Un*x Platforms (including Mac and Cygwin) ========================================= Build Requirements ------------------ - autoconf 2.56 or later - automake 1.7 or later - libtool 1.4 or later * If using Xcode 4.3 or later on OS X, autoconf and automake are no longer provided. The easiest way to obtain them is from [MacPorts](http://www.MacPorts.org) or [Homebrew](http://brew.sh/). - [NASM](http://www.nasm.us) or [YASM](http://yasm.tortall.net) (if building x86 or x86-64 SIMD extensions) * If using NASM, 0.98, or 2.01 or later is required for an x86 build (0.99 and 2.00 do not work properly with libjpeg-turbo's x86 SIMD code.) * If using NASM, 2.00 or later is required for an x86-64 build. * If using NASM, 2.07 or later (except 2.11.08) is required for an x86-64 Mac build (2.11.08 does not work properly with libjpeg-turbo's x86-64 SIMD code when building macho64 objects.) NASM or YASM can be obtained from [MacPorts](http://www.macports.org/) or [Homebrew](http://brew.sh/). The binary RPMs released by the NASM project do not work on older Linux systems, such as Red Hat Enterprise Linux 5. On such systems, you can easily build and install NASM from a source RPM by downloading one of the SRPMs from <http://www.nasm.us/pub/nasm/releasebuilds> and executing the following as root: ARCH=`uname -m` rpmbuild --rebuild nasm-{version}.src.rpm rpm -Uvh /usr/src/redhat/RPMS/$ARCH/nasm-{version}.$ARCH.rpm NOTE: the NASM build will fail if texinfo is not installed. - GCC v4.1 (or later) or Clang recommended for best performance - If building the TurboJPEG Java wrapper, JDK or OpenJDK 1.5 or later is required. Most modern Linux distributions, as well as Solaris 10 and later, include JDK or OpenJDK. On OS X 10.5 and 10.6, it will be necessary to install the Java Developer Package, which can be downloaded from <http://developer.apple.com/downloads> (Apple ID required.) For other systems, you can obtain the Oracle Java Development Kit from <http://www.java.com>. Out-of-Tree Builds ------------------ Binary objects, libraries, and executables are generated in the directory from which `configure` is executed (the "binary directory"), and this directory need not necessarily be the same as the libjpeg-turbo source directory. You can create multiple independent binary directories, in which different versions of libjpeg-turbo can be built from the same source tree using different compilers or settings. In the sections below, *{build_directory}* refers to the binary directory, whereas *{source_directory}* refers to the libjpeg-turbo source directory. For in-tree builds, these directories are the same. Build Procedure --------------- The following procedure will build libjpeg-turbo on Unix and Unix-like systems. (On Solaris, this generates a 32-bit build. See "Build Recipes" below for 64-bit build instructions.) cd {source_directory} autoreconf -fiv cd {build_directory} sh {source_directory}/configure [additional configure flags] make NOTE: Running autoreconf in the source directory is not necessary if building libjpeg-turbo from one of the official release tarballs. This will generate the following files under **.libs/**: **libjpeg.a**<br> Static link library for the libjpeg API **libjpeg.so.{version}** (Linux, Unix)<br> **libjpeg.{version}.dylib** (Mac)<br> **cygjpeg-{version}.dll** (Cygwin)<br> Shared library for the libjpeg API By default, *{version}* is 62.2.0, 7.2.0, or 8.1.2, depending on whether libjpeg v6b (default), v7, or v8 emulation is enabled. If using Cygwin, *{version}* is 62, 7, or 8. **libjpeg.so** (Linux, Unix)<br> **libjpeg.dylib** (Mac)<br> Development symlink for the libjpeg API **libjpeg.dll.a** (Cygwin)<br> Import library for the libjpeg API **libturbojpeg.a**<br> Static link library for the TurboJPEG API **libturbojpeg.so.0.1.0** (Linux, Unix)<br> **libturbojpeg.0.1.0.dylib** (Mac)<br> **cygturbojpeg-0.dll** (Cygwin)<br> Shared library for the TurboJPEG API **libturbojpeg.so** (Linux, Unix)<br> **libturbojpeg.dylib** (Mac)<br> Development symlink for the TurboJPEG API **libturbojpeg.dll.a** (Cygwin)<br> Import library for the TurboJPEG API ### libjpeg v7 or v8 API/ABI Emulation Add `--with-jpeg7` to the `configure` command line to build a