/* * jcdctmgr.c * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1994-1996, Thomas G. Lane. * libjpeg-turbo Modifications: * Copyright (C) 1999-2006, MIYASAKA Masaru. * Copyright 2009 Pierre Ossman <ossman@cendio.se> for Cendio AB * Copyright (C) 2011, 2014-2015, D. R. Commander. * For conditions of distribution and use, see the accompanying README.ijg * file. * * This file contains the forward-DCT management logic. * This code selects a particular DCT implementation to be used, * and it performs related housekeeping chores including coefficient * quantization. */ #define JPEG_INTERNALS #include "jinclude.h" #include "jpeglib.h" #include "jdct.h" /* Private declarations for DCT subsystem */ #include "jsimddct.h" /* Private subobject for this module */ typedef void (*forward_DCT_method_ptr) (DCTELEM *data); typedef void (*float_DCT_method_ptr) (FAST_FLOAT *data); typedef void (*convsamp_method_ptr) (JSAMPARRAY sample_data, JDIMENSION start_col, DCTELEM *workspace); typedef void (*float_convsamp_method_ptr) (JSAMPARRAY sample_data, JDIMENSION start_col, FAST_FLOAT *workspace); typedef void (*quantize_method_ptr) (JCOEFPTR coef_block, DCTELEM *divisors, DCTELEM *workspace); typedef void (*float_quantize_method_ptr) (JCOEFPTR coef_block, FAST_FLOAT *divisors, FAST_FLOAT *workspace); METHODDEF(void) quantize (JCOEFPTR, DCTELEM *, DCTELEM *); typedef struct { struct jpeg_forward_dct pub; /* public fields */ /* Pointer to the DCT routine actually in use */ forward_DCT_method_ptr dct; convsamp_method_ptr convsamp; quantize_method_ptr quantize; /* The actual post-DCT divisors --- not identical to the quant table * entries, because of scaling (especially for an unnormalized DCT). * Each table is given in normal array order. */ DCTELEM *divisors[NUM_QUANT_TBLS]; /* work area for FDCT subroutine */ DCTELEM *workspace; #ifdef DCT_FLOAT_SUPPORTED /* Same as above for the floating-point case. */ float_DCT_method_ptr float_dct; float_convsamp_method_ptr float_convsamp; float_quantize_method_ptr float_quantize; FAST_FLOAT *float_divisors[NUM_QUANT_TBLS]; FAST_FLOAT *float_workspace; #endif } my_fdct_controller; typedef my_fdct_controller *my_fdct_ptr; #if BITS_IN_JSAMPLE == 8 /* * Find the highest bit in an integer through binary search. */ LOCAL(int) flss (UINT16 val) { int bit; bit = 16; if (!val) return 0; if (!(val & 0xff00)) { bit -= 8; val <<= 8; } if (!(val & 0xf000)) { bit -= 4; val <<= 4; } if (!(val & 0xc000)) { bit -= 2; val <<= 2; } if (!(val & 0x8000)) { bit -= 1; val <<= 1; } return bit; } /* * Compute values to do a division using reciprocal. * * This implementation is based on an algorithm described in * "How to optimize for the Pentium family of microprocessors" * (http://www.agner.org/assem/). * More information about the basic algorithm can be found in * the paper "Integer Division Using Reciprocals" by Robert Alverson. * * The basic idea is to replace x/d by x * d^-1. In order to store * d^-1 with enough precision we shift it left a few places. It turns * out that this algoright gives just enough precision, and also fits * into DCTELEM: * * b = (the number of significant bits in divisor) - 1 * r = (word size) + b * f = 2^r / divisor * * f will not be an integer for most cases, so we need to compensate * for the rounding error introduced: * * no fractional part: * * result = input >> r * * fractional part of f < 0.5: * * round f down to nearest integer * result = ((input + 1) * f) >> r * * fractional part of f > 0.5: * * round f up to nearest integer * result = (input * f) >> r * * This is the original algorithm that gives truncated results. But we * want properly rounded results, so we replace "input" with * "input + divisor/2". * * In order to allow SIMD implementations we also tweak the values to * allow the same calculation to be made at all times: * * dctbl[0] = f rounded to nearest integer * dctbl[1] = divisor / 2 (+ 1 if fractional part of f < 0.5) * dctbl[2] = 1 << ((word size) * 2 - r) * dctbl[3] = r - (word size) * * dctbl[2] is for stupid instruction sets where the shift operation * isn't member wise (e.g. MMX). * * The reason dctbl[2] and dctbl[3] reduce the shift with (word size) * is that most SIMD implementations have a "multiply and store top * half" operation. * * Lastly, we store each of the values in their own table instead * of in a consecutive manner, yet again in order to allow SIMD * routines. */ LOCAL(int) compute_reciprocal (UINT16 divisor, DCTELEM *dtbl) { UDCTELEM2 fq, fr; UDCTELEM c; int b, r; if (divisor == 1) { /* divisor == 1 means unquantized, so these reciprocal/correction/shift * values will cause the C quantization algorithm to act like the * identity function. Since only the C quantization algorithm is used in * these cases, the scale value is irrelevant. */ dtbl[DCTSIZE2 * 0] = (DCTELEM) 1; /* reciprocal */ dtbl[DCTSIZE2 * 1] = (DCTELEM) 0; /* correction */ dtbl[DCTSIZE2 * 2] = (DCTELEM) 1; /* scale */ dtbl[DCTSIZE2 * 3] = -(DCTELEM) (sizeof(DCTELEM) * 8); /* shift */ return 0; } b = flss(divisor) - 1; r = sizeof(DCTELEM) * 8 + b; fq = ((UDCTELEM2)1 << r) / divisor; fr = ((UDCTELEM2)1 << r) % divisor; c = divisor / 2; /* for rounding */ if (fr == 0) { /* divisor is power of two */ /* fq will be one bit too large to fit in DCTELEM, so adjust */ fq >>= 1; r--; } else if (fr <= (divisor / 2U)) { /* fractional part is < 0.5 */ c++; } else { /* fractional part is > 0.5 */ fq++; } dtbl[DCTSIZE2 * 0] = (DCTELEM) fq; /* reciprocal */ dtbl[DCTSIZE2 * 1] = (DCTELEM) c; /* correction + roundfactor */ #ifdef WITH_SIMD dtbl[DCTSIZE2 * 2] = (DCTELEM) (1 << (sizeof(DCTELEM)*8*2 - r)); /* scale */ #else dtbl[DCTSIZE2 * 2] = 1; #endif dtbl[DCTSIZE2 * 3] = (DCTELEM) r - sizeof(DCTELEM)*8; /* shift */ if (r <= 16) return 0; else return 1; } #endif /* * Initialize for a processing pass. * Verify that all referenced Q-tables are present, and set up * the divisor table for each one. * In the current implementation, DCT of all components is done during * the first pass, even if only some components will be output in the * first scan. Hence all components should be examined here. */ METHODDEF(void) start_pass_fdctmgr (j_compress_ptr cinfo) { my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct; int ci, qtblno, i; jpeg_component_info *compptr; JQUANT_TBL *qtbl; DCTELEM *dtbl; for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; ci++, compptr++) { qtblno = compptr->quant_tbl_no; /* Make sure specified quantization table is present */ if (qtblno < 0 || qtblno >= NUM_QUANT_TBLS || cinfo->quant_tbl_ptrs[qtblno] == NULL) ERREXIT1(cinfo, JERR_NO_QUANT_TABLE, qtblno); qtbl = cinfo->quant_tbl_ptrs[qtblno]; /* Compute divisors for this quant table */ /* We may do this more than once for same table, but it's not a big deal */ switch (cinfo->dct_method) { #ifdef DCT_ISLOW_SUPPORTED case JDCT_ISLOW: /* For LL&M IDCT method, divisors are equal to raw quantization * coefficients multiplied by 8 (to counteract scaling). */ if (fdct->divisors[qtblno] == NULL) { fdct->divisors[qtblno] = (DCTELEM *) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, (DCTSIZE2 * 4) * sizeof(DCTELEM)); } dtbl = fdct->divisors[qtblno]; for (i = 0; i < DCTSIZE2; i++) { #if BITS_IN_JSAMPLE == 8 if (!compute_reciprocal(qtbl->quantval[i] << 3, &dtbl[i]) && fdct->quantize == jsimd_quantize) fdct->quantize = quantize; #else dtbl[i] = ((DCTELEM) qtbl->quantval[i]) << 3; #endif } break; #endif #ifdef DCT_IFAST_SUPPORTED case JDCT_IFAST: { /* For AA&N IDCT method, divisors are equal to quantization * coefficients scaled by scalefactor[row]*scalefactor[col], where * scalefactor[0] = 1 * scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7 * We apply a further scale factor of 8. */ #define CONST_BITS 14 static