//===- MIRPrinter.cpp - MIR serialization format printer ------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the class that prints out the LLVM IR and machine // functions using the MIR serialization format. // //===----------------------------------------------------------------------===// #include "MIRPrinter.h" #include "llvm/ADT/STLExtras.h" #include "llvm/CodeGen/GlobalISel/RegisterBank.h" #include "llvm/CodeGen/MIRYamlMapping.h" #include "llvm/CodeGen/MachineConstantPool.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineMemOperand.h" #include "llvm/CodeGen/MachineModuleInfo.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DebugInfo.h" #include "llvm/IR/IRPrintingPasses.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/Module.h" #include "llvm/IR/ModuleSlotTracker.h" #include "llvm/MC/MCSymbol.h" #include "llvm/Support/MemoryBuffer.h" #include "llvm/Support/YAMLTraits.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetSubtargetInfo.h" using namespace llvm; namespace { /// This structure describes how to print out stack object references. struct FrameIndexOperand { std::string Name; unsigned ID; bool IsFixed; FrameIndexOperand(StringRef Name, unsigned ID, bool IsFixed) : Name(Name.str()), ID(ID), IsFixed(IsFixed) {} /// Return an ordinary stack object reference. static FrameIndexOperand create(StringRef Name, unsigned ID) { return FrameIndexOperand(Name, ID, /*IsFixed=*/false); } /// Return a fixed stack object reference. static FrameIndexOperand createFixed(unsigned ID) { return FrameIndexOperand("", ID, /*IsFixed=*/true); } }; } // end anonymous namespace namespace llvm { /// This class prints out the machine functions using the MIR serialization /// format. class MIRPrinter { raw_ostream &OS; DenseMap<const uint32_t *, unsigned> RegisterMaskIds; /// Maps from stack object indices to operand indices which will be used when /// printing frame index machine operands. DenseMap<int, FrameIndexOperand> StackObjectOperandMapping; public: MIRPrinter(raw_ostream &OS) : OS(OS) {} void print(const MachineFunction &MF); void convert(yaml::MachineFunction &MF, const MachineRegisterInfo &RegInfo, const TargetRegisterInfo *TRI); void convert(ModuleSlotTracker &MST, yaml::MachineFrameInfo &YamlMFI, const MachineFrameInfo &MFI); void convert(yaml::MachineFunction &MF, const MachineConstantPool &ConstantPool); void convert(ModuleSlotTracker &MST, yaml::MachineJumpTable &YamlJTI, const MachineJumpTableInfo &JTI); void convertStackObjects(yaml::MachineFunction &MF, const MachineFrameInfo &MFI, MachineModuleInfo &MMI, ModuleSlotTracker &MST, const TargetRegisterInfo *TRI); private: void initRegisterMaskIds(const MachineFunction &MF); }; /// This class prints out the machine instructions using the MIR serialization /// format. class MIPrinter { raw_ostream &OS; ModuleSlotTracker &MST; const DenseMap<const uint32_t *, unsigned> &RegisterMaskIds; const DenseMap<int, FrameIndexOperand> &StackObjectOperandMapping; public: MIPrinter(raw_ostream &OS, ModuleSlotTracker &MST, const DenseMap<const uint32_t *, unsigned> &RegisterMaskIds, const DenseMap<int, FrameIndexOperand> &StackObjectOperandMapping) : OS(OS), MST(MST), RegisterMaskIds(RegisterMaskIds), StackObjectOperandMapping(StackObjectOperandMapping) {} void print(const MachineBasicBlock &MBB); void print(const MachineInstr &MI); void printMBBReference(const MachineBasicBlock &MBB); void printIRBlockReference(const BasicBlock &BB); void printIRValueReference(const Value &V); void printStackObjectReference(int FrameIndex); void printOffset(int64_t Offset); void printTargetFlags(const MachineOperand &Op); void print(const MachineOperand &Op, const TargetRegisterInfo *TRI, unsigned I, bool ShouldPrintRegisterTies, const MachineRegisterInfo *MRI = nullptr, bool IsDef = false); void print(const MachineMemOperand &Op); void print(const MCCFIInstruction &CFI, const TargetRegisterInfo *TRI); }; } // end namespace llvm namespace llvm { namespace yaml { /// This struct serializes the LLVM IR module. template <> struct BlockScalarTraits<Module> { static void output(const Module &Mod, void *Ctxt, raw_ostream &OS) { Mod.print(OS, nullptr); } static StringRef input(StringRef Str, void *Ctxt, Module &Mod) { llvm_unreachable("LLVM Module is supposed to be parsed separately"); return ""; } }; } // end namespace yaml } // end namespace llvm static void printReg(unsigned Reg, raw_ostream &OS, const TargetRegisterInfo *TRI) { // TODO: Print Stack Slots. if (!Reg) OS << '_'; else if (TargetRegisterInfo::isVirtualRegister(Reg)) OS << '%' << TargetRegisterInfo::virtReg2Index(Reg); else if (Reg < TRI->getNumRegs()) OS << '%' << StringRef(TRI->getName(Reg)).lower(); else llvm_unreachable("Can't print this kind of register yet"); } static void printReg(unsigned Reg, yaml::StringValue &Dest, const TargetRegisterInfo *TRI) { raw_string_ostream OS(Dest.Value); printReg(Reg, OS, TRI); } void MIRPrinter::print(const MachineFunction &MF) { initRegisterMaskIds(MF); yaml::MachineFunction YamlMF; YamlMF.Name = MF.getName(); YamlMF.Alignment = MF.getAlignment(); YamlMF.ExposesReturnsTwice = MF.exposesReturnsTwice(); YamlMF.HasInlineAsm = MF.hasInlineAsm(); YamlMF.AllVRegsAllocated = MF.getProperties().hasProperty( MachineFunctionProperties::Property::AllVRegsAllocated); convert(YamlMF, MF.getRegInfo(), MF.getSubtarget().getRegisterInfo()); ModuleSlotTracker MST(MF.getFunction()->getParent()); MST.incorporateFunction(*MF.getFunction()); convert(MST, YamlMF.FrameInfo, *MF.getFrameInfo()); convertStackObjects(YamlMF, *MF.getFrameInfo(), MF.getMMI(), MST, MF.getSubtarget().getRegisterInfo()); if (const auto *ConstantPool = MF.getConstantPool()) convert(YamlMF, *ConstantPool); if (const auto *JumpTableInfo = MF.getJumpTableInfo()) convert(MST, YamlMF.JumpTableInfo, *JumpTableInfo); raw_string_ostream StrOS(YamlMF.Body.Value.Value); bool IsNewlineNeeded = false; for (const auto &MBB : MF) { if (IsNewlineNeeded) StrOS << "\n"; MIPrinter(StrOS, MST, RegisterMaskIds, StackObjectOperandMapping) .print(MBB); IsNewlineNeeded = true; } StrOS.flush(); yaml::Output Out(OS); Out << YamlMF; } void MIRPrinter::convert(yaml::MachineFunction &MF, const MachineRegisterInfo &RegInfo, const TargetRegisterInfo *TRI) { MF.IsSSA = RegInfo.isSSA(); MF.TracksRegLiveness = RegInfo.tracksLiveness(); MF.TracksSubRegLiveness = RegInfo.subRegLivenessEnabled(); // Print the virtual register definitions. for (unsigned I = 0, E = RegInfo.getNumVirtRegs(); I < E; ++I) { unsigned Reg = TargetRegisterInfo::index2VirtReg(I); yaml::VirtualRegisterDefinition VReg; VReg.ID = I; if (RegInfo.getRegClassOrNull(Reg)) VReg.Class = StringRef(TRI->getRegClassName(RegInfo.getRegClass(Reg))).lower(); else if (RegInfo.getRegBankOrNull(Reg)) VReg.Class = StringRef(RegInfo.getRegBankOrNull(Reg)->getName()).lower(); else { VReg.Class = std::string("_"); assert(RegInfo.getSize(Reg) && "Generic registers must have a size"); } unsigned PreferredReg = RegInfo.getSimpleHint(Reg); if (PreferredReg) printReg(PreferredReg, VReg.PreferredRegister, TRI); MF.VirtualRegisters.push_back(VReg); } // Print the live ins. for (auto I = RegInfo.livein_begin(), E = RegInfo.livein_end(); I != E; ++I) { yaml::MachineFunctionLiveIn LiveIn; printReg(I->first, LiveIn.Register, TRI); if (I->second) printReg(I->second, LiveIn.VirtualRegister, TRI); MF.LiveIns.push_back(LiveIn); } // The used physical register mask is printed as an inverted callee saved // register mask. const BitVector &UsedPhysRegMask = RegInfo.getUsedPhysRegsMask(); if (UsedPhysRegMask.none()) return; std::vector<yaml::FlowStringValue> CalleeSavedRegisters; for (unsigned I = 0, E = UsedPhysRegMask.size(); I != E; ++I) { if (!UsedPhysRegMask[I]) { yaml::FlowStringValue Reg; printReg(I, Reg, TRI); CalleeSavedRegisters.push_back(Reg); } } MF.CalleeSavedRegisters = CalleeSavedRegisters; } void MIRPrinter::convert(ModuleSlotTracker &MST, yaml::MachineFrameInfo &YamlMFI, const MachineFrameInfo &MFI) { YamlMFI.IsFrameAddressTaken = MFI.isFrameAddressTaken(); YamlMFI.IsReturnAddressTaken = MFI.isReturnAddressTaken(); YamlMFI.HasStackMap = MFI.hasStackMap(); YamlMFI.HasPatchPoint = MFI.hasPatchPoint(); YamlMFI.StackSize = MFI.getStackSize(); YamlMFI.OffsetAdjustment = MFI.getOffsetAdjustment(); YamlMFI.MaxAlignment = MFI.getMaxAlignment(); YamlMFI.AdjustsStack = MFI.adjustsStack(); YamlMFI.HasCalls = MFI.hasCalls(); YamlMFI.MaxCallFrameSize = MFI.getMaxCallFrameSize(); YamlMFI.HasOpaqueSPAdjustment = MFI.hasOpaqueSPAdjustment(); YamlMFI.HasVAStart = MFI.hasVAStart(); YamlMFI.HasMustTailInVarArgFunc = MFI.hasMustTailInVarArgFunc(); if (MFI.getSavePoint()) { raw_string_ostream StrOS(YamlMFI.SavePoint.Value); MIPrinter(StrOS, MST, RegisterMaskIds, StackObjectOperandMapping) .printMBBReference(*MFI.getSavePoint()); } if (MFI.getRestorePoint()) { raw_string_ostream StrOS(YamlMFI.RestorePoint.Value); MIPrinter(StrOS, MST, RegisterMaskIds, StackObjectOperandMapping) .printMBBReference(*MFI.getRestorePoint()); } } void MIRPrinter::convertStackObjects(yaml::MachineFunction &MF, const MachineFrameInfo &MFI, MachineModuleInfo &MMI, ModuleSlotTracker &MST, const TargetRegisterInfo *TRI) { // Process fixed stack objects. unsigned ID = 0; for (int I = MFI.getObjectIndexBegin(); I < 0; ++I) { if (MFI.isDeadObjectIndex(I)) continue; yaml::FixedMachineStackObject YamlObject; YamlObject.ID = ID; YamlObject.Type = MFI.isSpillSlotObjectIndex(I) ? yaml::FixedMachineStackObject::SpillSlot : yaml::FixedMachineStackObject::DefaultType; YamlObject.Offset = MFI.getObjectOffset(I); YamlObject.Size = MFI.getObjectSize(I); YamlObject.Alignment = MFI.getObjectAlignment(I); YamlObject.IsImmutable = MFI.isImmutableObjectIndex(I); YamlObject.IsAliased = MFI.isAliasedObjectIndex(I); MF.FixedStackObjects.push_back(YamlObject); StackObjectOperandMapping.insert( std::make_pair(I, FrameIndexOperand::createFixed(ID++))); } // Process ordinary stack objects. ID = 0; for (int I = 0, E = MFI.getObjectIndexEnd(); I < E; ++I) { if (MFI.isDeadObjectIndex(I)) continue; yaml::MachineStackObject YamlObject; YamlObject.ID = ID; if (const auto *Alloca = MFI.getObjectAllocation(I)) YamlObject.Name.Value = Alloca->hasName() ? Alloca->getName() : "<unnamed alloca>"; YamlObject.Type = MFI.isSpillSlotObjectIndex(I) ? yaml::MachineStackObject::SpillSlot : MFI.isVariableSizedObjectIndex(I) ? yaml::MachineStackObject::VariableSized : yaml::MachineStackObject::DefaultType; YamlObject.Offset = MFI.getObjectOffset(I); YamlObject.Size = MFI.getObjectSize(I); YamlObject.Alignment = MFI.getObjectAlignment(I); MF.StackObjects.push_back(YamlObject); StackObjectOperandMapping.insert(std::make_pair( I, FrameIndexOperand::create(YamlObject.Name.Value, ID++))); } for (const auto &CSInfo : MFI.getCalleeSavedInfo()) { yaml::StringValue Reg; printReg(CSInfo.getReg(), Reg, TRI); auto StackObjectInfo = StackObjectOperandMapping.find(CSInfo.getFrameIdx()); assert(StackObjectInfo != StackObjectOperandMapping.end() && "Invalid stack object index"); const FrameIndexOperand &StackObject = StackObjectInfo->second; if (StackObject.IsFixed) MF.FixedStackObjects[StackObject.ID].CalleeSavedRegister = Reg; else MF.StackObjects[StackObject.ID].CalleeSavedRegister = Reg; } for (unsigned I = 0, E = MFI.getLocalFrameObjectCount(); I < E; ++I) { auto LocalObject = MFI.getLocalFrameObjectMap(I); auto StackObjectInfo = StackObjectOperandMapping.find(LocalObject.first); assert(StackObjectInfo != StackObjectOperandMapping.end() && "Invalid stack object index"); const FrameIndexOperand &StackObject = StackObjectInfo->second; assert(!StackObject.IsFixed && "Expected a locally mapped stack object"); MF.StackObjects[StackObject.ID].LocalOffset = LocalObject.second; } // Print the stack object references in the frame information class after // converting the stack objects. if (MFI.hasStackProtectorIndex()) { raw_string_ostream StrOS(MF.FrameInfo.StackProtector.Value); MIPrinter(StrOS, MST, RegisterMaskIds, StackObjectOperandMapping) .printStackObjectReference(MFI.getStackProtectorIndex()); } // Print the debug variable information. for (MachineModuleInfo::VariableDbgInfo &DebugVar : MMI.getVariableDbgInfo()) { auto StackObjectInfo = StackObjectOperandMapping.find(DebugVar.Slot); assert(StackObjectInfo != StackObjectOperandMapping.end() && "Invalid stack object index"); const FrameIndexOperand &StackObject = StackObjectInfo->second; assert(!StackObject.IsFixed && "Expected a non-fixed stack object"); auto &Object = MF.StackObjects[StackObject.ID]; { raw_string_ostream StrOS(Object.DebugVar.Value); DebugVar.Var->printAsOperand(StrOS, MST); } { raw_string_ostream StrOS(Object.DebugExpr.Value); DebugVar.Expr->printAsOperand(StrOS, MST); } { raw_string_ostream StrOS(Object.DebugLoc.Value); DebugVar.Loc->printAsOperand(StrOS, MST); } } } void MIRPrinter::convert(yaml::MachineFunction &MF, const MachineConstantPool &ConstantPool) { unsigned ID = 0; for (const MachineConstantPoolEntry &Constant : ConstantPool.getConstants()) { // TODO: Serialize target specific constant pool entries. if (Constant.isMachineConstantPoolEntry()) llvm_unreachable("Can't print target specific constant pool entries yet"); yaml::MachineConstantPoolValue YamlConstant; std::string Str; raw_string_ostream StrOS(Str); Constant.Val.ConstVal->printAsOperand(StrOS); YamlConstant.ID = ID++; YamlConstant.Value = StrOS.str(); YamlConstant.Alignment = Constant.getAlignment(); MF.Constants.push_back(YamlConstant); } } void MIRPrinter::convert(ModuleSlotTracker &MST, yaml::MachineJumpTable &YamlJTI, const MachineJumpTableInfo &JTI) { YamlJTI.Kind = JTI.getEntryKind(); unsigned ID = 0; for (const auto &Table : JTI.getJumpTables()) { std::string Str; yaml::MachineJumpTable::Entry Entry; Entry.ID = ID++; for (const auto *MBB : Table.MBBs) { raw_string_ostream StrOS(Str); MIPrinter(StrOS, MST, RegisterMaskIds, StackObjectOperandMapping) .printMBBReference(*MBB); Entry.Blocks.push_back(StrOS.str()); Str.clear(); } YamlJTI.Entries.push_back(Entry); } } void MIRPrinter::initRegisterMaskIds(const MachineFunction &MF) { const auto *TRI = MF.getSubtarget().getRegisterInfo(); unsigned I = 0; for (const uint32_t *Mask : TRI->getRegMasks()) RegisterMaskIds.insert(std::make_pair(Mask, I++)); } void MIPrinter::print(const MachineBasicBlock &MBB) { assert(MBB.getNumber() >= 0 && "Invalid MBB number"); OS << "bb." << MBB.getNumber(); bool HasAttributes = false; if (const auto *BB = MBB.getBasicBlock()) { if (BB->hasName()) { OS << "." << BB->getName(); } else { HasAttributes = true; OS << " ("; int Slot = MST.getLocalSlot(BB); if (Slot == -1) OS << "<ir-block badref>"; else OS << (Twine("%ir-block.") + Twine(Slot)).str(); } } if (MBB.hasAddressTaken()) { OS << (HasAttributes ? ", " : " ("); OS << "address-taken"; HasAttributes = true; } if (MBB.isEHPad()) { OS << (HasAttributes ? ", " : " ("); OS << "landing-pad"; HasAttributes = true; } if (MBB.getAlignment()) { OS << (HasAttributes ? ", " : " ("); OS << "align " << MBB.getAlignment(); HasAttributes = true; } if (HasAttributes) OS << ")"; OS << ":\n"; bool HasLineAttributes = false; // Print the successors if (!MBB.succ_empty()) { OS.indent(2) << "successors: "; for (auto I = MBB.succ_begin(), E = MBB.succ_end(); I != E; ++I) { if (I != MBB.succ_begin()) OS << ", "; printMBBReference(**I); if (MBB.hasSuccessorProbabilities()) OS << '(' << MBB.getSuccProbability(I) << ')'; } OS << "\n"; HasLineAttributes = true; } // Print the live in registers. const auto *TRI = MBB.getParent()->getSubtarget().getRegisterInfo(); assert(TRI && "Expected target register info"); if (!MBB.livein_empty()) { OS.indent(2) << "liveins: "; bool First = true; for (const auto &LI : MBB.liveins()) { if (!First) OS << ", "; First = false; printReg(LI.PhysReg, OS, TRI); if (LI.LaneMask != ~0u) OS << ':' << PrintLaneMask(LI.LaneMask); } OS << "\n"; HasLineAttributes = true; } if (HasLineAttributes) OS << "\n"; bool IsInBundle = false; for (auto I = MBB.instr_begin(), E = MBB.instr_end(); I != E; ++I) { const MachineInstr &MI = *I; if (IsInBundle && !MI.isInsideBundle()) { OS.indent(2) << "}\n"; IsInBundle = false; } OS.indent(IsInBundle ? 4 : 2); print(MI); if (!IsInBundle && MI.getFlag(MachineInstr::BundledSucc)) { OS << " {"; IsInBundle = true; } OS << "\n"; } if (IsInBundle) OS.indent(2) << "}\n"; } /// Return true when an instruction has tied register that can't be determined /// by the instruction's descriptor. static bool hasComplexRegisterTies(const MachineInstr &MI) { const MCInstrDesc &MCID = MI.getDesc(); for (unsigned I = 0, E = MI.getNumOperands(); I < E; ++I) { const auto &Operand = MI.getOperand(I); if (!Operand.isReg() || Operand.isDef()) // Ignore the defined registers as MCID marks only the uses as tied. continue; int ExpectedTiedIdx = MCID.getOperandConstraint(I, MCOI::TIED_TO); int TiedIdx = Operand.isTied() ? int(MI.findTiedOperandIdx(I)) : -1; if (ExpectedTiedIdx != TiedIdx) return true; } return false; } void MIPrinter::print(const MachineInstr &MI) { const auto *MF = MI.getParent()->getParent(); const auto &MRI = MF->getRegInfo(); const auto &SubTarget = MF->getSubtarget(); const auto *TRI = SubTarget.getRegisterInfo(); assert(TRI && "Expected target register info"); const auto *TII = SubTarget.getInstrInfo(); assert(TII && "Expected target instruction info"); if (MI.isCFIInstruction()) assert(MI.getNumOperands() == 1 && "Expected 1 operand in CFI instruction"); bool ShouldPrintRegisterTies = hasComplexRegisterTies(MI); unsigned I = 0, E = MI.getNumOperands(); for (; I < E && MI.getOperand(I).isReg() && MI.getOperand(I).isDef() && !MI.getOperand(I).isImplicit(); ++I) { if (I) OS << ", "; print(MI.getOperand(I), TRI, I, ShouldPrintRegisterTies, &MRI, /*IsDef=*/true); } if (I) OS << " = "; if (MI.getFlag(MachineInstr::FrameSetup)) OS << "frame-setup "; OS << TII->getName(MI.getOpcode()); if (isPreISelGenericOpcode(MI.getOpcode())) { assert(MI.getType() && "Generic instructions must have a type"); OS << ' '; MI.getType()->print(OS, /*IsForDebug*/ false, /*NoDetails*/ true); } if (I < E) OS << ' '; bool NeedComma = false; for (; I < E; ++I) { if (NeedComma) OS << ", "; print(MI.getOperand(I), TRI, I, ShouldPrintRegisterTies); NeedComma = true; } if (MI.getDebugLoc()) { if (NeedComma) OS << ','; OS << " debug-location "; MI.getDebugLoc()->printAsOperand(OS, MST); } if (!MI.memoperands_empty()) { OS << " :: "; bool NeedComma = false; for (const auto *Op : MI.memoperands()) { if (NeedComma) OS << ", "; print(*Op); NeedComma = true; } } } void MIPrinter::printMBBReference(const MachineBasicBlock &MBB) { OS << "%bb." << MBB.getNumber(); if (const auto *BB = MBB.getBasicBlock()) { if (BB->hasName()) OS << '.' << BB->getName(); } } static void printIRSlotNumber(raw_ostream &OS, int Slot) { if (Slot == -1) OS << "<badref>"; else OS << Slot; } void MIPrinter::printIRBlockReference(const BasicBlock &BB) { OS << "%ir-block."; if (BB.hasName()) { printLLVMNameWithoutPrefix(OS, BB.getName()); return; } const Function *F = BB.getParent(); int Slot; if (F == MST.getCurrentFunction()) { Slot = MST.getLocalSlot(&BB); } else { ModuleSlotTracker CustomMST(F->getParent(), /*ShouldInitializeAllMetadata=*/false); CustomMST.incorporateFunction(*F); Slot = CustomMST.getLocalSlot(&BB); } printIRSlotNumber(OS, Slot); } void MIPrinter::printIRValueReference(const Value &V) { if (isa<GlobalValue>(V)) { V.printAsOperand(OS, /*PrintType=*/false, MST); return; } if (isa<Constant>(V)) { // Machine memory operands can load/store to/from constant value pointers. OS << '`'; V.printAsOperand(OS, /*PrintType=*/true, MST); OS << '`'; return; } OS << "%ir."; if (V.hasName()) { printLLVMNameWithoutPrefix(OS, V.getName()); return; } printIRSlotNumber(OS, MST.getLocalSlot(&V)); } void MIPrinter::printStackObjectReference(int FrameIndex) { auto ObjectInfo = StackObjectOperandMapping.find(FrameIndex); assert(ObjectInfo != StackObjectOperandMapping.end() && "Invalid frame index"); const FrameIndexOperand &Operand = ObjectInfo->second; if (Operand.IsFixed) { OS << "%fixed-stack." << Operand.ID; return; } OS << "%stack." << Operand.ID; if (!Operand.Name.empty()) OS << '.' << Operand.Name; } void MIPrinter::printOffset(int64_t Offset) { if (Offset == 0) return; if (Offset < 0) { OS << " - " << -Offset; return; } OS << " + " << Offset; } static const char *getTargetFlagName(const TargetInstrInfo *TII, unsigned TF) { auto Flags = TII->getSerializableDirectMachineOperandTargetFlags(); for (const auto &I : Flags) { if (I.first == TF) { return I.second; } } return nullptr; } void MIPrinter::printTargetFlags(const MachineOperand &Op) { if (!Op.getTargetFlags()) return; const auto *TII = Op.getParent()->getParent()->getParent()->getSubtarget().getInstrInfo(); assert(TII && "expected instruction info"); auto Flags = TII->decomposeMachineOperandsTargetFlags(Op.getTargetFlags()); OS << "target-flags("; const bool HasDirectFlags = Flags.first; const bool HasBitmaskFlags = Flags.second; if (!HasDirectFlags && !HasBitmaskFlags) { OS << "<unknown>) "; return; } if (HasDirectFlags) { if (const auto *Name = getTargetFlagName(TII, Flags.first)) OS << Name; else OS << "<unknown target flag>"; } if (!HasBitmaskFlags) { OS << ") "; return; } bool IsCommaNeeded = HasDirectFlags; unsigned BitMask = Flags.second; auto BitMasks = TII->getSerializableBitmaskMachineOperandTargetFlags(); for (const auto &Mask : BitMasks) { // Check if the flag's bitmask has the bits of the current mask set. if ((BitMask & Mask.first) == Mask.first) { if (IsCommaNeeded) OS << ", "; IsCommaNeeded = true; OS << Mask.second; // Clear the bits which were serialized from the flag's bitmask. BitMask &= ~(Mask.first); } } if (BitMask) { // When the resulting flag's bitmask isn't zero, we know that we didn't // serialize all of the bit flags. if (IsCommaNeeded) OS << ", "; OS << "<unknown bitmask target flag>"; } OS << ") "; } static const char *getTargetIndexName(const MachineFunction &MF, int Index) { const auto *TII = MF.getSubtarget().getInstrInfo(); assert(TII && "expected instruction info"); auto Indices = TII->getSerializableTargetIndices(); for (const auto &I : Indices) { if (I.first == Index) { return I.second; } } return nullptr; } void MIPrinter::print(const MachineOperand &Op, const TargetRegisterInfo *TRI, unsigned I, bool ShouldPrintRegisterTies, const MachineRegisterInfo *MRI, bool IsDef) { printTargetFlags(Op); switch (Op.getType()) { case MachineOperand::MO_Register: if (Op.isImplicit()) OS << (Op.isDef() ? "implicit-def " : "implicit "); else if (!IsDef && Op.isDef()) // Print the 'def' flag only when the operand is defined after '='. OS << "def "; if (Op.isInternalRead()) OS << "internal "; if (Op.isDead()) OS << "dead "; if (Op.isKill()) OS << "killed "; if (Op.isUndef()) OS << "undef "; if (Op.isEarlyClobber()) OS << "early-clobber "; if (Op.isDebug()) OS << "debug-use "; printReg(Op.getReg(), OS, TRI); // Print the sub register. if (Op.getSubReg() != 0) OS << ':' << TRI->getSubRegIndexName(Op.getSubReg()); if (ShouldPrintRegisterTies && Op.isTied() && !Op.isDef()) OS << "(tied-def " << Op.getParent()->findTiedOperandIdx(I) << ")"; assert((!IsDef || MRI) && "for IsDef, MRI must be provided"); if (IsDef && MRI->getSize(Op.getReg())) OS << '(' << MRI->getSize(Op.getReg()) << ')'; break; case MachineOperand::MO_Immediate: OS << Op.getImm(); break; case MachineOperand::MO_CImmediate: Op.getCImm()->printAsOperand(OS, /*PrintType=*/true, MST); break; case MachineOperand::MO_FPImmediate: Op.getFPImm()->printAsOperand(OS, /*PrintType=*/true, MST); break; case MachineOperand::MO_MachineBasicBlock: printMBBReference(*Op.getMBB()); break; case MachineOperand::MO_FrameIndex: printStackObjectReference(Op.getIndex()); break; case MachineOperand::MO_ConstantPoolIndex: OS << "%const." << Op.getIndex(); printOffset(Op.getOffset()); break; case MachineOperand::MO_TargetIndex: { OS << "target-index("; if (const auto *Name = getTargetIndexName( *Op.getParent()->getParent()->getParent(), Op.getIndex())) OS << Name; else OS << "<unknown>"; OS << ')'; printOffset(Op.getOffset()); break; } case MachineOperand::MO_JumpTableIndex: OS << "%jump-table." << Op.getIndex(); break; case MachineOperand::MO_ExternalSymbol: OS << '$'; printLLVMNameWithoutPrefix(OS, Op.getSymbolName()); printOffset(Op.getOffset()); break; case MachineOperand::MO_GlobalAddress: Op.getGlobal()->printAsOperand(OS, /*PrintType=*/false, MST); printOffset(Op.getOffset()); break; case MachineOperand::MO_BlockAddress: OS << "blockaddress("; Op.getBlockAddress()->getFunction()->printAsOperand(OS, /*PrintType=*/false, MST); OS << ", "; printIRBlockReference(*Op.getBlockAddress()->getBasicBlock()); OS << ')'; printOffset(Op.getOffset()); break; case MachineOperand::MO_RegisterMask: { auto RegMaskInfo = RegisterMaskIds.find(Op.getRegMask()); if (RegMaskInfo != RegisterMaskIds.end()) OS << StringRef(TRI->getRegMaskNames()[RegMaskInfo->second]).lower(); else llvm_unreachable("Can't print this machine register mask yet."); break; } case MachineOperand::MO_RegisterLiveOut: { const uint32_t *RegMask = Op.getRegLiveOut(); OS << "liveout("; bool IsCommaNeeded = false; for (unsigned Reg = 0, E = TRI->getNumRegs(); Reg < E; ++Reg) { if (RegMask[Reg / 32] & (1U << (Reg % 32))) { if (IsCommaNeeded) OS << ", "; printReg(Reg, OS, TRI); IsCommaNeeded = true; } } OS << ")"; break; } case MachineOperand::MO_Metadata: Op.getMetadata()->printAsOperand(OS, MST); break; case