version of libjpeg-turbo that is API/ABI-compatible with libjpeg v7. Add `--with-jpeg8` to the `configure` command to build a version of libjpeg-turbo that is API/ABI-compatible with libjpeg v8. See [README.md](README.md) for more information about libjpeg v7 and v8 emulation. ### In-Memory Source/Destination Managers When using libjpeg v6b or v7 API/ABI emulation, add `--without-mem-srcdst` to the `configure` command line to build a version of libjpeg-turbo that lacks the `jpeg_mem_src()` and `jpeg_mem_dest()` functions. These functions were not part of the original libjpeg v6b and v7 APIs, so removing them ensures strict conformance with those APIs. See [README.md](README.md) for more information. ### Arithmetic Coding Support Since the patent on arithmetic coding has expired, this functionality has been included in this release of libjpeg-turbo. libjpeg-turbo's implementation is based on the implementation in libjpeg v8, but it works when emulating libjpeg v7 or v6b as well. The default is to enable both arithmetic encoding and decoding, but those who have philosophical objections to arithmetic coding can add `--without-arith-enc` or `--without-arith-dec` to the `configure` command line to disable encoding or decoding (respectively.) ### TurboJPEG Java Wrapper Add `--with-java` to the `configure` command line to incorporate an optional Java Native Interface (JNI) wrapper into the TurboJPEG shared library and build the Java front-end classes to support it. This allows the TurboJPEG shared library to be used directly from Java applications. See [java/README](java/README) for more details. You can set the `JAVAC`, `JAR`, and `JAVA` configure variables to specify alternate commands for javac, jar, and java (respectively.) You can also set the `JAVACFLAGS` configure variable to specify arguments that should be passed to the Java compiler when building the TurboJPEG classes, and `JNI_CFLAGS` to specify arguments that should be passed to the C compiler when building the JNI wrapper. Run `configure --help` for more details. Build Recipes ------------- ### 32-bit Build on 64-bit Linux Add --host i686-pc-linux-gnu CFLAGS='-O3 -m32' LDFLAGS=-m32 to the `configure` command line. ### 64-bit Build on 64-bit OS X Add --host x86_64-apple-darwin NASM=/opt/local/bin/nasm to the `configure` command line. NASM 2.07 or later from MacPorts or Homebrew must be installed. If using Homebrew, then replace `/opt/local` with `/usr/local`. ### 32-bit Build on 64-bit OS X Add --host i686-apple-darwin CFLAGS='-O3 -m32' LDFLAGS=-m32 to the `configure` command line. ### 64-bit Backward-Compatible Build on 64-bit OS X Add --host x86_64-apple-darwin NASM=/opt/local/bin/nasm \ CFLAGS='-mmacosx-version-min=10.5 -O3' \ LDFLAGS='-mmacosx-version-min=10.5' to the `configure` command line. NASM 2.07 or later from MacPorts or Homebrew must be installed. If using Homebrew, then replace `/opt/local` with `/usr/local`. ### 32-bit Backward-Compatible Build on OS X Add --host i686-apple-darwin \ CFLAGS='-mmacosx-version-min=10.5 -O3 -m32' \ LDFLAGS='-mmacosx-version-min=10.5 -m32' to the `configure` command line. ### 64-bit Build on 64-bit Solaris Add --host x86_64-pc-solaris CFLAGS='-O3 -m64' LDFLAGS=-m64 to the `configure` command line. ### 32-bit Build on 64-bit FreeBSD Add --host i386-unknown-freebsd CFLAGS='-O3 -m32' LDFLAGS=-m32 to the `configure` command line. NASM 2.07 or later from FreeBSD ports must be installed. ### Oracle Solaris Studio Add CC=cc to the `configure` command line. libjpeg-turbo will automatically be built with the maximum optimization level (-xO5) unless you override `CFLAGS`. To build a 64-bit version of libjpeg-turbo using Oracle Solaris Studio, add --host x86_64-pc-solaris CC=cc CFLAGS='-xO5 -m64' LDFLAGS=-m64 to the `configure` command line. ### MinGW Build on Cygwin Use CMake (see recipes below) Building libjpeg-turbo for iOS ------------------------------ iOS platforms, such as the iPhone and iPad, use ARM processors, and all currently supported models include NEON instructions. Thus, they can take advantage of libjpeg-turbo's SIMD extensions to significantly accelerate JPEG compression/decompression. This section describes how to build libjpeg-turbo