; SDValue NarrowShl = TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp, TLO.DAG.getConstant(ShAmt, dl, ShTy)); return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), NarrowShl)); } // Repeat the SHL optimization above in cases where an extension // intervenes: (shl (anyext (shr x, c1)), c2) to // (shl (anyext x), c2-c1). This requires that the bottom c1 bits // aren't demanded (as above) and that the shifted upper c1 bits of // x aren't demanded. if (InOp.hasOneUse() && InnerOp.getOpcode() == ISD::SRL && InnerOp.hasOneUse() && isa<ConstantSDNode>(InnerOp.getOperand(1))) { uint64_t InnerShAmt = cast<ConstantSDNode>(InnerOp.getOperand(1)) ->getZExtValue(); if (InnerShAmt < ShAmt && InnerShAmt < InnerBits && NewMask.lshr(InnerBits - InnerShAmt + ShAmt) == 0 && NewMask.trunc(ShAmt) == 0) { SDValue NewSA = TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, Op.getOperand(1).getValueType()); EVT VT = Op.getValueType(); SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, InnerOp.getOperand(0)); return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA)); } } } KnownZero <<= SA->getZExtValue(); KnownOne <<= SA->getZExtValue(); // low bits known zero. KnownZero |= APInt::getLowBitsSet(BitWidth, SA->getZExtValue()); } break; case ISD::SRL: if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { EVT VT = Op.getValueType(); unsigned ShAmt = SA->getZExtValue(); unsigned VTSize = VT.getSizeInBits(); SDValue InOp = Op.getOperand(0); // If the shift count is an invalid immediate, don't do anything. if (ShAmt >= BitWidth) break; APInt InDemandedMask = (NewMask << ShAmt); // If the shift is exact, then it does demand the low bits (and knows that // they are zero). if (cast<BinaryWithFlagsSDNode>(Op)->Flags.hasExact()) InDemandedMask |= APInt::getLowBitsSet(BitWidth, ShAmt); // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a // single shift. We can do this if the top bits (which are shifted out) // are never demanded. if (InOp.getOpcode() == ISD::SHL && isa<ConstantSDNode>(InOp.getOperand(1))) { if (ShAmt && (NewMask & APInt::getHighBitsSet(VTSize, ShAmt)) == 0) { unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue(); unsigned Opc = ISD::SRL; int Diff = ShAmt-C1; if (Diff < 0) { Diff = -Diff; Opc = ISD::SHL; } SDValue NewSA = TLO.DAG.getConstant(Diff, dl, Op.getOperand(1).getValueType()); return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, InOp.getOperand(0), NewSA)); } } // Compute the new bits that are at the top now. if (SimplifyDemandedBits(InOp, InDemandedMask, KnownZero, KnownOne, TLO, Depth+1)) return true; assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); KnownZero = KnownZero.lshr(ShAmt); KnownOne = KnownOne.lshr(ShAmt); APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt); KnownZero |= HighBits; // High bits known zero. } break; case ISD::SRA: // If this is an arithmetic shift right and only the low-bit is set, we can // always convert this into a logical shr, even if the shift amount is // variable. The low bit of the shift cannot be an input sign bit unless // the shift amount is >= the size of the datatype, which is undefined. if (NewMask == 1) return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, Op.getValueType(), Op.getOperand(0), Op.getOperand(1))); if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { EVT VT = Op.getValueType(); unsigned ShAmt = SA->getZExtValue(); // If the shift count is an invalid immediate, don't do anything. if (ShAmt >= BitWidth) break; APInt InDemandedMask = (NewMask << ShAmt); // If the shift is exact, then it does demand the low bits (and knows that // they are zero). if (cast<BinaryWithFlagsSDNode>(Op)->Flags.hasExact()) InDemandedMask |= APInt::getLowBitsSet(BitWidth, ShAmt); // If any of the demanded bits are produced by the sign extension, we also // demand the input sign bit. APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt); if (HighBits.intersects(NewMask)) InDemandedMask |= APInt::getSignBit(VT.getScalarType().getSizeInBits()); if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne, TLO, Depth+1)) return true; assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); KnownZero = KnownZero.lshr(ShAmt); KnownOne = KnownOne.lshr(ShAmt); // Handle the sign bit, adjusted to where it is now in the mask. APInt SignBit = APInt::getSignBit(BitWidth).lshr(ShAmt); // If the input sign bit is known to be zero, or if none of the top bits // are demanded, turn this into an unsigned shift right. if (KnownZero.intersects(SignBit) || (HighBits & ~NewMask) == HighBits) { SDNodeFlags Flags; Flags.setExact(cast<BinaryWithFlagsSDNode>(Op)->Flags.hasExact()); return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op.getOperand(0), Op.getOperand(1), &Flags)); } int Log2 = NewMask.exactLogBase2(); if (Log2 >= 0) { // The bit must come from the sign. SDValue NewSA = TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, Op.getOperand(1).getValueType()); return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op.getOperand(0), NewSA)); } if (KnownOne.intersects(SignBit)) // New bits are known one. KnownOne |= HighBits; } break; case ISD::SIGN_EXTEND_INREG: { EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); APInt MsbMask = APInt::getHighBitsSet(BitWidth, 1); // If we only care about the highest bit, don't bother shifting right. if (MsbMask == NewMask) { unsigned ShAmt = ExVT.getScalarType().getSizeInBits(); SDValue InOp = Op.getOperand(0); unsigned VTBits = Op->getValueType(0).getScalarType().getSizeInBits(); bool AlreadySignExtended = TLO.DAG.ComputeNumSignBits(InOp) >= VTBits-ShAmt+1; // However if the input is already sign extended we expect the sign // extension to be dropped altogether later and do not simplify. if (!AlreadySignExtended) { // Compute the correct shift amount type, which must be getShiftAmountTy // for scalar types after legalization. EVT ShiftAmtTy = Op.getValueType(); if (TLO.LegalTypes() && !ShiftAmtTy.isVector()) ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL); SDValue ShiftAmt = TLO.DAG.getConstant(BitWidth - ShAmt, dl, ShiftAmtTy); return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, Op.getValueType(), InOp, ShiftAmt)); } } // Sign extension. Compute the demanded bits in the result that are not // present in the input. APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - ExVT.getScalarType().getSizeInBits()); // If none of the extended bits are demanded, eliminate the sextinreg. if ((NewBits & NewMask) == 0) return TLO.CombineTo(Op, Op.getOperand(0)); APInt InSignBit = APInt::getSignBit(ExVT.getScalarType().getSizeInBits()).zext(BitWidth); APInt InputDemandedBits = APInt::getLowBitsSet(BitWidth, ExVT.getScalarType().getSizeInBits()) & NewMask; // Since the sign extended bits are demanded, we know that the sign // bit is demanded. InputDemandedBits |= InSignBit; if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits, KnownZero, KnownOne, TLO, Depth+1)) return true; assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); // If the sign bit of the input is known set or clear, then we know the // top bits of the result. // If the input sign bit is known zero, convert this into a zero extension. if (KnownZero.intersects(InSignBit)) return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg(Op.getOperand(0),dl,ExVT)); if (KnownOne.intersects(InSignBit)) { // Input sign bit known set KnownOne |= NewBits; KnownZero &= ~NewBits; } else { // Input sign bit unknown KnownZero &= ~NewBits; KnownOne &= ~NewBits; } break; } case ISD::BUILD_PAIR: { EVT HalfVT = Op.getOperand(0).getValueType(); unsigned HalfBitWidth = HalfVT.getScalarSizeInBits(); APInt MaskLo = NewMask.getLoBits(HalfBitWidth).trunc(HalfBitWidth); APInt MaskHi = NewMask.getHiBits(HalfBitWidth).trunc(HalfBitWidth); APInt KnownZeroLo, KnownOneLo; APInt KnownZeroHi, KnownOneHi; if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownZeroLo, KnownOneLo, TLO, Depth + 1)) return true; if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownZeroHi, KnownOneHi, TLO, Depth + 1)) return true; KnownZero = KnownZeroLo.zext(BitWidth) | KnownZeroHi.zext(BitWidth).shl(HalfBitWidth); KnownOne = KnownOneLo.zext(BitWidth) | KnownOneHi.zext(BitWidth).shl(HalfBitWidth); break; } case ISD::ZERO_EXTEND: { unsigned OperandBitWidth = Op.getOperand(0).getValueType().getScalarType().getSizeInBits(); APInt InMask = NewMask.trunc(OperandBitWidth); // If none of the top bits are demanded, convert this into an any_extend. APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - OperandBitWidth) & NewMask; if (!NewBits.intersects(NewMask)) return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), Op.getOperand(0))); if (SimplifyDemandedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, TLO, Depth+1)) return true; assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); KnownZero = KnownZero.zext(BitWidth); KnownOne = KnownOne.zext(BitWidth); KnownZero |= NewBits; break; } case ISD::SIGN_EXTEND: { EVT InVT = Op.getOperand(0).getValueType(); unsigned InBits = InVT.getScalarType().getSizeInBits(); APInt InMask = APInt::getLowBitsSet(BitWidth, InBits); APInt InSignBit = APInt::getBitsSet(BitWidth, InBits - 1, InBits); APInt NewBits = ~InMask & NewMask; // If none of the top bits are demanded, convert this into an any_extend. if (NewBits == 0) return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), Op.getOperand(0))); // Since some of the sign extended bits are demanded, we know that the sign // bit is demanded. APInt InDemandedBits = InMask & NewMask; InDemandedBits |= InSignBit; InDemandedBits = InDemandedBits.trunc(InBits); if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero, KnownOne, TLO, Depth+1)) return true; KnownZero = KnownZero.zext(BitWidth); KnownOne = KnownOne.zext(BitWidth); // If the sign bit is known zero, convert this to a zero extend. if (KnownZero.intersects(InSignBit)) return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, Op.getValueType(), Op.getOperand(0))); // If the sign bit is known one, the top bits match. if (KnownOne.intersects(InSignBit)) { KnownOne |= NewBits; assert((KnownZero & NewBits) == 0); } else { // Otherwise, top bits aren't known. assert((KnownOne & NewBits) == 0); assert((KnownZero & NewBits) == 0); } break; } case ISD::ANY_EXTEND: { unsigned OperandBitWidth = Op.getOperand(0).getValueType().getScalarType().getSizeInBits(); APInt InMask = NewMask.trunc(OperandBitWidth); if (SimplifyDemandedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, TLO, Depth+1)) return true; assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); KnownZero = KnownZero.zext(BitWidth); KnownOne = KnownOne.zext(BitWidth); break; } case ISD::TRUNCATE: { // Simplify the input, using demanded bit information, and compute the known // zero/one bits live out. unsigned OperandBitWidth = Op.getOperand(0).getValueType().getScalarType().getSizeInBits(); APInt TruncMask = NewMask.zext(OperandBitWidth); if (SimplifyDemandedBits(Op.getOperand(0), TruncMask, KnownZero, KnownOne, TLO, Depth+1)) return true; KnownZero = KnownZero.trunc(BitWidth); KnownOne = KnownOne.trunc(BitWidth); // If the input is only used by this truncate, see if we can shrink it based // on the known demanded bits. if (Op.getOperand(0).getNode()->hasOneUse()) { SDValue In = Op.getOperand(0); switch (In.getOpcode()) { default: break; case ISD::SRL: // Shrink SRL by a constant if none of the high bits shifted in are // demanded. if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, Op.getValueType())) // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is // undesirable. break; ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1)); if (!ShAmt) break; SDValue Shift = In.getOperand(1); if (TLO.LegalTypes()) { uint64_t ShVal = ShAmt->getZExtValue(); Shift = TLO.DAG.getConstant(ShVal, dl, getShiftAmountTy(Op.getValueType(), DL)); } APInt HighBits = APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth); HighBits = HighBits.lshr(ShAmt->getZExtValue()).trunc(BitWidth); if (ShAmt->getZExtValue() < BitWidth && !