const INT16 aanscales[DCTSIZE2] = { /* precomputed values scaled up by 14 bits */ 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520, 22725, 31521, 29692, 26722, 22725, 17855, 12299, 6270, 21407, 29692, 27969, 25172, 21407, 16819, 11585, 5906, 19266, 26722, 25172, 22654, 19266, 15137, 10426, 5315, 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520, 12873, 17855, 16819, 15137, 12873, 10114, 6967, 3552, 8867, 12299, 11585, 10426, 8867, 6967, 4799, 2446, 4520, 6270, 5906, 5315, 4520, 3552, 2446, 1247 }; SHIFT_TEMPS if (fdct->divisors[qtblno] == NULL) { fdct->divisors[qtblno] = (DCTELEM *) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, (DCTSIZE2 * 4) * sizeof(DCTELEM)); } dtbl = fdct->divisors[qtblno]; for (i = 0; i < DCTSIZE2; i++) { #if BITS_IN_JSAMPLE == 8 if (!compute_reciprocal( DESCALE(MULTIPLY16V16((JLONG) qtbl->quantval[i], (JLONG) aanscales[i]), CONST_BITS-3), &dtbl[i]) && fdct->quantize == jsimd_quantize) fdct->quantize = quantize; #else dtbl[i] = (DCTELEM) DESCALE(MULTIPLY16V16((JLONG) qtbl->quantval[i], (JLONG) aanscales[i]), CONST_BITS-3); #endif } } break; #endif #ifdef DCT_FLOAT_SUPPORTED case JDCT_FLOAT: { /* For float AA&N IDCT method, divisors are equal to quantization * coefficients scaled by scalefactor[row]*scalefactor[col], where * scalefactor[0] = 1 * scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7 * We apply a further scale factor of 8. * What's actually stored is 1/divisor so that the inner loop can * use a multiplication rather than a division. */ FAST_FLOAT *fdtbl; int row, col; static const double aanscalefactor[DCTSIZE] = { 1.0, 1.387039845, 1.306562965, 1.175875602, 1.0, 0.785694958, 0.541196100, 0.275899379 }; if (fdct->float_divisors[qtblno] == NULL) { fdct->float_divisors[qtblno] = (FAST_FLOAT *) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, DCTSIZE2 * sizeof(FAST_FLOAT)); } fdtbl = fdct->float_divisors[qtblno]; i = 0; for (row = 0; row < DCTSIZE; row++) { for (col = 0; col < DCTSIZE; col++) { fdtbl[i] = (FAST_FLOAT) (1.0 / (((double) qtbl->quantval[i] * aanscalefactor[row] * aanscalefactor[col] * 8.0))); i++; } } } break; #endif default: ERREXIT(cinfo, JERR_NOT_COMPILED); break; } } } /* * Load data into workspace, applying unsigned->signed conversion. */ METHODDEF(void) convsamp (JSAMPARRAY sample_data, JDIMENSION start_col, DCTELEM *workspace) { register DCTELEM *workspaceptr; register JSAMPROW elemptr; register int elemr; workspaceptr = workspace; for (elemr = 0; elemr < DCTSIZE; elemr++) { elemptr = sample_data[elemr] + start_col; #if DCTSIZE == 8 /* unroll the inner loop */ *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE; *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE; *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE; *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE; *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE; *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE; *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE; *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE; #else { register int elemc; for (elemc = DCTSIZE; elemc > 0; elemc--) *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE; } #endif } } /* * Quantize/descale the coefficients, and store into coef_blocks[]. */ METHODDEF(void) quantize (JCOEFPTR coef_block, DCTELEM *divisors, DCTELEM *workspace) { int i; DCTELEM temp; JCOEFPTR output_ptr = coef_block; #if BITS_IN_JSAMPLE == 8 UDCTELEM recip, corr; int shift; UDCTELEM2 product; for (i = 0; i < DCTSIZE2; i++) { temp = workspace[i]; recip = divisors[i + DCTSIZE2 * 0]; corr = divisors[i + DCTSIZE2 * 1]; shift = divisors[i + DCTSIZE2 * 3]; if (temp < 0) { temp = -temp; product = (UDCTELEM2)(temp + corr) * recip; product >>= shift + sizeof(DCTELEM)*8; temp = (DCTELEM)product; temp = -temp; } else { product = (UDCTELEM2)(temp + corr) * recip; product >>= shift + sizeof(DCTELEM)*8; temp = (DCTELEM)product; } output_ptr[i] = (JCOEF) temp; } #else register DCTELEM qval; for (i = 0; i < DCTSIZE2; i++) { qval = divisors[i]; temp = workspace[i]; /* Divide the coefficient value by qval, ensuring proper rounding. * Since C does not specify the direction of rounding for negative * quotients, we have to force the dividend positive for portability. * * In most files, at least half of the output values will be zero * (at default quantization settings, more like three-quarters...) * so we should ensure that this case is fast. On many machines, * a comparison is enough cheaper than a divide to make a special test * a win. Since both inputs will be nonnegative, we need only test * for a < b to discover whether a/b is 0. * If your machine's division is fast enough, define FAST_DIVIDE. */ #ifdef FAST_DIVIDE #define DIVIDE_BY(a,b) a /= b #else #define DIVIDE_BY(a,b) if (a >= b) a /= b; else a = 0 #endif if (temp < 0) { temp = -temp; temp += qval>>1; /* for rounding */ DIVIDE_BY(temp, qval); temp = -temp; } else { temp += qval>>1; /* for rounding */ DIVIDE_BY(temp, qval); } output_ptr[i] = (JCOEF) temp; } #endif } /* * Perform forward DCT on one or more blocks of a component. * * The input samples are taken from the sample_data[] array starting at * position start_row/start_col, and moving to the right for any additional * blocks. The quantized coefficients are returned in coef_blocks[]. */ METHODDEF(void) forward_DCT (j_compress_ptr cinfo, jpeg_component_info *compptr, JSAMPARRAY sample_data, JBLOCKROW coef_blocks, JDIMENSION start_row, JDIMENSION start_col, JDIMENSION num_blocks) /* This version is used for integer DCT implementations. */ { /* This routine is heavily used, so it's worth coding it tightly. */ my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct; DCTELEM *divisors = fdct->divisors[compptr->quant_tbl_no]; DCTELEM *workspace; JDIMENSION bi; /* Make sure the compiler doesn't look up these every pass */ forward_DCT_method_ptr do_dct = fdct->dct; convsamp_method_ptr do_convsamp = fdct->convsamp; quantize_method_ptr do_quantize = fdct->quantize; workspace = fdct->workspace; sample_data += start_row; /* fold in the vertical offset once */ for (bi = 0; bi < num_blocks; bi++, start_col += DCTSIZE) { /* Load data into workspace, applying unsigned->signed conversion */ (*do_convsamp) (sample_data, start_col, workspace); /* Perform the DCT */ (*do_dct) (workspace); /* Quantize/descale the coefficients, and store into coef_blocks[] */ (*do_quantize) (coef_blocks[bi], divisors, workspace); } } #ifdef DCT_FLOAT_SUPPORTED METHODDEF(void) convsamp_float (JSAMPARRAY sample_data, JDIMENSION start_col, FAST_FLOAT *workspace) { register FAST_FLOAT *workspaceptr; register JSAMPROW elemptr; register int elemr; workspaceptr = workspace; for (elemr = 0; elemr < DCTSIZE; elemr++) { elemptr = sample_data[elemr] + start_col; #if DCTSIZE == 8 /* unroll the inner loop */ *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE); *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE); *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE); *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE); *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE); *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE); *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE); *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE); #else { register int elemc; for (elemc = DCTSIZE; elemc > 0; elemc--) *workspaceptr++ = (FAST_FLOAT) (GETJSAMPLE(*elemptr++) - CENTERJSAMPLE); } #endif } } METHODDEF(void) quantize_float (JCOEFPTR coef_block, FAST_FLOAT *divisors, FAST_FLOAT *workspace) { register FAST_FLOAT temp; register int i; register JCOEFPTR output_ptr = coef_block; for (i = 0; i < DCTSIZE2; i++) { /* Apply the quantization and scaling factor */ temp = workspace[i] * divisors[i]; /* Round to nearest