for these platforms. ### Additional build requirements - For configurations that require [gas-preprocessor.pl] (https://raw.githubusercontent.com/libjpeg-turbo/gas-preprocessor/master/gas-preprocessor.pl), it should be installed in your `PATH`. ### ARMv7 (32-bit) **gas-preprocessor.pl required** The following scripts demonstrate how to build libjpeg-turbo to run on the iPhone 3GS-4S/iPad 1st-3rd Generation and newer: #### Xcode 4.2 and earlier (LLVM-GCC) IOS_PLATFORMDIR=/Developer/Platforms/iPhoneOS.platform IOS_SYSROOT=($IOS_PLATFORMDIR/Developer/SDKs/iPhoneOS*.sdk) export host_alias=arm-apple-darwin10 export CC=${IOS_PLATFORMDIR}/Developer/usr/bin/arm-apple-darwin10-llvm-gcc-4.2 export CFLAGS="-mfloat-abi=softfp -isysroot ${IOS_SYSROOT[0]} -O3 -march=armv7 -mcpu=cortex-a8 -mtune=cortex-a8 -mfpu=neon -miphoneos-version-min=3.0" cd {build_directory} sh {source_directory}/configure [additional configure flags] make #### Xcode 4.3-4.6 (LLVM-GCC) Same as above, but replace the first line with: IOS_PLATFORMDIR=/Applications/Xcode.app/Contents/Developer/Platforms/iPhoneOS.platform #### Xcode 5 and later (Clang) IOS_PLATFORMDIR=/Applications/Xcode.app/Contents/Developer/Platforms/iPhoneOS.platform IOS_SYSROOT=($IOS_PLATFORMDIR/Developer/SDKs/iPhoneOS*.sdk) export host_alias=arm-apple-darwin10 export CC=/Applications/Xcode.app/Contents/Developer/Toolchains/XcodeDefault.xctoolchain/usr/bin/clang export CFLAGS="-mfloat-abi=softfp -isysroot ${IOS_SYSROOT[0]} -O3 -arch armv7 -miphoneos-version-min=3.0" export CCASFLAGS="$CFLAGS -no-integrated-as" cd {build_directory} sh {source_directory}/configure [additional configure flags] make ### ARMv7s (32-bit) **gas-preprocessor.pl required** The following scripts demonstrate how to build libjpeg-turbo to run on the iPhone 5/iPad 4th Generation and newer: #### Xcode 4.5-4.6 (LLVM-GCC) IOS_PLATFORMDIR=/Applications/Xcode.app/Contents/Developer/Platforms/iPhoneOS.platform IOS_SYSROOT=($IOS_PLATFORMDIR/Developer/SDKs/iPhoneOS*.sdk) export host_alias=arm-apple-darwin10 export CC=${IOS_PLATFORMDIR}/Developer/usr/bin/arm-apple-darwin10-llvm-gcc-4.2 export CFLAGS="-mfloat-abi=softfp -isysroot ${IOS_SYSROOT[0]} -O3 -march=armv7s -mcpu=swift -mtune=swift -mfpu=neon -miphoneos-version-min=6.0" cd {build_directory} sh {source_directory}/configure [additional configure flags] make #### Xcode 5 and later (Clang) Same as the ARMv7 build procedure for Xcode 5 and later, except replace the compiler flags as follows: export CFLAGS="-mfloat-abi=softfp -isysroot ${IOS_SYSROOT[0]} -O3 -arch armv7s -miphoneos-version-min=6.0" ### ARMv8 (64-bit) **gas-preprocessor.pl required if using Xcode < 6** The following script demonstrates how to build libjpeg-turbo to run on the iPhone 5S/iPad Mini 2/iPad Air and newer. IOS_PLATFORMDIR=/Applications/Xcode.app/Contents/Developer/Platforms/iPhoneOS.platform IOS_SYSROOT=($IOS_PLATFORMDIR/Developer/SDKs/iPhoneOS*.sdk) export host_alias=aarch64-apple-darwin export CC=/Applications/Xcode.app/Contents/Developer/Toolchains/XcodeDefault.xctoolchain/usr/bin/clang export CFLAGS="-isysroot ${IOS_SYSROOT[0]} -O3 -arch arm64 -miphoneos-version-min=7.0 -funwind-tables" cd {build_directory} sh {source_directory}/configure [additional configure flags] make Once built, lipo can be used to combine the ARMv7, v7s, and/or v8 variants into a universal library. Building libjpeg-turbo for Android ---------------------------------- Building libjpeg-turbo for Android platforms requires the [Android NDK](https://developer.android.com/tools/sdk/ndk) and autotools. ### ARMv7 (32-bit) The following is a general recipe script that can be modified for your specific needs. # Set these variables to suit your needs NDK_PATH={full path to the "ndk" directory-- for example, /opt/android/sdk/ndk-bundle} BUILD_PLATFORM={the platform name for the NDK package you installed-- for example, "windows-x86" or "linux-x86_64" or "darwin-x86_64"} TOOLCHAIN_VERSION={"4.8", "4.9", "clang3.5", etc. This corresponds to a toolchain directory under ${NDK_PATH}/toolchains/.} ANDROID_VERSION={The minimum version of Android to support-- for example, "16", "19", etc.