(HighBits & NewMask)) { // None of the shifted in bits are needed. Add a truncate of the // shift input, then shift it. SDValue NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE, dl, Op.getValueType(), In.getOperand(0)); return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, Op.getValueType(), NewTrunc, Shift)); } break; } } assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); break; } case ISD::AssertZext: { // AssertZext demands all of the high bits, plus any of the low bits // demanded by its users. EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits()); if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | NewMask, KnownZero, KnownOne, TLO, Depth+1)) return true; assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); KnownZero |= ~InMask & NewMask; break; } case ISD::BITCAST: // If this is an FP->Int bitcast and if the sign bit is the only // thing demanded, turn this into a FGETSIGN. if (!TLO.LegalOperations() && !Op.getValueType().isVector() && !Op.getOperand(0).getValueType().isVector() && NewMask == APInt::getSignBit(Op.getValueType().getSizeInBits()) && Op.getOperand(0).getValueType().isFloatingPoint()) { bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, Op.getValueType()); bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32); if ((OpVTLegal || i32Legal) && Op.getValueType().isSimple() && Op.getOperand(0).getValueType() != MVT::f128) { // Cannot eliminate/lower SHL for f128 yet. EVT Ty = OpVTLegal ? Op.getValueType() : MVT::i32; // Make a FGETSIGN + SHL to move the sign bit into the appropriate // place. We expect the SHL to be eliminated by other optimizations. SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Op.getOperand(0)); unsigned OpVTSizeInBits = Op.getValueType().getSizeInBits(); if (!OpVTLegal && OpVTSizeInBits > 32) Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, Op.getValueType(), Sign); unsigned ShVal = Op.getValueType().getSizeInBits()-1; SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, Op.getValueType()); return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, Op.getValueType(), Sign, ShAmt)); } } break; case ISD::ADD: case ISD::MUL: case ISD::SUB: { // Add, Sub, and Mul don't demand any bits in positions beyond that // of the highest bit demanded of them. APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - NewMask.countLeadingZeros()); if (SimplifyDemandedBits(Op.getOperand(0), LoMask, KnownZero2, KnownOne2, TLO, Depth+1)) return true; if (SimplifyDemandedBits(Op.getOperand(1), LoMask, KnownZero2, KnownOne2, TLO, Depth+1)) return true; // See if the operation should be performed at a smaller bit width. if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl)) return true; } // FALL THROUGH default: // Just use computeKnownBits to compute output bits. TLO.DAG.computeKnownBits(Op, KnownZero, KnownOne, Depth); break; } // If we know the value of all of the demanded bits, return this as a // constant. if ((NewMask & (KnownZero|KnownOne)) == NewMask) { // Avoid folding to a constant if any OpaqueConstant is involved. const SDNode *N = Op.getNode(); for (SDNodeIterator I = SDNodeIterator::begin(N), E = SDNodeIterator::end(N); I != E; ++I) { SDNode *Op = *I; if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) if (C->isOpaque()) return false; } return TLO.CombineTo(Op, TLO.DAG.getConstant(KnownOne, dl, Op.getValueType())); } return false; } /// Determine which of the bits specified in Mask are known to be either zero or /// one and return them in the KnownZero/KnownOne bitsets. void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op, APInt &KnownZero, APInt &KnownOne, const SelectionDAG &DAG, unsigned Depth) const { assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID) && "Should use MaskedValueIsZero if you don't know whether Op" " is a target node!"); KnownZero = KnownOne = APInt(KnownOne.getBitWidth(), 0); } /// This method can be implemented by targets that want to expose additional /// information about sign bits to the DAG Combiner. unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op, const SelectionDAG &, unsigned Depth) const { assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID) && "Should use ComputeNumSignBits if you don't know whether Op" " is a target node!"); return 1; } bool TargetLowering::isConstTrueVal(const SDNode *N) const { if (!N) return false; const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N); if (!CN) { const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N); if (!BV) return false; BitVector UndefElements; CN = BV->getConstantSplatNode(&UndefElements); // Only interested in constant splats, and we don't try to handle undef // elements in identifying boolean constants. if (!CN || UndefElements.none()) return false; } switch (getBooleanContents(N->getValueType(0))) { case UndefinedBooleanContent: return CN->getAPIntValue()[0]; case ZeroOrOneBooleanContent: return CN->isOne(); case ZeroOrNegativeOneBooleanContent: return CN->isAllOnesValue(); } llvm_unreachable("Invalid boolean contents"); } bool TargetLowering::isConstFalseVal(const SDNode *N) const { if (!N) return false; const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N); if (!CN) { const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N); if (!BV) return false; BitVector UndefElements; CN = BV->getConstantSplatNode(&UndefElements); // Only interested in constant splats, and we don't try to handle undef // elements in identifying boolean constants. if (!CN || UndefElements.none()) return false; } if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent) return !CN->getAPIntValue()[0]; return CN->isNullValue(); } bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT, bool SExt) const { if (VT == MVT::i1) return N->isOne(); TargetLowering::BooleanContent Cnt = getBooleanContents(VT); switch (Cnt) { case TargetLowering::ZeroOrOneBooleanContent: // An extended value of 1 is always true, unless its original type is i1, // in which case it will be sign extended to -1. return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1)); case TargetLowering::UndefinedBooleanContent: case TargetLowering::ZeroOrNegativeOneBooleanContent: return N->isAllOnesValue() && SExt; } llvm_unreachable("Unexpected enumeration."); } /// This helper function of SimplifySetCC tries to optimize the comparison when /// either operand of the SetCC node is a bitwise-and instruction. SDValue TargetLowering::simplifySetCCWithAnd(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI, const SDLoc &DL) const { // Match these patterns in any of their permutations: // (X & Y) == Y // (X & Y) != Y if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND) std::swap(N0, N1); EVT OpVT = N0.getValueType(); if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() || (Cond != ISD::SETEQ && Cond != ISD::SETNE)) return SDValue(); SDValue X, Y; if (N0.getOperand(0) == N1) { X = N0.getOperand(1); Y = N0.getOperand(0); } else if (N0.getOperand(1) == N1) { X = N0.getOperand(0); Y = N0.getOperand(1); } else { return SDValue(); } SelectionDAG &DAG = DCI.DAG; SDValue Zero = DAG.getConstant(0, DL, OpVT); if (DAG.isKnownToBeAPowerOfTwo(Y)) { // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set. // Note that where Y is variable and is known to have at most one bit set // (for example, if it is Z & 1) we cannot do this; the expressions are not // equivalent when Y == 0. Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true); if (DCI.isBeforeLegalizeOps() || isCondCodeLegal(Cond, N0.getSimpleValueType())) return DAG.getSetCC(DL, VT, N0, Zero, Cond); } else if (N0.hasOneUse() && hasAndNotCompare(Y)) { // If the target supports an 'and-not' or 'and-complement' logic operation, // try to use that to make a comparison operation more efficient. // But don't do this transform if the mask is a single bit because there are // more efficient ways to deal with that case (for example, 'bt' on x86 or // 'rlwinm' on PPC). // Bail out if the compare operand that we want to turn into a zero is // already a zero (otherwise, infinite loop). auto *YConst = dyn_cast<ConstantSDNode>(Y); if (YConst && YConst->isNullValue()) return SDValue(); // Transform this into: ~X & Y == 0. SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT); SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y); return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond); } return SDValue(); } /// Try to simplify a setcc built with the specified operands and cc. If it is /// unable to simplify it, return a null SDValue. SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond, bool foldBooleans, DAGCombinerInfo &DCI, const SDLoc &dl) const { SelectionDAG &DAG = DCI.DAG; // These setcc operations always fold. switch (Cond) { default: break; case ISD::SETFALSE: case ISD::SETFALSE2: return DAG.getConstant(0, dl, VT); case ISD::SETTRUE: case ISD::SETTRUE2: { TargetLowering::BooleanContent Cnt = getBooleanContents(N0->getValueType(0)); return DAG.getConstant( Cnt == TargetLowering::ZeroOrNegativeOneBooleanContent ? -1ULL : 1, dl, VT); } } // Ensure that the constant occurs on the RHS, and fold constant // comparisons. ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond); if (isa<ConstantSDNode>(N0.getNode()) && (DCI.isBeforeLegalizeOps() || isCondCodeLegal(SwappedCC, N0.getSimpleValueType()))) return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { const APInt &C1 = N1C->getAPIntValue(); // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an // equality comparison, then we're just comparing whether X itself is // zero. if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) && N0.getOperand(0).getOpcode() == ISD::CTLZ && N0.getOperand(1).getOpcode() == ISD::Constant) { const APInt &ShAmt = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && ShAmt == Log2_32(N0.getValueType().getSizeInBits())) { if ((C1 == 0) == (Cond == ISD::SETEQ)) { // (srl (ctlz x), 5) == 0 -> X != 0 // (srl (ctlz x), 5) != 1 -> X != 0 Cond = ISD::SETNE; } else { // (srl (ctlz x), 5) != 0 -> X == 0 // (srl (ctlz x), 5) == 1 -> X == 0 Cond = ISD::SETEQ; } SDValue Zero = DAG.getConstant(0, dl, N0.getValueType()); return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), Zero, Cond); } } SDValue CTPOP = N0; // Look through truncs that don't change the value of a ctpop. if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE) CTPOP = N0.getOperand(0); if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP && (N0 == CTPOP || N0.getValueType().getSizeInBits() > Log2_32_Ceil(CTPOP.getValueType().getSizeInBits()))) { EVT CTVT = CTPOP.getValueType(); SDValue CTOp = CTPOP.getOperand(0); // (ctpop x) u< 2 -> (x & x-1) == 0 // (ctpop x) u> 1 -> (x & x-1) != 0 if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){ SDValue Sub = DAG.getNode(ISD::SUB, dl, CTVT, CTOp, DAG.getConstant(1, dl, CTVT)); SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Sub); ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE; return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, dl, CTVT), CC); } // TODO: (ctpop x) == 1 -> x && (x & x-1) == 0 iff ctpop is illegal. } // (zext x) == C --> x == (trunc C) // (sext x) == C --> x == (trunc C) if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && DCI.isBeforeLegalize() && N0->hasOneUse()) { unsigned MinBits = N0.getValueSizeInBits(); SDValue PreExt; bool Signed = false; if (N0->getOpcode() == ISD::ZERO_EXTEND) { // ZExt MinBits = N0->getOperand(0).getValueSizeInBits(); PreExt = N0->getOperand(0); } else if (N0->getOpcode() == ISD::AND) { // DAGCombine turns costly ZExts into ANDs if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1))) if ((C->getAPIntValue()+1).isPowerOf2()) { MinBits = C->getAPIntValue().countTrailingOnes(); PreExt = N0->getOperand(0); } } else if (N0->getOpcode() == ISD::SIGN_EXTEND) { // SExt MinBits = N0->getOperand(0).getValueSizeInBits(); PreExt = N0->getOperand(0); Signed = true; } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) { // ZEXTLOAD / SEXTLOAD if (LN0->getExtensionType() == ISD::ZEXTLOAD) { MinBits = LN0->getMemoryVT().getSizeInBits(); PreExt = N0; } else if (LN0->getExtensionType() == ISD::SEXTLOAD) { Signed = true; MinBits = LN0->getMemoryVT().getSizeInBits(); PreExt = N0; } } // Figure out how many bits we need to preserve this constant. unsigned ReqdBits = Signed ? C1.getBitWidth() - C1.getNumSignBits() + 1 : C1.getActiveBits(); // Make sure we're not losing bits from the constant. if (MinBits > 0 && MinBits < C1.getBitWidth() && MinBits >= ReqdBits) { EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits); if (isTypeDesirableForOp(ISD::SETCC, MinVT)) { // Will get folded away. SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt); SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT); return DAG.getSetCC(dl, VT, Trunc, C, Cond); } // If truncating the setcc operands is not desirable, we can still // simplify the expression in some cases: // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc) // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc)) // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc)) // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc) // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc)) // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc) SDValue TopSetCC = N0->getOperand(0); unsigned N0Opc = N0->getOpcode(); bool SExt = (N0Opc == ISD::SIGN_EXTEND); if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 && TopSetCC.getOpcode() == ISD::SETCC && (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) && (isConstFalseVal(N1C) || isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) { bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) || (!N1C->isNullValue() && Cond == ISD::SETNE); if (!Inverse) return TopSetCC; ISD::CondCode InvCond = ISD::getSetCCInverse( cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(), TopSetCC.getOperand(0).getValueType().isInteger()); return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0), TopSetCC.getOperand(1), InvCond); } } } // If the LHS is '(and load, const)', the RHS is 0, // the test is for equality or unsigned, and all 1 bits of the const are // in the same partial word, see if we can shorten the load. if (DCI.isBeforeLegalize() && !ISD::isSignedIntSetCC(Cond) && N0.getOpcode() == ISD::AND && C1 == 0 && N0.getNode()->hasOneUse() && isa<LoadSDNode>(N0.getOperand(0)) && N0.getOperand(0).getNode()->hasOneUse() && isa<ConstantSDNode>(N0.getOperand(1))) { LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0)); APInt bestMask; unsigned bestWidth = 0, bestOffset = 0; if (!Lod->isVolatile() && Lod->isUnindexed()) { unsigned origWidth = N0.getValueType().getSizeInBits(); unsigned maskWidth = origWidth; // We can narrow (e.g.) 16-bit extending loads on 32-bit target to // 8 bits, but have to be careful... if (Lod->getExtensionType() != ISD::NON_EXTLOAD) origWidth = Lod->getMemoryVT().getSizeInBits(); const APInt &Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); for (unsigned width = origWidth / 2; width>=8; width /= 2) { APInt newMask = APInt::getLowBitsSet(maskWidth, width); for (unsigned offset=0; offset<origWidth/width; offset++) { if ((newMask & Mask) == Mask) { if (!DAG.getDataLayout().isLittleEndian()) bestOffset = (origWidth/width - offset - 1) * (width/8); else bestOffset = (uint64_t)offset * (width/8); bestMask = Mask.lshr(offset * (width/8) * 8); bestWidth = width; break; } newMask = newMask << width; } } } if (bestWidth) { EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth); if (newVT.isRound()) { EVT PtrType = Lod->getOperand(1).getValueType(); SDValue Ptr = Lod->getBasePtr(); if (bestOffset != 0) Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(), DAG.getConstant(bestOffset, dl, PtrType)); unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset); SDValue NewLoad = DAG.getLoad(newVT, dl, Lod->getChain(), Ptr, Lod->getPointerInfo().getWithOffset(bestOffset), false, false, false, NewAlign); return DAG.getSetCC(dl, VT, DAG.getNode(ISD::AND, dl, newVT, NewLoad, DAG.getConstant(bestMask.trunc(bestWidth), dl, newVT)), DAG.getConstant(0LL, dl, newVT), Cond); } } } // If the LHS is a ZERO_EXTEND, perform the comparison on the input. if (N0.getOpcode() == ISD::ZERO_EXTEND) { unsigned InSize = N0.getOperand(0).getValueType().getSizeInBits(); // If the comparison constant has bits in the upper part, the // zero-extended value could never match. if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(), C1.getBitWidth() - InSize))) { switch (Cond) { case ISD::SETUGT: case ISD::SETUGE: case ISD::SETEQ: return DAG.getConstant(0, dl, VT); case ISD::SETULT: case ISD::SETULE: case ISD::SETNE: return DAG.getConstant(1, dl, VT); case ISD::SETGT: case ISD::SETGE: // True if the sign bit of C1 is set. return DAG.getConstant(C1.isNegative(), dl, VT); case ISD::SETLT: case ISD::SETLE: // True if the sign bit of C1 isn't set. return DAG.getConstant(C1.isNonNegative(), dl, VT); default: break; } } // Otherwise, we can perform the comparison with the low bits. switch (Cond) { case ISD::SETEQ: case ISD::SETNE: case ISD::SETUGT: case ISD::SETUGE: case ISD::SETULT: case ISD::SETULE: { EVT newVT = N0.getOperand(0).getValueType(); if (DCI.isBeforeLegalizeOps() || (isOperationLegal(ISD::SETCC, newVT) && getCondCodeAction(Cond, newVT.getSimpleVT()) == Legal)) { EVT NewSetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), newVT); SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT); SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0), NewConst, Cond); return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType()); } break; } default: break; // todo, be more careful with signed comparisons } } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT(); unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits(); EVT ExtDstTy = N0.getValueType(); unsigned ExtDstTyBits = ExtDstTy.getSizeInBits(); // If the constant doesn't fit into the number of bits for the source of // the sign extension, it is impossible for both sides to be equal. if (C1.getMinSignedBits() > ExtSrcTyBits) return DAG.getConstant(Cond == ISD::SETNE, dl, VT); SDValue ZextOp; EVT Op0Ty = N0.getOperand(0).getValueType(); if (Op0Ty == ExtSrcTy) { ZextOp = N0.getOperand(0); } else { APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits); ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0), DAG.getConstant(Imm, dl, Op0Ty)); } if (!DCI.isCalledByLegalizer()) DCI.AddToWorklist(ZextOp.getNode()); // Otherwise, make this a use of a zext. return DAG.getSetCC(dl, VT, ZextOp, DAG.getConstant(C1 & APInt::getLowBitsSet( ExtDstTyBits, ExtSrcTyBits), dl, ExtDstTy), Cond); } else if ((N1C->isNullValue() || N1C->getAPIntValue() == 1) && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC if (N0.getOpcode() == ISD::SETCC && isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) { bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getAPIntValue() != 1); if (TrueWhenTrue) return DAG.getNode(ISD::TRUNCATE, dl, VT, N0); // Invert the condition. ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType().isInteger()); if (DCI.isBeforeLegalizeOps() || isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType())) return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC); } if ((N0.getOpcode() == ISD::XOR || (N0.getOpcode() == ISD::AND && N0.getOperand(0).getOpcode() == ISD::XOR && N0.getOperand(1) == N0.getOperand(0).getOperand(1))) && isa<ConstantSDNode>(N0.getOperand(1)) && cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue() == 1) { // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We // can only do this if the top bits are known zero. unsigned BitWidth = N0.getValueSizeInBits(); if (DAG.MaskedValueIsZero(N0, APInt::getHighBitsSet(BitWidth, BitWidth-1))) { // Okay, get the un-inverted input value. SDValue Val; if (N0.getOpcode() == ISD::XOR) Val = N0.getOperand(0); else { assert(N0.getOpcode() == ISD::AND && N0.getOperand(0).getOpcode() == ISD::XOR); // ((X^1)&1)^1 -> X & 1 Val = DAG.getNode(ISD::AND, dl, N0.getValueType(), N0.getOperand(0).getOperand(0), N0.getOperand(1)); } return DAG.getSetCC(dl, VT, Val, N1, Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); } } else if (N1C->getAPIntValue() == 1 && (VT == MVT::i1 || getBooleanContents(N0->getValueType(0)) == ZeroOrOneBooleanContent)) { SDValue Op0 = N0; if (Op0.getOpcode() == ISD::TRUNCATE) Op0 = Op0.getOperand(0); if ((Op0.getOpcode() == ISD::XOR) && Op0.getOperand(0).getOpcode() == ISD::SETCC && Op0.getOperand(1).getOpcode() == ISD::SETCC) { // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc) Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ; return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1), Cond); } if (Op0.getOpcode() == ISD::AND && isa<ConstantSDNode>(Op0.getOperand(1)) && cast<ConstantSDNode>(Op0.getOperand(1))->getAPIntValue() == 1) { // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0. if (Op0.getValueType().bitsGT(VT)) Op0 = DAG.getNode(ISD::AND, dl, VT, DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)), DAG.getConstant(1, dl, VT)); else if (Op0.getValueType().bitsLT(VT)) Op0 = DAG.getNode(ISD::AND, dl, VT, DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)), DAG.getConstant(1, dl, VT)); return DAG.getSetCC(dl, VT, Op0, DAG.getConstant(0, dl, Op0.getValueType()), Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); } if (Op0.getOpcode() == ISD::AssertZext && cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1) return DAG.getSetCC(dl, VT, Op0, DAG.getConstant(0, dl, Op0.getValueType()), Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); } } APInt MinVal, MaxVal; unsigned OperandBitSize = N1C->getValueType(0).getSizeInBits(); if (ISD::isSignedIntSetCC(Cond)) { MinVal = APInt::getSignedMinValue(OperandBitSize); MaxVal = APInt::getSignedMaxValue(OperandBitSize); } else { MinVal = APInt::getMinValue(OperandBitSize); MaxVal = APInt::getMaxValue(OperandBitSize); } // Canonicalize GE/LE comparisons to use GT/LT comparisons. if (Cond == ISD::SETGE || Cond == ISD::SETUGE) { if (C1 == MinVal) return DAG.getConstant(1, dl, VT); // X >= MIN --> true // X >= C0 --> X > (C0 - 1) APInt C = C1 - 1; ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT; if ((DCI.isBeforeLegalizeOps() || isCondCodeLegal(NewCC, VT.getSimpleVT())) && (!N1C->isOpaque() || (N1C->isOpaque() && C.getBitWidth() <= 64 && isLegalICmpImmediate(C.getSExtValue())))) { return DAG.getSetCC(dl, VT, N0, DAG.getConstant(C, dl, N1.getValueType()), NewCC); } } if (Cond == ISD::SETLE || Cond == ISD::SETULE) { if (C1 == MaxVal) return DAG.getConstant(1, dl, VT); // X <= MAX --> true // X <= C0 --> X < (C0 + 1) APInt C = C1 + 1; ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT; if ((DCI.isBeforeLegalizeOps() || isCondCodeLegal(NewCC, VT.getSimpleVT())) && (!N1C->isOpaque() || (N1C->isOpaque() && C.getBitWidth() <= 64 && isLegalICmpImmediate(C.getSExtValue())))) { return DAG.getSetCC(dl, VT, N0, DAG.getConstant(C, dl, N1.getValueType()), NewCC); } } if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal) return DAG.getConstant(0, dl, VT); // X < MIN --> false if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal) return DAG.getConstant(1, dl, VT); // X >= MIN --> true if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal) return DAG.getConstant(0, dl, VT); // X > MAX --> false if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal) return DAG.getConstant(1, dl, VT); // X <= MAX --> true // Canonicalize setgt X, Min --> setne X, Min if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal) return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); // Canonicalize setlt