MachineOperand::MO_MCSymbol: OS << "<mcsymbol " << *Op.getMCSymbol() << ">"; break; case MachineOperand::MO_CFIIndex: { const auto &MMI = Op.getParent()->getParent()->getParent()->getMMI(); print(MMI.getFrameInstructions()[Op.getCFIIndex()], TRI); break; } } } void MIPrinter::print(const MachineMemOperand &Op) { OS << '('; // TODO: Print operand's target specific flags. if (Op.isVolatile()) OS << "volatile "; if (Op.isNonTemporal()) OS << "non-temporal "; if (Op.isInvariant()) OS << "invariant "; if (Op.isLoad()) OS << "load "; else { assert(Op.isStore() && "Non load machine operand must be a store"); OS << "store "; } OS << Op.getSize(); if (const Value *Val = Op.getValue()) { OS << (Op.isLoad() ? " from " : " into "); printIRValueReference(*Val); } else if (const PseudoSourceValue *PVal = Op.getPseudoValue()) { OS << (Op.isLoad() ? " from " : " into "); assert(PVal && "Expected a pseudo source value"); switch (PVal->kind()) { case PseudoSourceValue::Stack: OS << "stack"; break; case PseudoSourceValue::GOT: OS << "got"; break; case PseudoSourceValue::JumpTable: OS << "jump-table"; break; case PseudoSourceValue::ConstantPool: OS << "constant-pool"; break; case PseudoSourceValue::FixedStack: printStackObjectReference( cast<FixedStackPseudoSourceValue>(PVal)->getFrameIndex()); break; case PseudoSourceValue::GlobalValueCallEntry: OS << "call-entry "; cast<GlobalValuePseudoSourceValue>(PVal)->getValue()->printAsOperand( OS, /*PrintType=*/false, MST); break; case PseudoSourceValue::ExternalSymbolCallEntry: OS << "call-entry $"; printLLVMNameWithoutPrefix( OS, cast<ExternalSymbolPseudoSourceValue>(PVal)->getSymbol()); break; } } printOffset(Op.getOffset()); if (Op.getBaseAlignment() != Op.getSize()) OS << ", align " << Op.getBaseAlignment(); auto AAInfo = Op.getAAInfo(); if (AAInfo.TBAA) { OS << ", !tbaa "; AAInfo.TBAA->printAsOperand(OS, MST); } if (AAInfo.Scope) { OS << ", !alias.scope "; AAInfo.Scope->printAsOperand(OS, MST); } if (AAInfo.NoAlias) { OS << ", !noalias "; AAInfo.NoAlias->printAsOperand(OS, MST); } if (Op.getRanges()) { OS << ", !range "; Op.getRanges()->printAsOperand(OS, MST); } OS << ')'; } static void printCFIRegister(unsigned DwarfReg, raw_ostream &OS, const TargetRegisterInfo *TRI) { int Reg = TRI->getLLVMRegNum(DwarfReg, true); if (Reg == -1) { OS << "<badreg>"; return; } printReg(Reg, OS, TRI); } void MIPrinter::print(const MCCFIInstruction &CFI, const TargetRegisterInfo *TRI) { switch (CFI.getOperation()) { case MCCFIInstruction::OpSameValue: OS << ".cfi_same_value "; if (CFI.getLabel()) OS << "<mcsymbol> "; printCFIRegister(CFI.getRegister(), OS, TRI); break; case MCCFIInstruction::OpOffset: OS << ".cfi_offset "; if (CFI.getLabel()) OS << "<mcsymbol> "; printCFIRegister(CFI.getRegister(), OS, TRI); OS << ", " << CFI.getOffset(); break; case MCCFIInstruction::OpDefCfaRegister: OS << ".cfi_def_cfa_register "; if (CFI.getLabel()) OS << "<mcsymbol> "; printCFIRegister(CFI.getRegister(), OS, TRI); break; case MCCFIInstruction::OpDefCfaOffset: OS << ".cfi_def_cfa_offset "; if (CFI.getLabel()) OS << "<mcsymbol> "; OS << CFI.getOffset(); break; case MCCFIInstruction::OpDefCfa: OS << ".cfi_def_cfa "; if (CFI.getLabel()) OS << "<mcsymbol> "; printCFIRegister(CFI.getRegister(), OS, TRI); OS << ", " << CFI.getOffset(); break; default: // TODO: Print the other CFI Operations. OS << "<unserializable cfi operation>"; break; } } void llvm::printMIR(raw_ostream &OS, const Module &M) { yaml::Output Out(OS); Out << const_cast<Module &>(M); } void llvm::printMIR(raw_ostream &OS, const MachineFunction &MF) { MIRPrinter Printer(OS); Printer.print(MF); }