} # It should not be necessary to modify the rest HOST=arm-linux-androideabi SYSROOT=${NDK_PATH}/platforms/android-${ANDROID_VERSION}/arch-arm ANDROID_CFLAGS="-march=armv7-a -mfloat-abi=softfp -fprefetch-loop-arrays \ --sysroot=${SYSROOT}" TOOLCHAIN=${NDK_PATH}/toolchains/${HOST}-${TOOLCHAIN_VERSION}/prebuilt/${BUILD_PLATFORM} export CPP=${TOOLCHAIN}/bin/${HOST}-cpp export AR=${TOOLCHAIN}/bin/${HOST}-ar export NM=${TOOLCHAIN}/bin/${HOST}-nm export CC=${TOOLCHAIN}/bin/${HOST}-gcc export LD=${TOOLCHAIN}/bin/${HOST}-ld export RANLIB=${TOOLCHAIN}/bin/${HOST}-ranlib export OBJDUMP=${TOOLCHAIN}/bin/${HOST}-objdump export STRIP=${TOOLCHAIN}/bin/${HOST}-strip cd {build_directory} sh {source_directory}/configure --host=${HOST} \ CFLAGS="${ANDROID_CFLAGS} -O3 -fPIE" \ CPPFLAGS="${ANDROID_CFLAGS}" \ LDFLAGS="${ANDROID_CFLAGS} -pie" --with-simd ${1+"$@"} make ### ARMv8 (64-bit) The following is a general recipe script that can be modified for your specific needs. # Set these variables to suit your needs NDK_PATH={full path to the "ndk" directory-- for example, /opt/android/sdk/ndk-bundle} BUILD_PLATFORM={the platform name for the NDK package you installed-- for example, "windows-x86" or "linux-x86_64" or "darwin-x86_64"} TOOLCHAIN_VERSION={"4.8", "4.9", "clang3.5", etc. This corresponds to a toolchain directory under ${NDK_PATH}/toolchains/.} ANDROID_VERSION={The minimum version of Android to support. "21" or later is required for a 64-bit build.} # It should not be necessary to modify the rest HOST=aarch64-linux-android SYSROOT=${NDK_PATH}/platforms/android-${ANDROID_VERSION}/arch-arm64 ANDROID_CFLAGS="--sysroot=${SYSROOT}" TOOLCHAIN=${NDK_PATH}/toolchains/${HOST}-${TOOLCHAIN_VERSION}/prebuilt/${BUILD_PLATFORM} export CPP=${TOOLCHAIN}/bin/${HOST}-cpp export AR=${TOOLCHAIN}/bin/${HOST}-ar export NM=${TOOLCHAIN}/bin/${HOST}-nm export CC=${TOOLCHAIN}/bin/${HOST}-gcc export LD=${TOOLCHAIN}/bin/${HOST}-ld export RANLIB=${TOOLCHAIN}/bin/${HOST}-ranlib export OBJDUMP=${TOOLCHAIN}/bin/${HOST}-objdump export STRIP=${TOOLCHAIN}/bin/${HOST}-strip cd {build_directory} sh {source_directory}/configure --host=${HOST} \ CFLAGS="${ANDROID_CFLAGS} -O3 -fPIE" \ CPPFLAGS="${ANDROID_CFLAGS}" \ LDFLAGS="${ANDROID_CFLAGS} -pie" --with-simd ${1+"$@"} make ### x86 (32-bit) The following is a general recipe script that can be modified for your specific needs. # Set these variables to suit your needs NDK_PATH={full path to the "ndk" directory-- for example, /opt/android/sdk/ndk-bundle} BUILD_PLATFORM={the platform name for the NDK package you installed-- for example, "windows-x86" or "linux-x86_64" or "darwin-x86_64"} TOOLCHAIN_VERSION={"4.8", "4.9", "clang3.5", etc. This corresponds to a toolchain directory under ${NDK_PATH}/toolchains/.} ANDROID_VERSION={The minimum version of Android to support-- for example, "16", "19", etc.} # It should not be necessary to modify the rest HOST=i686-linux-android SYSROOT=${NDK_PATH}/platforms/android-${ANDROID_VERSION}/arch-x86 ANDROID_CFLAGS="--sysroot=${SYSROOT}" TOOLCHAIN=${NDK_PATH}/toolchains/x86-${TOOLCHAIN_VERSION}/prebuilt/${BUILD_PLATFORM} export CPP=${TOOLCHAIN}/bin/${HOST}-cpp export AR=${TOOLCHAIN}/bin/${HOST}-ar export NM=${TOOLCHAIN}/bin/${HOST}-nm export CC=${TOOLCHAIN}/bin/${HOST}-gcc export LD=${TOOLCHAIN}/bin/${HOST}-ld export RANLIB=${TOOLCHAIN}/bin/${HOST}-ranlib export OBJDUMP=${TOOLCHAIN}/bin/${HOST}-objdump export STRIP=${TOOLCHAIN}/bin/${HOST}-strip cd {build_directory} sh {source_directory}/configure --host=${HOST} \ CFLAGS="${ANDROID_CFLAGS} -O3 -fPIE" \ CPPFLAGS="${ANDROID_CFLAGS}" \ LDFLAGS="${ANDROID_CFLAGS} -pie" --with-simd ${1+"$@"} make ### x86-64 (64-bit) The following is a general recipe script that can be modified for your specific needs. # Set these variables to suit your needs NDK_PATH={full path to the "ndk" directory-- for example, /opt/android/sdk/ndk-bundle} BUILD_PLATFORM={the platform name for the NDK package you installed-- for example, "windows-x86" or "linux-x86_64" or "darwin-x86_64"} TOOLCHAIN_VERSION={"4.8", "4.9", "clang3.5", etc. This corresponds to a toolchain directory under ${NDK_PATH}/toolchains/.} ANDROID_VERSION={The minimum version of Android to support. "21" or later is required for a 64-bit build.