X, Max --> setne X, Max if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal) return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); // If we have setult X, 1, turn it into seteq X, 0 if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1) return DAG.getSetCC(dl, VT, N0, DAG.getConstant(MinVal, dl, N0.getValueType()), ISD::SETEQ); // If we have setugt X, Max-1, turn it into seteq X, Max if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1) return DAG.getSetCC(dl, VT, N0, DAG.getConstant(MaxVal, dl, N0.getValueType()), ISD::SETEQ); // If we have "setcc X, C0", check to see if we can shrink the immediate // by changing cc. // SETUGT X, SINTMAX -> SETLT X, 0 if (Cond == ISD::SETUGT && C1 == APInt::getSignedMaxValue(OperandBitSize)) return DAG.getSetCC(dl, VT, N0, DAG.getConstant(0, dl, N1.getValueType()), ISD::SETLT); // SETULT X, SINTMIN -> SETGT X, -1 if (Cond == ISD::SETULT && C1 == APInt::getSignedMinValue(OperandBitSize)) { SDValue ConstMinusOne = DAG.getConstant(APInt::getAllOnesValue(OperandBitSize), dl, N1.getValueType()); return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT); } // Fold bit comparisons when we can. if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && (VT == N0.getValueType() || (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) && N0.getOpcode() == ISD::AND) { auto &DL = DAG.getDataLayout(); if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { EVT ShiftTy = DCI.isBeforeLegalize() ? getPointerTy(DL) : getShiftAmountTy(N0.getValueType(), DL); if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3 // Perform the xform if the AND RHS is a single bit. if (AndRHS->getAPIntValue().isPowerOf2()) { return DAG.getNode(ISD::TRUNCATE, dl, VT, DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0, DAG.getConstant(AndRHS->getAPIntValue().logBase2(), dl, ShiftTy))); } } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) { // (X & 8) == 8 --> (X & 8) >> 3 // Perform the xform if C1 is a single bit. if (C1.isPowerOf2()) { return DAG.getNode(ISD::TRUNCATE, dl, VT, DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0, DAG.getConstant(C1.logBase2(), dl, ShiftTy))); } } } } if (C1.getMinSignedBits() <= 64 && !isLegalICmpImmediate(C1.getSExtValue())) { // (X & -256) == 256 -> (X >> 8) == 1 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && N0.getOpcode() == ISD::AND && N0.hasOneUse()) { if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { const APInt &AndRHSC = AndRHS->getAPIntValue(); if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) { unsigned ShiftBits = AndRHSC.countTrailingZeros(); auto &DL = DAG.getDataLayout(); EVT ShiftTy = DCI.isBeforeLegalize() ? getPointerTy(DL) : getShiftAmountTy(N0.getValueType(), DL); EVT CmpTy = N0.getValueType(); SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0.getOperand(0), DAG.getConstant(ShiftBits, dl, ShiftTy)); SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, CmpTy); return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond); } } } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE || Cond == ISD::SETULE || Cond == ISD::SETUGT) { bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT); // X < 0x100000000 -> (X >> 32) < 1 // X >= 0x100000000 -> (X >> 32) >= 1 // X <= 0x0ffffffff -> (X >> 32) < 1 // X > 0x0ffffffff -> (X >> 32) >= 1 unsigned ShiftBits; APInt NewC = C1; ISD::CondCode NewCond = Cond; if (AdjOne) { ShiftBits = C1.countTrailingOnes(); NewC = NewC + 1; NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; } else { ShiftBits = C1.countTrailingZeros(); } NewC = NewC.lshr(ShiftBits); if (ShiftBits && NewC.getMinSignedBits() <= 64 && isLegalICmpImmediate(NewC.getSExtValue())) { auto &DL = DAG.getDataLayout(); EVT ShiftTy = DCI.isBeforeLegalize() ? getPointerTy(DL) : getShiftAmountTy(N0.getValueType(), DL); EVT CmpTy = N0.getValueType(); SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0, DAG.getConstant(ShiftBits, dl, ShiftTy)); SDValue CmpRHS = DAG.getConstant(NewC, dl, CmpTy); return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond); } } } } if (isa<ConstantFPSDNode>(N0.getNode())) { // Constant fold or commute setcc. SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond, dl); if (O.getNode()) return O; } else if (auto *CFP = dyn_cast<ConstantFPSDNode>(N1.getNode())) { // If the RHS of an FP comparison is a constant, simplify it away in // some cases. if (CFP->getValueAPF().isNaN()) { // If an operand is known to be a nan, we can fold it. switch (ISD::getUnorderedFlavor(Cond)) { default: llvm_unreachable("Unknown flavor!"); case 0: // Known false. return DAG.getConstant(0, dl, VT); case 1: // Known true. return DAG.getConstant(1, dl, VT); case 2: // Undefined. return DAG.getUNDEF(VT); } } // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the // constant if knowing that the operand is non-nan is enough. We prefer to // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to // materialize 0.0. if (Cond == ISD::SETO || Cond == ISD::SETUO) return DAG.getSetCC(dl, VT, N0, N0, Cond); // If the condition is not legal, see if we can find an equivalent one // which is legal. if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) { // If the comparison was an awkward floating-point == or != and one of // the comparison operands is infinity or negative infinity, convert the // condition to a less-awkward <= or >=. if (CFP->getValueAPF().isInfinity()) { if (CFP->getValueAPF().isNegative()) { if (Cond == ISD::SETOEQ && isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType())) return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE); if (Cond == ISD::SETUEQ && isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType())) return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE); if (Cond == ISD::SETUNE && isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType())) return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT); if (Cond == ISD::SETONE && isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType())) return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT); } else { if (Cond == ISD::SETOEQ && isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType())) return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE); if (Cond == ISD::SETUEQ && isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType())) return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE); if (Cond == ISD::SETUNE && isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType())) return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT); if (Cond == ISD::SETONE && isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType())) return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT); } } } } if (N0 == N1) { // The sext(setcc()) => setcc() optimization relies on the appropriate // constant being emitted. uint64_t EqVal = 0; switch (getBooleanContents(N0.getValueType())) { case UndefinedBooleanContent: case ZeroOrOneBooleanContent: EqVal = ISD::isTrueWhenEqual(Cond); break; case ZeroOrNegativeOneBooleanContent: EqVal = ISD::isTrueWhenEqual(Cond) ? -1 : 0; break; } // We can always fold X == X for integer setcc's. if (N0.getValueType().isInteger()) { return DAG.getConstant(EqVal, dl, VT); } unsigned UOF = ISD::getUnorderedFlavor(Cond); if (UOF == 2) // FP operators that are undefined on NaNs. return DAG.getConstant(EqVal, dl, VT); if (UOF == unsigned(ISD::isTrueWhenEqual(Cond))) return DAG.getConstant(EqVal, dl, VT); // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO // if it is not already. ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO; if (NewCond != Cond && (DCI.isBeforeLegalizeOps() || getCondCodeAction(NewCond, N0.getSimpleValueType()) == Legal)) return DAG.getSetCC(dl, VT, N0, N1, NewCond); } if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && N0.getValueType().isInteger()) { if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB || N0.getOpcode() == ISD::XOR) { // Simplify (X+Y) == (X+Z) --> Y == Z if (N0.getOpcode() == N1.getOpcode()) { if (N0.getOperand(0) == N1.getOperand(0)) return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond); if (N0.getOperand(1) == N1.getOperand(1)) return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond); if (DAG.isCommutativeBinOp(N0.getOpcode())) { // If X op Y == Y op X, try other combinations. if (N0.getOperand(0) == N1.getOperand(1)) return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0), Cond); if (N0.getOperand(1) == N1.getOperand(0)) return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1), Cond); } } // If RHS is a legal immediate value for a compare instruction, we need // to be careful about increasing register pressure needlessly. bool LegalRHSImm = false; if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) { if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { // Turn (X+C1) == C2 --> X == C2-C1 if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) { return DAG.getSetCC(dl, VT, N0.getOperand(0), DAG.getConstant(RHSC->getAPIntValue()- LHSR->getAPIntValue(), dl, N0.getValueType()), Cond); } // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0. if (N0.getOpcode() == ISD::XOR) // If we know that all of the inverted bits are zero, don't bother // performing the inversion. if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue())) return DAG.getSetCC(dl, VT, N0.getOperand(0), DAG.getConstant(LHSR->getAPIntValue() ^ RHSC->getAPIntValue(), dl, N0.getValueType()), Cond); } // Turn (C1-X) == C2 --> X == C1-C2 if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) { if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) { return DAG.getSetCC(dl, VT, N0.getOperand(1), DAG.getConstant(SUBC->getAPIntValue() - RHSC->getAPIntValue(), dl, N0.getValueType()), Cond); } } // Could RHSC fold directly into a compare? if (RHSC->getValueType(0).getSizeInBits() <= 64) LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue()); } // Simplify (X+Z) == X --> Z == 0 // Don't do this if X is an immediate that can fold into a cmp // instruction and X+Z has other uses. It could be an induction variable // chain, and the transform would increase register pressure. if (!LegalRHSImm || N0.getNode()->hasOneUse()) { if (N0.getOperand(0) == N1) return DAG.getSetCC(dl, VT, N0.getOperand(1), DAG.getConstant(0, dl, N0.getValueType()), Cond); if (N0.getOperand(1) == N1) { if (DAG.isCommutativeBinOp(N0.getOpcode())) return DAG.getSetCC(dl, VT, N0.getOperand(0), DAG.getConstant(0, dl, N0.getValueType()), Cond); if (N0.getNode()->hasOneUse()) { assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!"); auto &DL = DAG.getDataLayout(); // (Z-X) == X --> Z == X<<1 SDValue SH = DAG.getNode( ISD::SHL, dl, N1.getValueType(), N1, DAG.getConstant(1, dl, getShiftAmountTy(N1.getValueType(), DL))); if (!DCI.isCalledByLegalizer()) DCI.AddToWorklist(SH.getNode()); return DAG.getSetCC(dl, VT, N0.getOperand(0), SH, Cond); } } } } if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB || N1.getOpcode() == ISD::XOR) { // Simplify X == (X+Z) --> Z == 0 if (N1.getOperand(0) == N0) return DAG.getSetCC(dl, VT, N1.getOperand(1), DAG.getConstant(0, dl, N1.getValueType()), Cond); if (N1.getOperand(1) == N0) { if (DAG.isCommutativeBinOp(N1.getOpcode())) return DAG.getSetCC(dl, VT, N1.getOperand(0), DAG.getConstant(0, dl, N1.getValueType()), Cond); if (N1.getNode()->hasOneUse()) { assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!"); auto &DL = DAG.getDataLayout(); // X == (Z-X) --> X<<1 == Z SDValue SH = DAG.getNode( ISD::SHL, dl, N1.getValueType(), N0, DAG.getConstant(1, dl, getShiftAmountTy(N0.getValueType(), DL))); if (!DCI.isCalledByLegalizer()) DCI.AddToWorklist(SH.getNode()); return DAG.getSetCC(dl, VT, SH, N1.getOperand(0), Cond); } } } if (SDValue V = simplifySetCCWithAnd(VT, N0, N1, Cond, DCI, dl)) return V; } // Fold away ALL boolean setcc's. SDValue Temp; if (N0.getValueType() == MVT::i1 && foldBooleans) { switch (Cond) { default: llvm_unreachable("Unknown integer setcc!"); case ISD::SETEQ: // X == Y -> ~(X^Y) Temp = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1); N0 = DAG.getNOT(dl, Temp, MVT::i1); if (!DCI.isCalledByLegalizer()) DCI.AddToWorklist(Temp.getNode()); break; case ISD::SETNE: // X != Y --> (X^Y) N0 = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1); break; case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y Temp = DAG.getNOT(dl, N0, MVT::i1); N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N1, Temp); if (!DCI.isCalledByLegalizer()) DCI.AddToWorklist(Temp.getNode()); break; case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X Temp = DAG.getNOT(dl, N1, MVT::i1); N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N0, Temp); if (!DCI.isCalledByLegalizer()) DCI.AddToWorklist(Temp.getNode()); break; case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y Temp = DAG.getNOT(dl, N0, MVT::i1); N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N1, Temp); if (!DCI.isCalledByLegalizer()) DCI.AddToWorklist(Temp.getNode()); break; case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X Temp = DAG.getNOT(dl, N1, MVT::i1); N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N0, Temp); break; } if (VT != MVT::i1) { if (!DCI.isCalledByLegalizer()) DCI.AddToWorklist(N0.getNode()); // FIXME: If running after legalize, we probably can't do this. N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, N0); } return N0; } // Could not fold it. return SDValue(); } /// Returns true (and the GlobalValue and the offset) if the node is a /// GlobalAddress + offset. bool TargetLowering::isGAPlusOffset(SDNode *N, const GlobalValue *&GA, int64_t &Offset) const { if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) { GA = GASD->getGlobal(); Offset += GASD->getOffset(); return true; } if (N->getOpcode() == ISD::ADD) { SDValue N1 = N->getOperand(0); SDValue N2 = N->getOperand(1); if (isGAPlusOffset(N1.getNode(), GA, Offset)) { if (auto *V = dyn_cast<ConstantSDNode>(N2)) { Offset += V->getSExtValue(); return true; } } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) { if (auto *V = dyn_cast<ConstantSDNode>(N1)) { Offset += V->getSExtValue(); return true; } } } return false; } SDValue TargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const { // Default implementation: no optimization. return SDValue(); } //===----------------------------------------------------------------------===// // Inline Assembler Implementation Methods //===----------------------------------------------------------------------===// TargetLowering::ConstraintType TargetLowering::getConstraintType(StringRef Constraint) const { unsigned S = Constraint.size(); if (S == 1) { switch (Constraint[0]) { default: break; case 'r': return C_RegisterClass; case 'm': // memory case 'o': // offsetable case 'V': // not offsetable return C_Memory; case 'i': // Simple Integer or Relocatable Constant case 'n': // Simple Integer case 'E': // Floating Point Constant case 'F': // Floating Point Constant case 's': // Relocatable Constant case 'p': // Address. case 'X': // Allow ANY value. case 'I': // Target registers. case 'J': case 'K': case 'L': case 'M': case 'N': case 'O': case 'P': case '<': case '>': return C_Other; } } if (S > 1 && Constraint[0] == '{' && Constraint[S-1] == '}') { if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}" return C_Memory; return C_Register; } return C_Unknown; } /// Try to replace an X constraint, which matches anything, with another that /// has more specific requirements based on the type of the corresponding /// operand. const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const{ if (ConstraintVT.isInteger()) return "r"; if (ConstraintVT.isFloatingPoint()) return "f"; // works for many targets return nullptr; } /// Lower the specified operand into the Ops vector. /// If it is invalid, don't add anything to Ops. void TargetLowering::LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops, SelectionDAG &DAG) const { if (Constraint.length() > 1) return; char ConstraintLetter = Constraint[0]; switch (ConstraintLetter) { default: break; case 'X': // Allows any operand; labels (basic block) use this. if (Op.getOpcode() == ISD::BasicBlock) { Ops.push_back(Op); return; } // fall through case 'i': // Simple Integer or Relocatable Constant case 'n': // Simple Integer case 's': { // Relocatable Constant // These operands are interested in values of the form (GV+C), where C may // be folded in as an offset of GV, or it may be explicitly added. Also, it // is possible and fine if either GV or C are missing. ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op); // If we have "(add GV, C)", pull out GV/C if (Op.getOpcode() == ISD::ADD) { C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0)); if (!C || !GA) { C = dyn_cast<ConstantSDNode>(Op.getOperand(0)); GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1)); } if (!C || !GA) { C = nullptr; GA = nullptr; } } // If we find a valid operand, map to the TargetXXX version so that the // value itself doesn't get selected. if (GA) { // Either &GV or &GV+C if (ConstraintLetter != 'n') { int64_t Offs = GA->getOffset(); if (C) Offs += C->getZExtValue(); Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), C ? SDLoc(C) : SDLoc(), Op.getValueType(), Offs)); } return; } if (C) { // just C, no GV. // Simple constants are not allowed for 's'. if (ConstraintLetter != 's') { // gcc prints these as sign extended. Sign extend value to 64 bits // now; without this it would get ZExt'd later in // ScheduleDAGSDNodes::EmitNode, which is very generic. Ops.push_back(DAG.getTargetConstant(C->getAPIntValue().getSExtValue(), SDLoc(C), MVT::i64)); } return; } break; } } } std::pair<unsigned, const TargetRegisterClass *> TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI, StringRef Constraint, MVT VT) const { if (Constraint.empty() || Constraint[0] != '{') return std::make_pair(0u, static_cast<TargetRegisterClass*>(nullptr)); assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?"); // Remove the braces from around the name. StringRef RegName(Constraint.data()+1, Constraint.size()-2); std::pair<unsigned, const TargetRegisterClass*> R = std::make_pair(0u, static_cast<const TargetRegisterClass*>(nullptr)); // Figure out which register class contains this reg. for (TargetRegisterInfo::regclass_iterator RCI = RI->regclass_begin(), E = RI->regclass_end(); RCI != E; ++RCI) { const TargetRegisterClass *RC = *RCI; // If none of the value types for this register class are valid, we // can't use it. For example, 64-bit reg classes on 32-bit targets. if (!isLegalRC(RC)) continue; for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end(); I != E; ++I) { if (RegName.equals_lower(RI->getRegAsmName(*I))) { std::pair<unsigned, const TargetRegisterClass*> S = std::make_pair(*I, RC); // If this register class has the requested value type, return it, // otherwise keep searching and return the first class found // if no other is found which explicitly has the requested type. if (RC->hasType(VT)) return S; else if (!R.second) R = S; } } } return R; } //===----------------------------------------------------------------------===// // Constraint Selection. /// Return true of this is an input operand that is a matching constraint like /// "4". bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const { assert(!ConstraintCode.empty() && "No known constraint!"); return isdigit(static_cast<unsigned char>(ConstraintCode[0])); } /// If this is an input matching constraint, this method returns the output /// operand it matches. unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const { assert(!ConstraintCode.empty() && "No known constraint!"); return atoi(ConstraintCode.c_str()); } /// Split up the constraint string from the inline assembly value into the /// specific constraints and their prefixes, and also tie in the associated /// operand values. /// If this returns an empty vector, and if the constraint string itself /// isn't empty, there was an error parsing. TargetLowering::AsmOperandInfoVector TargetLowering::ParseConstraints(const DataLayout &DL, const TargetRegisterInfo *TRI, ImmutableCallSite CS) const { /// Information about all of the constraints. AsmOperandInfoVector ConstraintOperands; const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); unsigned maCount = 0; // Largest number of multiple alternative constraints. // Do a prepass over the constraints, canonicalizing them, and building up the // ConstraintOperands list. unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. unsigned ResNo = 0; // ResNo - The result number of the next output. for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { ConstraintOperands.emplace_back(std::move(CI)); AsmOperandInfo &OpInfo = ConstraintOperands.back(); // Update multiple alternative constraint count. if (OpInfo.multipleAlternatives.size() > maCount) maCount = OpInfo.multipleAlternatives.size(); OpInfo.ConstraintVT = MVT::Other; // Compute the value type for each operand. switch (OpInfo.Type) { case InlineAsm::isOutput: // Indirect outputs just consume an argument. if (OpInfo.isIndirect) { OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); break; } // The return value of the call is this value. As such, there is no // corresponding argument. assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); if (StructType *STy = dyn_cast<StructType>(CS.getType())) { OpInfo.ConstraintVT = getSimpleValueType(DL, STy->getElementType(ResNo)); } else { assert(ResNo == 0 && "Asm only has one result!"); OpInfo.ConstraintVT = getSimpleValueType(DL, CS.getType()); } ++ResNo; break; case InlineAsm::isInput: OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); break; case InlineAsm::isClobber: // Nothing to do. break; } if (OpInfo.CallOperandVal) { llvm::Type *OpTy = OpInfo.CallOperandVal->getType(); if (OpInfo.isIndirect) { llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); if (!PtrTy) report_fatal_error("Indirect operand for inline asm not a pointer!"); OpTy = PtrTy->getElementType(); } // Look for vector wrapped in a struct. e.g. { <16 x i8> }. if (StructType *STy = dyn_cast<StructType>(OpTy)) if (STy->getNumElements() == 1) OpTy = STy->getElementType(0); // If OpTy is not a single value, it may be a struct/union that we // can tile with integers. if (!OpTy->isSingleValueType() && OpTy->isSized()) { unsigned BitSize = DL.getTypeSizeInBits(OpTy); switch (BitSize) { default: break; case 1: case 8: case 16: case 32: case 64: case 128: OpInfo.ConstraintVT = MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true); break; } } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) { unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace()); OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize); } else { OpInfo.ConstraintVT = MVT::getVT(OpTy, true); } } } // If we have multiple alternative constraints, select the best alternative. if (!ConstraintOperands.empty()) { if (maCount) { unsigned bestMAIndex = 0; int bestWeight = -1; // weight: -1 = invalid match, and 0 = so-so match to 5 = good match. int weight = -1; unsigned maIndex; // Compute the sums of the weights for each alternative, keeping track // of the best (highest weight) one so far. for (maIndex = 0; maIndex < maCount; ++maIndex) { int weightSum = 0; for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); cIndex != eIndex; ++cIndex) { AsmOperandInfo& OpInfo = ConstraintOperands[cIndex]; if (OpInfo.Type == InlineAsm::isClobber) continue; // If this is an output operand with a matching input operand, // look up the matching input. If their types mismatch, e.g. one // is an integer, the other is floating point, or their sizes are // different, flag it as an maCantMatch. if (OpInfo.hasMatchingInput()) { AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; if (OpInfo.ConstraintVT != Input.ConstraintVT) { if ((OpInfo.ConstraintVT.isInteger() != Input.ConstraintVT.isInteger()) || (OpInfo.ConstraintVT.getSizeInBits() != Input.ConstraintVT.getSizeInBits())) { weightSum = -1; // Can't match. break; } } } weight = getMultipleConstraintMatchWeight(OpInfo, maIndex); if (weight == -1) { weightSum = -1; break; } weightSum += weight; } // Update best. if (weightSum > bestWeight) { bestWeight = weightSum; bestMAIndex = maIndex; } } // Now select chosen alternative in each constraint. for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); cIndex != eIndex; ++cIndex) { AsmOperandInfo& cInfo = ConstraintOperands[cIndex]; if (cInfo.Type == InlineAsm::isClobber) continue; cInfo.selectAlternative(bestMAIndex); } } } // Check and hook up tied operands, choose constraint code to use. for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); cIndex != eIndex; ++cIndex) { AsmOperandInfo& OpInfo = ConstraintOperands[cIndex]; // If this is an output operand with a matching input operand, look up the // matching input. If their types mismatch, e.g. one is an integer, the // other is floating point, or their sizes are different, flag it as an // error. if (OpInfo.hasMatchingInput()) { AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; if (OpInfo.ConstraintVT != Input.ConstraintVT) { std::pair<unsigned, const TargetRegisterClass *> MatchRC = getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, OpInfo.ConstraintVT); std::pair<unsigned, const TargetRegisterClass *> InputRC = getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, Input.ConstraintVT); if ((OpInfo.ConstraintVT.isInteger() != Input.ConstraintVT.isInteger()) || (MatchRC.second != InputRC.second)) { report_fatal_error("Unsupported asm: input constraint" " with a matching output constraint of" " incompatible type!"); } } } } return ConstraintOperands; } /// Return an integer indicating how general CT is. static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) { switch (CT) { case TargetLowering::C_Other: case TargetLowering::C_Unknown: return 0; case TargetLowering::C_Register: return 1; case TargetLowering::C_RegisterClass: return 2; case TargetLowering::C_Memory: return 3; } llvm_unreachable("Invalid constraint type"); } /// Examine constraint type and operand type and determine a weight value. /// This object must already have been set up with the operand type /// and the current alternative constraint selected. TargetLowering::ConstraintWeight TargetLowering::getMultipleConstraintMatchWeight( AsmOperandInfo &info, int maIndex) const { InlineAsm::ConstraintCodeVector *rCodes; if (maIndex >= (int)info.multipleAlternatives.size()) rCodes = &info.Codes; else rCodes = &info.multipleAlternatives[maIndex].Codes; ConstraintWeight BestWeight = CW_Invalid; // Loop over the options, keeping track of the most general one. for (unsigned i = 0, e = rCodes->size(); i != e; ++i) { ConstraintWeight weight = getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str()); if (weight > BestWeight) BestWeight = weight; } return BestWeight; } /// Examine constraint type and operand type and determine a weight value. /// This object must already have been set up with the operand type /// and the current alternative constraint selected. TargetLowering::ConstraintWeight TargetLowering::getSingleConstraintMatchWeight( AsmOperandInfo &info, const char *constraint) const { ConstraintWeight weight = CW_Invalid; Value *CallOperandVal = info.CallOperandVal; // If we don't have a value, we can't do a match, // but allow it at the lowest weight. if (!CallOperandVal) return CW_Default; // Look at the constraint type. switch (*constraint) { case 'i': // immediate integer. case 'n': // immediate integer with a known value. if (isa<ConstantInt>(CallOperandVal)) weight = CW_Constant; break; case 's': // non-explicit intregal immediate. if (isa<GlobalValue>(CallOperandVal)) weight = CW_Constant; break; case 'E': // immediate float if host format. case 'F': // immediate float. if (isa<ConstantFP>(CallOperandVal)) weight = CW_Constant; break; case '<': // memory operand with autodecrement. case '>': // memory operand with autoincrement. case 'm': // memory operand. case 'o': // offsettable memory operand case 'V': // non-offsettable memory operand weight = CW_Memory; break; case 'r': // general register. case 'g': // general register, memory operand or immediate integer. // note: Clang converts "g" to "imr". if (CallOperandVal->getType()->isIntegerTy()) weight = CW_Register; break; case 'X': // any operand. default: weight = CW_Default; break; } return weight; } /// If there are multiple different constraints that we could pick for this /// operand (e.g. "imr") try to pick the 'best' one. /// This is somewhat tricky: constraints fall into four classes: /// Other -> immediates and magic values /// Register -> one specific register /// RegisterClass -> a group of regs /// Memory -> memory /// Ideally, we would pick the most specific constraint possible: if we have /// something that fits into a register, we would pick it. The problem here /// is that if we have something that could either be in a register or in /// memory that use of the register could cause selection of *other* /// operands to fail: they might only succeed if we pick memory. Because of /// this the heuristic we use is: /// /// 1) If there is an 'other' constraint, and if the operand is valid for /// that constraint, use it. This makes us take advantage of 'i' /// constraints when available. /// 2) Otherwise, pick the most general constraint present. This prefers /// 'm' over 'r', for example. /// static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo, const TargetLowering &TLI, SDValue Op, SelectionDAG *DAG) { assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options"); unsigned BestIdx = 0; TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown; int BestGenerality = -1; // Loop over the options, keeping track of the most general one. for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) { TargetLowering::ConstraintType CType = TLI.getConstraintType(OpInfo.Codes[i]); // If this is an 'other' constraint, see if the operand is valid for it. // For example, on X86 we might have an 'rI' constraint. If the operand // is an integer in the range [0..31] we want to use I (saving a load // of a register), otherwise we must use 'r'. if (CType == TargetLowering::C_Other && Op.getNode()) { assert(OpInfo.Codes[i].size() == 1 && "Unhandled multi-letter 'other' constraint"); std::vector<SDValue> ResultOps; TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i], ResultOps, *DAG); if (!ResultOps.empty()) { BestType = CType; BestIdx = i; break; } } // Things with matching constraints can only be registers, per gcc // documentation. This mainly affects "g" constraints. if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput()) continue; // This constraint letter is more general than the previous one, use it. int Generality = getConstraintGenerality(CType); if (Generality > BestGenerality) { BestType = CType; BestIdx = i; BestGenerality = Generality; } } OpInfo.ConstraintCode = OpInfo.Codes[BestIdx]; OpInfo.ConstraintType = BestType; } /// Determines the constraint code and constraint type to use for the specific /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType. void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo, SDValue Op, SelectionDAG *DAG) const { assert(!OpInfo.Codes.empty() && "Must have at least one constraint"); // Single-letter constraints ('r') are very common. if (OpInfo.Codes.size() == 1) { OpInfo.ConstraintCode = OpInfo.Codes[0]; OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); } else { ChooseConstraint(OpInfo, *this, Op, DAG); } // 'X' matches anything. if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) { // Labels and constants are handled elsewhere ('X' is the only thing // that matches labels). For Functions, the type here is the type of // the result, which is not what we want to look at; leave them alone. Value *v = OpInfo.CallOperandVal; if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) { OpInfo.CallOperandVal = v; return; } // Otherwise, try to resolve it to something we know about by looking at // the actual operand type. if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) { OpInfo.ConstraintCode = Repl; OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); } } } /// \brief Given an exact SDIV by a constant, create a multiplication /// with the multiplicative inverse of the constant. static SDValue BuildExactSDIV(const TargetLowering &TLI, SDValue Op1, APInt d, const SDLoc &dl, SelectionDAG &DAG, std::vector<SDNode *> &Created) { assert(d != 0 && "Division by zero!"); // Shift the value upfront if it is even, so the LSB is one. unsigned ShAmt = d.countTrailingZeros(); if (ShAmt) { // TODO: For UDIV use SRL instead of SRA. SDValue Amt = DAG.getConstant(ShAmt, dl, TLI.getShiftAmountTy(Op1.getValueType(), DAG.getDataLayout())); SDNodeFlags Flags; Flags.setExact(true); Op1 = DAG.getNode(ISD::SRA, dl, Op1.getValueType(), Op1, Amt, &Flags); Created.push_back(Op1.getNode()); d = d.ashr(ShAmt); } // Calculate the multiplicative inverse, using Newton's method. APInt t, xn = d; while ((t = d*xn) != 1) xn *= APInt(d.getBitWidth(), 2) - t; SDValue Op2 = DAG.getConstant(xn, dl, Op1.getValueType()); SDValue Mul = DAG.getNode(ISD::MUL, dl, Op1.getValueType(), Op1, Op2); Created.push_back(Mul.getNode()); return Mul; } SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, SelectionDAG &DAG, std::vector<SDNode *> *Created) const { AttributeSet Attr = DAG.getMachineFunction().getFunction()->getAttributes(); const TargetLowering &TLI = DAG.getTargetLoweringInfo(); if (TLI.isIntDivCheap(N->getValueType(0), Attr)) return SDValue(N,0); // Lower SDIV as SDIV return SDValue(); } /// \brief Given an ISD::SDIV node expressing a divide by constant, /// return a DAG expression to select that will generate the same value by /// multiplying by a magic number. /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". SDValue TargetLowering::BuildSDIV(SDNode *N, const APInt &Divisor, SelectionDAG &DAG, bool IsAfterLegalization, std::vector<SDNode *> *Created) const { assert(Created && "No vector to hold sdiv ops."); EVT VT = N->getValueType(0); SDLoc dl(N); // Check to see if we can do this. // FIXME: We should be more aggressive here. if (!isTypeLegal(VT)) return SDValue(); // If the sdiv has an 'exact' bit we can use a simpler lowering. if (cast<BinaryWithFlagsSDNode>(N)->Flags.hasExact()) return BuildExactSDIV(*this, N->getOperand(0), Divisor, dl, DAG, *Created); APInt::ms magics = Divisor.magic(); // Multiply the numerator (operand 0) by the magic value // FIXME: We should support doing a MUL in a wider type SDValue Q; if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT) : isOperationLegalOrCustom(ISD::MULHS, VT)) Q = DAG.getNode(ISD::MULHS, dl, VT, N->getOperand(0), DAG.getConstant(magics.m, dl, VT)); else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT) : isOperationLegalOrCustom(ISD::SMUL_LOHI, VT)) Q = SDValue(DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), N->getOperand(0), DAG.getConstant(magics.m, dl, VT)).getNode(), 1); else return SDValue(); // No mulhs or equvialent // If d > 0 and m < 0, add the numerator if (Divisor.isStrictlyPositive() && magics.m.isNegative()) { Q = DAG.getNode(ISD::ADD, dl, VT, Q, N->getOperand(0)); Created->push_back(Q.getNode()); } // If d < 0 and m > 0, subtract the numerator. if (Divisor.isNegative() && magics.m.isStrictlyPositive()) { Q = DAG.getNode(ISD::SUB, dl, VT, Q, N->getOperand(0)); Created->push_back(Q.getNode()); } auto &DL = DAG.getDataLayout(); // Shift right algebraic if shift value is nonzero if (magics.s > 0) { Q = DAG.getNode( ISD::SRA, dl, VT, Q, DAG.getConstant(magics.s, dl, getShiftAmountTy(Q.getValueType(), DL))); Created->push_back(Q.getNode()); } // Extract