integer. * Since C does not specify the direction of rounding for negative * quotients, we have to force the dividend positive for portability. * The maximum coefficient size is +-16K (for 12-bit data), so this * code should work for either 16-bit or 32-bit ints. */ output_ptr[i] = (JCOEF) ((int) (temp + (FAST_FLOAT) 16384.5) - 16384); } } METHODDEF(void) forward_DCT_float (j_compress_ptr cinfo, jpeg_component_info *compptr, JSAMPARRAY sample_data, JBLOCKROW coef_blocks, JDIMENSION start_row, JDIMENSION start_col, JDIMENSION num_blocks) /* This version is used for floating-point DCT implementations. */ { /* This routine is heavily used, so it's worth coding it tightly. */ my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct; FAST_FLOAT *divisors = fdct->float_divisors[compptr->quant_tbl_no]; FAST_FLOAT *workspace; JDIMENSION bi; /* Make sure the compiler doesn't look up these every pass */ float_DCT_method_ptr do_dct = fdct->float_dct; float_convsamp_method_ptr do_convsamp = fdct->float_convsamp; float_quantize_method_ptr do_quantize = fdct->float_quantize; workspace = fdct->float_workspace; sample_data += start_row; /* fold in the vertical offset once */ for (bi = 0; bi < num_blocks; bi++, start_col += DCTSIZE) { /* Load data into workspace, applying unsigned->signed conversion */ (*do_convsamp) (sample_data, start_col, workspace); /* Perform the DCT */ (*do_dct) (workspace); /* Quantize/descale the coefficients, and store into coef_blocks[] */ (*do_quantize) (coef_blocks[bi], divisors, workspace); } } #endif /* DCT_FLOAT_SUPPORTED */ /* * Initialize FDCT manager. */ GLOBAL(void) jinit_forward_dct (j_compress_ptr cinfo) { my_fdct_ptr fdct; int i; fdct = (my_fdct_ptr) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, sizeof(my_fdct_controller)); cinfo->fdct = (struct jpeg_forward_dct *) fdct; fdct->pub.start_pass = start_pass_fdctmgr; /* First determine the DCT... */ switch (cinfo->dct_method) { #ifdef DCT_ISLOW_SUPPORTED case JDCT_ISLOW: fdct->pub.forward_DCT = forward_DCT; if (jsimd_can_fdct_islow()) fdct->dct = jsimd_fdct_islow; else fdct->dct = jpeg_fdct_islow; break; #endif #ifdef DCT_IFAST_SUPPORTED case JDCT_IFAST: fdct->pub.forward_DCT = forward_DCT; if (jsimd_can_fdct_ifast()) fdct->dct = jsimd_fdct_ifast; else fdct->dct = jpeg_fdct_ifast; break; #endif #ifdef DCT_FLOAT_SUPPORTED case JDCT_FLOAT: fdct->pub.forward_DCT = forward_DCT_float; if (jsimd_can_fdct_float()) fdct->float_dct = jsimd_fdct_float; else fdct->float_dct = jpeg_fdct_float; break; #endif default: ERREXIT(cinfo, JERR_NOT_COMPILED); break; } /* ...then the supporting stages. */ switch (cinfo->dct_method) { #ifdef DCT_ISLOW_SUPPORTED case JDCT_ISLOW: #endif #ifdef DCT_IFAST_SUPPORTED case JDCT_IFAST: #endif #if defined(DCT_ISLOW_SUPPORTED) || defined(DCT_IFAST_SUPPORTED) if (jsimd_can_convsamp()) fdct->convsamp = jsimd_convsamp; else fdct->convsamp = convsamp; if (jsimd_can_quantize()) fdct->quantize = jsimd_quantize; else fdct->quantize = quantize; break; #endif #ifdef DCT_FLOAT_SUPPORTED case JDCT_FLOAT: if (jsimd_can_convsamp_float()) fdct->float_convsamp = jsimd_convsamp_float; else fdct->float_convsamp = convsamp_float; if (jsimd_can_quantize_float()) fdct->float_quantize = jsimd_quantize_float; else fdct->float_quantize = quantize_float; break; #endif default: ERREXIT(cinfo, JERR_NOT_COMPILED); break; } /* Allocate workspace memory */ #ifdef DCT_FLOAT_SUPPORTED if (cinfo->dct_method == JDCT_FLOAT) fdct->float_workspace = (FAST_FLOAT *) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, sizeof(FAST_FLOAT) * DCTSIZE2); else #endif fdct->workspace = (DCTELEM *) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, sizeof(DCTELEM) * DCTSIZE2); /* Mark divisor tables unallocated */ for (i = 0; i < NUM_QUANT_TBLS; i++) { fdct->divisors[i] = NULL; #ifdef DCT_FLOAT_SUPPORTED fdct->float_divisors[i] = NULL; #endif } }