} # It should not be necessary to modify the rest HOST=x86_64-linux-android SYSROOT=${NDK_PATH}/platforms/android-${ANDROID_VERSION}/arch-x86_64 ANDROID_CFLAGS="--sysroot=${SYSROOT}" TOOLCHAIN=${NDK_PATH}/toolchains/x86_64-${TOOLCHAIN_VERSION}/prebuilt/${BUILD_PLATFORM} export CPP=${TOOLCHAIN}/bin/${HOST}-cpp export AR=${TOOLCHAIN}/bin/${HOST}-ar export NM=${TOOLCHAIN}/bin/${HOST}-nm export CC=${TOOLCHAIN}/bin/${HOST}-gcc export LD=${TOOLCHAIN}/bin/${HOST}-ld export RANLIB=${TOOLCHAIN}/bin/${HOST}-ranlib export OBJDUMP=${TOOLCHAIN}/bin/${HOST}-objdump export STRIP=${TOOLCHAIN}/bin/${HOST}-strip cd {build_directory} sh {source_directory}/configure --host=${HOST} \ CFLAGS="${ANDROID_CFLAGS} -O3 -fPIE" \ CPPFLAGS="${ANDROID_CFLAGS}" \ LDFLAGS="${ANDROID_CFLAGS} -pie" --with-simd ${1+"$@"} make If building for Android 4.0.x (API level < 16) or earlier, remove `-fPIE` from `CFLAGS` and `-pie` from `LDFLAGS`. Installing libjpeg-turbo ------------------------ To install libjpeg-turbo after it is built, replace `make` in the build instructions with `make install`. The `--prefix` argument to configure (or the `prefix` configure variable) can be used to specify an installation directory of your choosing. If you don't specify an installation directory, then the default is to install libjpeg-turbo under **/opt/libjpeg-turbo** and to place the libraries in **/opt/libjpeg-turbo/lib32** (32-bit) or **/opt/libjpeg-turbo/lib64** (64-bit.) The `bindir`, `datadir`, `docdir`, `includedir`, `libdir`, and `mandir` configure variables allow a finer degree of control over where specific files in the libjpeg-turbo distribution should be installed. These variables can either be specified at configure time or passed as arguments to `make install`. Windows (Visual C++ or MinGW) ============================= Build Requirements ------------------ - [CMake](http://www.cmake.org) v2.8.11 or later - [NASM](http://www.nasm.us) or [YASM](http://yasm.tortall.net) * If using NASM, 0.98 or later is required for an x86 build. * If using NASM, 2.05 or later is required for an x86-64 build. * **nasm.exe**/**yasm.exe** should be in your `PATH`. - Microsoft Visual C++ 2005 or later If you don't already have Visual C++, then the easiest way to get it is by installing the [Windows SDK](http://msdn.microsoft.com/en-us/windows/bb980924.aspx). The Windows SDK includes both 32-bit and 64-bit Visual C++ compilers and everything necessary to build libjpeg-turbo. * You can also use Microsoft Visual Studio Express/Community Edition, which is a free download. (NOTE: versions prior to 2012 can only be used to build 32-bit code.) * If you intend to build libjpeg-turbo from the command line, then add the appropriate compiler and SDK directories to the `INCLUDE`, `LIB`, and `PATH` environment variables. This is generally accomplished by executing `vcvars32.bat` or `vcvars64.bat` and `SetEnv.cmd`. `vcvars32.bat` and `vcvars64.bat` are part of Visual C++ and are located in the same directory as the compiler. `SetEnv.cmd` is part of the Windows SDK. You can pass optional arguments to `SetEnv.cmd` to specify a 32-bit or 64-bit build environment. ... OR ... - MinGW [MSYS2](http://msys2.github.io/) or [tdm-gcc](http://tdm-gcc.tdragon.net/) recommended if building on a Windows machine. Both distributions install a Start Menu link that can be used to launch a command prompt with the appropriate compiler paths automatically set. - If building the TurboJPEG Java wrapper, JDK 1.5 or later is required. This can be downloaded from <http://www.java.com>. Out-of-Tree Builds ------------------ Binary objects, libraries, and executables are generated in the directory from which CMake is executed (the "binary directory"), and this directory need not necessarily be the same as the libjpeg-turbo source directory. You can create multiple independent binary directories, in which different versions of libjpeg-turbo can be built from the same source tree using different compilers or settings. In the sections below, *{build_directory}* refers to the binary directory, whereas *{source_directory}* refers to the libjpeg-turbo source directory. For in-tree builds, these directories are the same. Build Procedure --------------- NOTE: The build procedures below assume that CMake is invoked