the sign bit and add it to the quotient SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, getShiftAmountTy(Q.getValueType(), DL))); Created->push_back(T.getNode()); return DAG.getNode(ISD::ADD, dl, VT, Q, T); } /// \brief Given an ISD::UDIV node expressing a divide by constant, /// return a DAG expression to select that will generate the same value by /// multiplying by a magic number. /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". SDValue TargetLowering::BuildUDIV(SDNode *N, const APInt &Divisor, SelectionDAG &DAG, bool IsAfterLegalization, std::vector<SDNode *> *Created) const { assert(Created && "No vector to hold udiv ops."); EVT VT = N->getValueType(0); SDLoc dl(N); auto &DL = DAG.getDataLayout(); // Check to see if we can do this. // FIXME: We should be more aggressive here. if (!isTypeLegal(VT)) return SDValue(); // FIXME: We should use a narrower constant when the upper // bits are known to be zero. APInt::mu magics = Divisor.magicu(); SDValue Q = N->getOperand(0); // If the divisor is even, we can avoid using the expensive fixup by shifting // the divided value upfront. if (magics.a != 0 && !Divisor[0]) { unsigned Shift = Divisor.countTrailingZeros(); Q = DAG.getNode( ISD::SRL, dl, VT, Q, DAG.getConstant(Shift, dl, getShiftAmountTy(Q.getValueType(), DL))); Created->push_back(Q.getNode()); // Get magic number for the shifted divisor. magics = Divisor.lshr(Shift).magicu(Shift); assert(magics.a == 0 && "Should use cheap fixup now"); } // Multiply the numerator (operand 0) by the magic value // FIXME: We should support doing a MUL in a wider type if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT) : isOperationLegalOrCustom(ISD::MULHU, VT)) Q = DAG.getNode(ISD::MULHU, dl, VT, Q, DAG.getConstant(magics.m, dl, VT)); else if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT) : isOperationLegalOrCustom(ISD::UMUL_LOHI, VT)) Q = SDValue(DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), Q, DAG.getConstant(magics.m, dl, VT)).getNode(), 1); else return SDValue(); // No mulhu or equvialent Created->push_back(Q.getNode()); if (magics.a == 0) { assert(magics.s < Divisor.getBitWidth() && "We shouldn't generate an undefined shift!"); return DAG.getNode( ISD::SRL, dl, VT, Q, DAG.getConstant(magics.s, dl, getShiftAmountTy(Q.getValueType(), DL))); } else { SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N->getOperand(0), Q); Created->push_back(NPQ.getNode()); NPQ = DAG.getNode( ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, getShiftAmountTy(NPQ.getValueType(), DL))); Created->push_back(NPQ.getNode()); NPQ = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q); Created->push_back(NPQ.getNode()); return DAG.getNode( ISD::SRL, dl, VT, NPQ, DAG.getConstant(magics.s - 1, dl, getShiftAmountTy(NPQ.getValueType(), DL))); } } bool TargetLowering:: verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const { if (!isa<ConstantSDNode>(Op.getOperand(0))) { DAG.getContext()->emitError("argument to '__builtin_return_address' must " "be a constant integer"); return true; } return false; } //===----------------------------------------------------------------------===// // Legalization Utilities //===----------------------------------------------------------------------===// bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT, SelectionDAG &DAG, SDValue LL, SDValue LH, SDValue RL, SDValue RH) const { EVT VT = N->getValueType(0); SDLoc dl(N); bool HasMULHS = isOperationLegalOrCustom(ISD::MULHS, HiLoVT); bool HasMULHU = isOperationLegalOrCustom(ISD::MULHU, HiLoVT); bool HasSMUL_LOHI = isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT); bool HasUMUL_LOHI = isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT); if (HasMULHU || HasMULHS || HasUMUL_LOHI || HasSMUL_LOHI) { unsigned OuterBitSize = VT.getSizeInBits(); unsigned InnerBitSize = HiLoVT.getSizeInBits(); unsigned LHSSB = DAG.ComputeNumSignBits(N->getOperand(0)); unsigned RHSSB = DAG.ComputeNumSignBits(N->getOperand(1)); // LL, LH, RL, and RH must be either all NULL or all set to a value. assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) || (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode())); if (!LL.getNode() && !RL.getNode() && isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, N->getOperand(0)); RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, N->getOperand(1)); } if (!LL.getNode()) return false; APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize); if (DAG.MaskedValueIsZero(N->getOperand(0), HighMask) && DAG.MaskedValueIsZero(N->getOperand(1), HighMask)) { // The inputs are both zero-extended. if (HasUMUL_LOHI) { // We can emit a umul_lohi. Lo = DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(HiLoVT, HiLoVT), LL, RL); Hi = SDValue(Lo.getNode(), 1); return true; } if (HasMULHU) { // We can emit a mulhu+mul. Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RL); Hi = DAG.getNode(ISD::MULHU, dl, HiLoVT, LL, RL); return true; } } if (LHSSB > InnerBitSize && RHSSB > InnerBitSize) { // The input values are both sign-extended. if (HasSMUL_LOHI) { // We can emit a smul_lohi. Lo = DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(HiLoVT, HiLoVT), LL, RL); Hi = SDValue(Lo.getNode(), 1); return true; } if (HasMULHS) { // We can emit a mulhs+mul. Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RL); Hi = DAG.getNode(ISD::MULHS, dl, HiLoVT, LL, RL); return true; } } if (!LH.getNode() && !RH.getNode() && isOperationLegalOrCustom(ISD::SRL, VT) && isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { auto &DL = DAG.getDataLayout(); unsigned ShiftAmt = VT.getSizeInBits() - HiLoVT.getSizeInBits(); SDValue Shift = DAG.getConstant(ShiftAmt, dl, getShiftAmountTy(VT, DL)); LH = DAG.getNode(ISD::SRL, dl, VT, N->getOperand(0), Shift); LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH); RH = DAG.getNode(ISD::SRL, dl, VT, N->getOperand(1), Shift); RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH); } if (!LH.getNode()) return false; if (HasUMUL_LOHI) { // Lo,Hi = umul LHS, RHS. SDValue UMulLOHI = DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(HiLoVT, HiLoVT), LL, RL); Lo = UMulLOHI; Hi = UMulLOHI.getValue(1); RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH); LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL); Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH); Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH); return true; } if (HasMULHU) { Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RL); Hi = DAG.getNode(ISD::MULHU, dl, HiLoVT, LL, RL); RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH); LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL); Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH); Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH); return true; } } return false; } bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result, SelectionDAG &DAG) const { EVT VT = Node->getOperand(0).getValueType(); EVT NVT = Node->getValueType(0); SDLoc dl(SDValue(Node, 0)); // FIXME: Only f32 to i64 conversions are supported. if (VT != MVT::f32 || NVT != MVT::i64) return false; // Expand f32 -> i64 conversion // This algorithm comes from compiler-rt's implementation of fixsfdi: // https://github.com/llvm-mirror/compiler-rt/blob/master/lib/builtins/fixsfdi.c EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT); SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT); SDValue Bias = DAG.getConstant(127, dl, IntVT); SDValue SignMask = DAG.getConstant(APInt::getSignBit(VT.getSizeInBits()), dl, IntVT); SDValue SignLowBit = DAG.getConstant(VT.getSizeInBits() - 1, dl, IntVT); SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT); SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Node->getOperand(0)); auto &DL = DAG.getDataLayout(); SDValue ExponentBits = DAG.getNode( ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask), DAG.getZExtOrTrunc(ExponentLoBit, dl, getShiftAmountTy(IntVT, DL))); SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias); SDValue Sign = DAG.getNode( ISD::SRA, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask), DAG.getZExtOrTrunc(SignLowBit, dl, getShiftAmountTy(IntVT, DL))); Sign = DAG.getSExtOrTrunc(Sign, dl, NVT); SDValue R = DAG.getNode(ISD::OR, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask), DAG.getConstant(0x00800000, dl, IntVT)); R = DAG.getZExtOrTrunc(R, dl, NVT); R = DAG.getSelectCC( dl, Exponent, ExponentLoBit, DAG.getNode(ISD::SHL, dl, NVT, R, DAG.getZExtOrTrunc( DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit), dl, getShiftAmountTy(IntVT, DL))), DAG.getNode(ISD::SRL, dl, NVT, R, DAG.getZExtOrTrunc( DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent), dl, getShiftAmountTy(IntVT, DL))), ISD::SETGT); SDValue Ret = DAG.getNode(ISD::SUB, dl, NVT, DAG.getNode(ISD::XOR, dl, NVT, R, Sign), Sign); Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT), DAG.getConstant(0, dl, NVT), Ret, ISD::SETLT); return true; } SDValue TargetLowering::scalarizeVectorLoad(LoadSDNode *LD, SelectionDAG &DAG) const { SDLoc SL(LD); SDValue Chain = LD->getChain(); SDValue BasePTR = LD->getBasePtr(); EVT SrcVT = LD->getMemoryVT(); ISD::LoadExtType ExtType = LD->getExtensionType(); unsigned NumElem = SrcVT.getVectorNumElements(); EVT SrcEltVT = SrcVT.getScalarType(); EVT DstEltVT = LD->getValueType(0).getScalarType(); unsigned Stride = SrcEltVT.getSizeInBits() / 8; assert(SrcEltVT.isByteSized()); EVT PtrVT = BasePTR.getValueType(); SmallVector<SDValue, 8> Vals; SmallVector<SDValue, 8> LoadChains; for (unsigned Idx = 0; Idx < NumElem; ++Idx) { SDValue ScalarLoad = DAG.getExtLoad( ExtType, SL, DstEltVT, Chain, BasePTR, LD->getPointerInfo().getWithOffset(Idx * Stride), SrcEltVT, LD->isVolatile(), LD->isNonTemporal(), LD->isInvariant(), MinAlign(LD->getAlignment(), Idx * Stride), LD->getAAInfo()); BasePTR = DAG.getNode(ISD::ADD, SL, PtrVT, BasePTR, DAG.getConstant(Stride, SL, PtrVT)); Vals.push_back(ScalarLoad.getValue(0)); LoadChains.push_back(ScalarLoad.getValue(1)); } SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains); SDValue Value = DAG.getNode(ISD::BUILD_VECTOR, SL, LD->getValueType(0), Vals); return DAG.getMergeValues({ Value, NewChain }, SL); } // FIXME: This relies on each element having a byte size, otherwise the stride // is 0 and just overwrites the same location. ExpandStore currently expects // this broken behavior. SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST, SelectionDAG &DAG) const { SDLoc SL(ST); SDValue Chain = ST->getChain(); SDValue BasePtr = ST->getBasePtr(); SDValue Value = ST->getValue(); EVT StVT = ST->getMemoryVT(); unsigned Alignment = ST->getAlignment(); bool isVolatile = ST->isVolatile(); bool isNonTemporal = ST->isNonTemporal(); AAMDNodes AAInfo = ST->getAAInfo(); // The type of the data we want to save EVT RegVT = Value.getValueType(); EVT RegSclVT = RegVT.getScalarType(); // The type of data as saved in memory. EVT MemSclVT = StVT.getScalarType(); EVT PtrVT = BasePtr.getValueType(); // Store Stride in bytes unsigned Stride = MemSclVT.getSizeInBits() / 8; EVT IdxVT = getVectorIdxTy(DAG.getDataLayout()); unsigned NumElem = StVT.getVectorNumElements(); // Extract each of the elements from the original vector and save them into // memory individually. SmallVector<SDValue, 8> Stores; for (unsigned Idx = 0; Idx < NumElem; ++Idx) { SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, DAG.getConstant(Idx, SL, IdxVT)); SDValue Ptr = DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr, DAG.getConstant(Idx * Stride, SL, PtrVT)); // This scalar TruncStore may be illegal, but we legalize it later. SDValue Store = DAG.getTruncStore( Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride), MemSclVT, isVolatile, isNonTemporal, MinAlign(Alignment, Idx * Stride), AAInfo); Stores.push_back(Store); } return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores); } std::pair<SDValue, SDValue> TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const { assert(LD->getAddressingMode() == ISD::UNINDEXED && "unaligned indexed loads not implemented!"); SDValue Chain = LD->getChain(); SDValue Ptr = LD->getBasePtr(); EVT VT = LD->getValueType(0); EVT LoadedVT = LD->getMemoryVT(); SDLoc dl(LD); if (VT.isFloatingPoint() || VT.isVector()) { EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits()); if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) { if (!isOperationLegalOrCustom(ISD::LOAD, intVT)) { // Scalarize the load and let the individual components be handled. SDValue Scalarized = scalarizeVectorLoad(LD, DAG); return std::make_pair(Scalarized.getValue(0), Scalarized.getValue(1)); } // Expand to a (misaligned) integer load of the same size, // then bitconvert to floating point or vector. SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, LD->getMemOperand()); SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad); if (LoadedVT != VT) Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND : ISD::ANY_EXTEND, dl, VT, Result); return std::make_pair(Result, newLoad.getValue(1)); } // Copy the value to a (aligned) stack slot using (unaligned) integer // loads and stores, then do a (aligned) load from the stack slot. MVT RegVT = getRegisterType(*DAG.getContext(), intVT); unsigned LoadedBytes = LoadedVT.getSizeInBits() / 8; unsigned RegBytes = RegVT.getSizeInBits() / 8; unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes; // Make sure the stack slot is also aligned for the register type. SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT); SmallVector<SDValue, 8> Stores; SDValue StackPtr = StackBase; unsigned Offset = 0; EVT PtrVT = Ptr.getValueType(); EVT StackPtrVT = StackPtr.getValueType(); SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); // Do all but one copies using the full register width. for (unsigned i = 1; i < NumRegs; i++) { // Load one integer register's worth from the original location. SDValue Load = DAG.getLoad(RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset), LD->isVolatile(), LD->isNonTemporal(), LD->isInvariant(), MinAlign(LD->getAlignment(), Offset), LD->getAAInfo()); // Follow the load with a store to the stack slot. Remember the store. Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, StackPtr, MachinePointerInfo(), false, false, 0)); // Increment the pointers. Offset += RegBytes; Ptr = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, PtrIncrement); StackPtr = DAG.getNode(ISD::ADD, dl, StackPtrVT, StackPtr, StackPtrIncrement); } // The last copy may be partial. Do an extending load. EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 8 * (LoadedBytes - Offset)); SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset), MemVT, LD->isVolatile(), LD->isNonTemporal(), LD->isInvariant(), MinAlign(LD->getAlignment(), Offset), LD->getAAInfo()); // Follow the load with a store to the stack slot. Remember the store. // On big-endian machines this requires a truncating store to ensure // that the bits end up in the right place. Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, StackPtr, MachinePointerInfo(), MemVT, false, false, 0)); // The order of the stores doesn't matter - say it with a TokenFactor. SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); // Finally, perform the original load only redirected to the stack slot. Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase, MachinePointerInfo(), LoadedVT, false,false, false, 0); // Callers expect a MERGE_VALUES node. return std::make_pair(Load, TF); } assert(LoadedVT.isInteger() && !LoadedVT.isVector() && "Unaligned load of unsupported type."); // Compute the new VT that is half the size of the old one. This is an // integer MVT. unsigned NumBits = LoadedVT.getSizeInBits(); EVT NewLoadedVT; NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2); NumBits >>= 1; unsigned Alignment = LD->getAlignment(); unsigned IncrementSize = NumBits / 8; ISD::LoadExtType HiExtType = LD->getExtensionType(); // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD. if (HiExtType == ISD::NON_EXTLOAD) HiExtType = ISD::ZEXTLOAD; // Load the value in two parts SDValue Lo, Hi; if (DAG.getDataLayout().isLittleEndian()) { Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(), NewLoadedVT, LD->isVolatile(), LD->isNonTemporal(), LD->isInvariant(), Alignment, LD->getAAInfo()); Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, DAG.getConstant(IncrementSize, dl, Ptr.getValueType())); Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo().getWithOffset(IncrementSize), NewLoadedVT, LD->isVolatile(), LD->isNonTemporal(),LD->isInvariant(), MinAlign(Alignment, IncrementSize), LD->getAAInfo()); } else { Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(), NewLoadedVT, LD->isVolatile(), LD->isNonTemporal(), LD->isInvariant(), Alignment, LD->getAAInfo()); Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, DAG.getConstant(IncrementSize, dl, Ptr.getValueType())); Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo().getWithOffset(IncrementSize), NewLoadedVT, LD->isVolatile(), LD->isNonTemporal(), LD->isInvariant(), MinAlign(Alignment, IncrementSize), LD->getAAInfo()); } // aggregate the two parts SDValue ShiftAmount = DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(), DAG.getDataLayout())); SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount); Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo); SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), Hi.getValue(1)); return std::make_pair(Result, TF); } SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST, SelectionDAG &DAG) const { assert(ST->getAddressingMode() == ISD::UNINDEXED && "unaligned indexed stores not implemented!"); SDValue Chain = ST->getChain(); SDValue Ptr = ST->getBasePtr(); SDValue Val = ST->getValue(); EVT VT = Val.getValueType(); int Alignment = ST->getAlignment(); SDLoc dl(ST); if (ST->getMemoryVT().isFloatingPoint() || ST->getMemoryVT().isVector()) { EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); if (isTypeLegal(intVT)) { if (!isOperationLegalOrCustom(ISD::STORE, intVT)) { // Scalarize the store and let the individual components be handled. SDValue Result = scalarizeVectorStore(ST, DAG); return Result; } // Expand to a bitconvert of the value to the integer type of the // same size, then a (misaligned) int store. // FIXME: Does not handle truncating floating point stores! SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val); Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(), ST->isVolatile(), ST->isNonTemporal(), Alignment); return Result; } // Do a (aligned) store to a stack slot, then copy from the stack slot // to the final destination using (unaligned) integer loads and stores. EVT StoredVT = ST->getMemoryVT(); MVT RegVT = getRegisterType(*DAG.getContext(), EVT::getIntegerVT(*DAG.getContext(), StoredVT.getSizeInBits())); EVT PtrVT = Ptr.getValueType(); unsigned StoredBytes = StoredVT.getSizeInBits() / 8; unsigned RegBytes = RegVT.getSizeInBits() / 8; unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes; // Make sure the stack slot is also aligned for the register type. SDValue StackPtr = DAG.CreateStackTemporary(StoredVT, RegVT); // Perform the original store, only redirected to the stack slot. SDValue Store = DAG.getTruncStore(Chain, dl, Val, StackPtr, MachinePointerInfo(), StoredVT, false, false, 0); EVT StackPtrVT = StackPtr.getValueType(); SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); SmallVector<SDValue, 8> Stores; unsigned Offset = 0; // Do all but one copies using the full register width. for (unsigned i = 1; i < NumRegs; i++) { // Load one integer register's worth from the stack slot. SDValue Load = DAG.getLoad(RegVT, dl, Store, StackPtr, MachinePointerInfo(), false, false, false, 0); // Store it to the final location. Remember the store. Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr, ST->getPointerInfo().getWithOffset(Offset), ST->isVolatile(), ST->isNonTemporal(), MinAlign(ST->getAlignment(), Offset))); // Increment the pointers. Offset += RegBytes; StackPtr = DAG.getNode(ISD::ADD, dl, StackPtrVT, StackPtr, StackPtrIncrement); Ptr = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, PtrIncrement); } // The last store may be partial. Do a truncating store. On big-endian // machines this requires an extending load from the stack slot to ensure // that the bits are in the right place. EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset)); // Load from the stack slot. SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Store, StackPtr, MachinePointerInfo(), MemVT, false, false, false, 0); Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr, ST->getPointerInfo() .getWithOffset(Offset), MemVT, ST->isVolatile(), ST->isNonTemporal(), MinAlign(ST->getAlignment(), Offset), ST->getAAInfo())); // The order of the stores doesn't matter - say it with a TokenFactor. SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); return Result; } assert(ST->getMemoryVT().isInteger() && !ST->getMemoryVT().isVector() && "Unaligned store of unknown type."); // Get the half-size VT EVT NewStoredVT = ST->getMemoryVT().getHalfSizedIntegerVT(*DAG.getContext()); int NumBits = NewStoredVT.getSizeInBits(); int IncrementSize = NumBits / 8; // Divide the stored value in two parts. SDValue ShiftAmount = DAG.getConstant(NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout())); SDValue Lo = Val; SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount); // Store the two parts SDValue Store1, Store2; Store1 = DAG.getTruncStore(Chain, dl, DAG.getDataLayout().isLittleEndian() ? Lo : Hi, Ptr, ST->getPointerInfo(), NewStoredVT, ST->isVolatile(), ST->isNonTemporal(), Alignment); EVT PtrVT = Ptr.getValueType(); Ptr = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, DAG.getConstant(IncrementSize, dl, PtrVT)); Alignment = MinAlign(Alignment, IncrementSize); Store2 = DAG.getTruncStore( Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr, ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, ST->isVolatile(), ST->isNonTemporal(), Alignment, ST->getAAInfo()); SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2); return Result; } //===----------------------------------------------------------------------===// // Implementation of Emulated TLS Model //===----------------------------------------------------------------------===// SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA, SelectionDAG &DAG) const { // Access to address of TLS varialbe xyz is lowered to a function call: // __emutls_get_address( address of global variable named "__emutls_v.xyz" ) EVT PtrVT = getPointerTy(DAG.getDataLayout()); PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext()); SDLoc dl(GA); ArgListTy Args; ArgListEntry Entry; std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str(); Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent()); StringRef EmuTlsVarName(NameString); GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName); assert(EmuTlsVar && "Cannot find EmuTlsVar "); Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT); Entry.Ty = VoidPtrType; Args.push_back(Entry); SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT); TargetLowering::CallLoweringInfo CLI(DAG); CLI.setDebugLoc(dl).setChain(DAG.getEntryNode()); CLI.setCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args)); std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); // TLSADDR will be codegen'ed as call. Inform MFI that function has calls. // At last for X86 targets, maybe good for other targets too? MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); MFI->setAdjustsStack(true); // Is this only for X86 target? MFI->setHasCalls(true); assert((GA->getOffset() == 0) && "Emulated TLS must have zero offset in GlobalAddressSDNode"); return CallResult.first; }