from the command line, but all of these procedures can be adapted to the CMake GUI as well. ### Visual C++ (Command Line) cd {build_directory} cmake -G"NMake Makefiles" -DCMAKE_BUILD_TYPE=Release [additional CMake flags] {source_directory} nmake This will build either a 32-bit or a 64-bit version of libjpeg-turbo, depending on which version of **cl.exe** is in the `PATH`. The following files will be generated under *{build_directory}*: **jpeg-static.lib**<br> Static link library for the libjpeg API **sharedlib/jpeg{version}.dll**<br> DLL for the libjpeg API **sharedlib/jpeg.lib**<br> Import library for the libjpeg API **turbojpeg-static.lib**<br> Static link library for the TurboJPEG API **turbojpeg.dll**<br> DLL for the TurboJPEG API **turbojpeg.lib**<br> Import library for the TurboJPEG API *{version}* is 62, 7, or 8, depending on whether libjpeg v6b (default), v7, or v8 emulation is enabled. ### Visual C++ (IDE) Choose the appropriate CMake generator option for your version of Visual Studio (run `cmake` with no arguments for a list of available generators.) For instance: cd {build_directory} cmake -G"Visual Studio 10" [additional CMake flags] {source_directory} NOTE: Add "Win64" to the generator name (for example, "Visual Studio 10 Win64") to build a 64-bit version of libjpeg-turbo. A separate build directory must be used for 32-bit and 64-bit builds. You can then open **ALL_BUILD.vcproj** in Visual Studio and build one of the configurations in that project ("Debug", "Release", etc.) to generate a full build of libjpeg-turbo. This will generate the following files under *{build_directory}*: **{configuration}/jpeg-static.lib**<br> Static link library for the libjpeg API **sharedlib/{configuration}/jpeg{version}.dll**<br> DLL for the libjpeg API **sharedlib/{configuration}/jpeg.lib**<br> Import library for the libjpeg API **{configuration}/turbojpeg-static.lib**<br> Static link library for the TurboJPEG API **{configuration}/turbojpeg.dll**<br> DLL for the TurboJPEG API **{configuration}/turbojpeg.lib**<br> Import library for the TurboJPEG API *{configuration}* is Debug, Release, RelWithDebInfo, or MinSizeRel, depending on the configuration you built in the IDE, and *{version}* is 62, 7, or 8, depending on whether libjpeg v6b (default), v7, or v8 emulation is enabled. ### MinGW NOTE: This assumes that you are building on a Windows machine using the MSYS environment. If you are cross-compiling on a Un*x platform (including Mac and Cygwin), then see "Build Recipes" below. cd {build_directory} cmake -G"MSYS Makefiles" [additional CMake flags] {source_directory} make This will generate the following files under *{build_directory}*: **libjpeg.a**<br> Static link library for the libjpeg API **sharedlib/libjpeg-{version}.dll**<br> DLL for the libjpeg API **sharedlib/libjpeg.dll.a**<br> Import library for the libjpeg API **libturbojpeg.a**<br> Static link library for the TurboJPEG API **libturbojpeg.dll**<br> DLL for the TurboJPEG API **libturbojpeg.dll.a**<br> Import library for the TurboJPEG API *{version}* is 62, 7, or 8, depending on whether libjpeg v6b (default), v7, or v8 emulation is enabled. ### Debug Build Add `-DCMAKE_BUILD_TYPE=Debug` to the CMake command line. Or, if building with NMake, remove `-DCMAKE_BUILD_TYPE=Release` (Debug builds are the default with NMake.) ### libjpeg v7 or v8 API/ABI Emulation Add `-DWITH_JPEG7=1` to the CMake command line to build a version of libjpeg-turbo that is API/ABI-compatible with libjpeg v7. Add `-DWITH_JPEG8=1` to the CMake command line to build a version of libjpeg-turbo that is API/ABI-compatible with libjpeg v8. See [README.md](README.md) for more information about libjpeg v7 and v8 emulation. ### In-Memory Source/Destination Managers When using libjpeg v6b or v7 API/ABI emulation, add `-DWITH_MEM_SRCDST=0` to the CMake command line to build a version of libjpeg-turbo that lacks the `jpeg_mem_src()` and `jpeg_mem_dest()` functions. These functions were not part of the original libjpeg v6b and v7 APIs, so removing them ensures strict conformance with those APIs. See [README.md](README.md) for more information. ### Arithmetic Coding Support Since the patent on arithmetic coding has expired, this functionality has been included in this release of libjpeg-turbo. libjpeg-turbo's implementation is based on the implementation in libjpeg v8, but it works when emulating libjpeg v7 or v6b as well. The default is to enable both arithmetic encoding and decoding, but those who have philosophical objections to arithmetic coding can add `-DWITH_ARITH_ENC=0` or `-DWITH_ARITH_DEC=0` to the CMake command line to disable encoding or decoding (respectively.) ### TurboJPEG Java Wrapper Add `-DWITH_JAVA=1` to the CMake command line to incorporate an optional Java Native Interface (JNI) wrapper into the TurboJPEG shared library and build the Java front-end classes to support it. This allows the TurboJPEG shared library to be used directly from Java applications. See [java/README](java/README) for more details. If Java is not in your `PATH`, or if you wish to use an alternate JDK to build/test libjpeg-turbo, then (prior to running CMake) set the `JAVA_HOME` environment variable to the location of the JDK that you wish to use. The `Java_JAVAC_EXECUTABLE`, `Java_JAVA_EXECUTABLE`, and `Java_JAR_EXECUTABLE` CMake variables can also be used to specify alternate commands or locations for javac, jar, and java (respectively.) You can also set the `JAVACFLAGS` CMake variable to specify arguments that should be passed to the Java compiler when building the TurboJPEG classes. Build Recipes ------------- ### 32-bit MinGW Build on Un*x (including Mac and Cygwin) Create a file called **toolchain.cmake** under *{build_directory}*, with the following contents: set(CMAKE_SYSTEM_NAME Windows) set(CMAKE_SYSTEM_PROCESSOR X86) set(CMAKE_C_COMPILER {mingw_binary_path}/i686-w64-mingw32-gcc) set(CMAKE_RC_COMPILER {mingw_binary_path}/i686-w64-mingw32-windres) *{mingw\_binary\_path}* is the directory under which the MinGW binaries are located (usually **/usr/bin**.) Next, execute the following commands: cd {build_directory} cmake -G"Unix Makefiles" -DCMAKE_TOOLCHAIN_FILE=toolchain.cmake \ [additional CMake flags] {source_directory} make ### 64-bit MinGW Build on Un*x (including Mac and Cygwin) Create a file called **toolchain.cmake** under *{build_directory}*, with the following contents: set(CMAKE_SYSTEM_NAME Windows) set(CMAKE_SYSTEM_PROCESSOR AMD64) set(CMAKE_C_COMPILER {mingw_binary_path}/x86_64-w64-mingw32-gcc) set(CMAKE_RC_COMPILER {mingw_binary_path}/x86_64-w64-mingw32-windres) *{mingw\_binary\_path}* is the directory under which the MinGW binaries are located (usually **/usr/bin**.) Next, execute the following commands: cd {build_directory} cmake -G"Unix Makefiles" -DCMAKE_TOOLCHAIN_FILE=toolchain.cmake \ [additional CMake flags] {source_directory} make Installing libjpeg-turbo ------------------------ You can use the build system to install libjpeg-turbo (as opposed to creating an installer package.) To do this, run `make install` or `nmake install` (or build the "install" target in the Visual Studio IDE.) Running `make uninstall` or `nmake uninstall` (or building the "uninstall" target in the Visual Studio IDE) will uninstall libjpeg-turbo. The `CMAKE_INSTALL_PREFIX` CMake variable can be modified in order to install libjpeg-turbo into a directory of your choosing. If you don't specify `CMAKE_INSTALL_PREFIX`, then the default is: **c:\libjpeg-turbo**<br> Visual Studio 32-bit build **c:\libjpeg-turbo64**<br> Visual Studio 64-bit build **c:\libjpeg-turbo-gcc**<br> MinGW 32-bit build **c:\libjpeg-turbo-gcc64**<br> MinGW 64-bit build Creating Distribution Packages ============================== The following commands can be used to create various types of distribution packages: Linux ----- make rpm Create Red Hat-style binary RPM package. Requires RPM v4 or later. make srpm This runs `make dist` to create a pristine source tarball, then creates a Red Hat-style source RPM package from the tarball. Requires RPM v4 or later. make deb Create Debian-style binary package. Requires dpkg. Mac --- make dmg Create Mac package/disk image. This requires pkgbuild and productbuild, which are installed by default on OS X 10.7 and later and which can be obtained by installing Xcode 3.2.6 (with the "Unix Development" option) on OS X 10.6. Packages built in this manner can be installed on OS X 10.5 and later, but they must be built on OS X 10.6 or later. make udmg [BUILDDIR32={32-bit build directory}] On 64-bit OS X systems, this creates a Mac package/disk image that contains universal i386/x86-64 binaries. You should first configure a 32-bit out-of-tree build of libjpeg-turbo, then configure a 64-bit out-of-tree build, then run `make udmg` from the 64-bit build directory. The build system will look for the 32-bit build under *{source_directory}*/osxx86 by default, but you can override this by setting the `BUILDDIR32` variable on the make command line as shown above. make iosdmg [BUILDDIR32={32-bit build directory}] \ [BUILDDIRARMV7={ARMv7 build directory}] \ [BUILDDIRARMV7S={ARMv7s build directory}] \ [BUILDDIRARMV8={ARMv8 build directory}] This creates a Mac package/disk image in which the libjpeg-turbo libraries contain ARM architectures necessary to build iOS applications. If building on an x86-64 system, the binaries will also contain the i386 architecture, as with `make udmg` above. You should first configure ARMv7, ARMv7s, and/or ARMv8 out-of-tree builds of libjpeg-turbo (see "Building libjpeg-turbo for iOS" above.) If you are building an x86-64 version of libjpeg-turbo, you should configure a 32-bit out-of-tree build as well. Next, build libjpeg-turbo as you would normally, using an out-of-tree build. When it is built, run `make iosdmg` from the build directory. The build system will look for the ARMv7 build under *{source_directory}*/iosarmv7 by default, the ARMv7s build under *{source_directory}*/iosarmv7s by default, the ARMv8 build under *{source_directory}*/iosarmv8 by default, and (if applicable) the 32-bit build under *{source_directory}*/osxx86 by default, but you can override this by setting the `BUILDDIR32`, `BUILDDIRARMV7`, `BUILDDIRARMV7S`, and/or `BUILDDIRARMV8` variables on the `make` command line as shown above. NOTE: If including an ARMv8 build in the package, then you may need to use Xcode's version of lipo instead of the operating system's. To do this, pass an argument of `LIPO="xcrun lipo"` on the make command line. make cygwinpkg Build a Cygwin binary package. Windows ------- If using NMake: cd {build_directory} nmake installer If using MinGW: cd {build_directory} make installer If using the Visual Studio IDE, build the "installer" target. The installer package (libjpeg-turbo-*{version}*[-gcc|-vc][64].exe) will be located under *{build_directory}*. If building using the Visual Studio IDE, then the installer package will be located in a subdirectory with the same name as the configuration you built (such as *{build_directory}*\Debug\ or *{build_directory}*\Release\). Building a Windows installer requires the [Nullsoft Install System](http://nsis.sourceforge.net/). makensis.exe should be in your `PATH`. Regression testing ================== The most common way to test libjpeg-turbo is by invoking `make test` (Un*x) or `nmake test` (Windows command line) or by building the "RUN_TESTS" target (Visual Studio IDE), once the build has completed. This runs a series of tests to ensure that mathematical compatibility has been maintained between libjpeg-turbo and libjpeg v6b. This also invokes the TurboJPEG unit tests, which ensure that the colorspace extensions, YUV encoding, decompression scaling, and other features of the TurboJPEG C and Java APIs are working properly (and, by extension, that the equivalent features of the underlying libjpeg API are also working.) Invoking `make testclean` (Un*x) or `nmake testclean` (Windows command line) or building the "testclean" target (Visual Studio IDE) will clean up the output images generated by the tests. On Un*x platforms, more extensive tests of the TurboJPEG C and Java wrappers can be run by invoking `make tjtest`. These extended TurboJPEG tests essentially iterate through all of the available features of the TurboJPEG APIs that are not covered by the TurboJPEG unit tests (including the lossless transform options) and compare the images generated by each feature to images generated using the equivalent feature in the libjpeg API. The extended TurboJPEG tests are meant to test for regressions in the TurboJPEG wrappers, not in the underlying libjpeg API library.