/****************************************************************************** * * Copyright (C) 2012 Ittiam Systems Pvt Ltd, Bangalore * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at: * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ******************************************************************************/ /** ******************************************************************************* * @file * ihevc_itrans_recon_8x8.c * * @brief * Contains function definitions for inverse transform and reconstruction 8x8 * * * @author * 100470 * * @par List of Functions: * - ihevc_itrans_recon_8x8() * * @remarks * None * ******************************************************************************* */ #include <stdio.h> #include <string.h> #include "ihevc_typedefs.h" #include "ihevc_macros.h" #include "ihevc_platform_macros.h" #include "ihevc_defs.h" #include "ihevc_trans_tables.h" #include "ihevc_itrans_recon.h" #include "ihevc_func_selector.h" #include "ihevc_trans_macros.h" /** ******************************************************************************* * * @brief * This function performs Inverse transform and reconstruction for 8x8 * input block * * @par Description: * Performs inverse transform and adds the prediction data and clips output * to 8 bit * * @param[in] pi2_src * Input 8x8 coefficients * * @param[in] pi2_tmp * Temporary 8x8 buffer for storing inverse * * transform * 1st stage output * * @param[in] pu1_pred * Prediction 8x8 block * * @param[out] pu1_dst * Output 8x8 block * * @param[in] src_strd * Input stride * * @param[in] pred_strd * Prediction stride * * @param[in] dst_strd * Output Stride * * @param[in] shift * Output shift * * @param[in] zero_cols * Zero columns in pi2_src * * @returns Void * * @remarks * None * ******************************************************************************* */ void ihevc_itrans_recon_8x8(WORD16 *pi2_src, WORD16 *pi2_tmp, UWORD8 *pu1_pred, UWORD8 *pu1_dst, WORD32 src_strd, WORD32 pred_strd, WORD32 dst_strd, WORD32 zero_cols, WORD32 zero_rows) { WORD32 j, k; WORD32 e[4], o[4]; WORD32 ee[2], eo[2]; WORD32 add; WORD32 shift; WORD16 *pi2_tmp_orig; WORD32 trans_size; WORD32 zero_rows_2nd_stage = zero_cols; WORD32 row_limit_2nd_stage; trans_size = TRANS_SIZE_8; pi2_tmp_orig = pi2_tmp; if((zero_cols & 0xF0) == 0xF0) row_limit_2nd_stage = 4; else row_limit_2nd_stage = TRANS_SIZE_8; if((zero_rows & 0xF0) == 0xF0) /* First 4 rows of input are non-zero */ { /************************************************************************************************/ /**********************************START - IT_RECON_8x8******************************************/ /************************************************************************************************/ /* Inverse Transform 1st stage */ shift = IT_SHIFT_STAGE_1; add = 1 << (shift - 1); for(j = 0; j < row_limit_2nd_stage; j++) { /* Checking for Zero Cols */ if((zero_cols & 1) == 1) { memset(pi2_tmp, 0, trans_size * sizeof(WORD16)); } else { /* Utilizing symmetry properties to the maximum to minimize the number of multiplications */ for(k = 0; k < 4; k++) { o[k] = g_ai2_ihevc_trans_8[1][k] * pi2_src[src_strd] + g_ai2_ihevc_trans_8[3][k] * pi2_src[3 * src_strd]; } eo[0] = g_ai2_ihevc_trans_8[2][0] * pi2_src[2 * src_strd]; eo[1] = g_ai2_ihevc_trans_8[2][1] * pi2_src[2 * src_strd]; ee[0] = g_ai2_ihevc_trans_8[0][0] * pi2_src[0]; ee[1] = g_ai2_ihevc_trans_8[0][1] * pi2_src[0]; /* Combining e and o terms at each hierarchy levels to calculate the final spatial domain vector */ e[0] = ee[0] + eo[0]; e[3] = ee[0] - eo[0]; e[1] = ee[1] + eo[1]; e[2] = ee[1] - eo[1]; for(k = 0; k < 4; k++) { pi2_tmp[k] = CLIP_S16(((e[k] + o[k] + add) >> shift)); pi2_tmp[k + 4] = CLIP_S16(((e[3 - k] - o[3 - k] + add) >> shift)); } } pi2_src++; pi2_tmp += trans_size; zero_cols = zero_cols >> 1; } pi2_tmp = pi2_tmp_orig; /* Inverse Transform 2nd stage */ shift = IT_SHIFT_STAGE_2; add = 1 << (shift - 1); if((zero_rows_2nd_stage & 0xF0) == 0xF0) /* First 4 rows of output of 1st stage are non-zero */ { for(j = 0; j < trans_size; j++) { /* Utilizing symmetry properties to the maximum to minimize the number of multiplications */ for(k = 0; k < 4; k++) { o[k] = g_ai2_ihevc_trans_8[1][k] * pi2_tmp[trans_size] + g_ai2_ihevc_trans_8[3][k] * pi2_tmp[3 * trans_size]; } eo[0] = g_ai2_ihevc_trans_8[2][0] * pi2_tmp[2 * trans_size]; eo[1] = g_ai2_ihevc_trans_8[2][1] * pi2_tmp[2 * trans_size]; ee[0] = g_ai2_ihevc_trans_8[0][0] * pi2_tmp[0]; ee[1] = g_ai2_ihevc_trans_8[0][1] * pi2_tmp[0]; /* Combining e and o terms at each hierarchy levels to calculate the final spatial domain vector */ e[0] = ee[0] + eo[0]; e[3] = ee[0] - eo[0]; e[1] = ee[1] + eo[1]; e[2] = ee[1] - eo[1]; for(k = 0; k < 4; k++) { WORD32 itrans_out; itrans_out = CLIP_S16(((e[k] + o[k] + add) >> shift)); pu1_dst[k] = CLIP_U8((itrans_out + pu1_pred[k])); itrans_out = CLIP_S16(((e[3 - k] - o[3 - k] + add) >> shift)); pu1_dst[k + 4] = CLIP_U8((itrans_out + pu1_pred[k + 4])); } pi2_tmp++; pu1_pred += pred_strd; pu1_dst += dst_strd; } } else /* All rows of output of 1st stage are non-zero */ { for(j = 0; j < trans_size; j++) { /* Utilizing symmetry properties to the maximum to minimize the number of multiplications */ for(k = 0; k < 4; k++) { o[k] = g_ai2_ihevc_trans_8[1][k] * pi2_tmp[trans_size] + g_ai2_ihevc_trans_8[3][k] * pi2_tmp[3 * trans_size] + g_ai2_ihevc_trans_8[5][k] * pi2_tmp[5 * trans_size] + g_ai2_ihevc_trans_8[7][k] * pi2_tmp[7 * trans_size]; } eo[0] = g_ai2_ihevc_trans_8[2][0] * pi2_tmp[2 * trans_size] + g_ai2_ihevc_trans_8[6][0] * pi2_tmp[6 * trans_size]; eo[1] = g_ai2_ihevc_trans_8[2][1] * pi2_tmp[2 * trans_size] + g_ai2_ihevc_trans_8[6][1] * pi2_tmp[6 * trans_size]; ee[0] = g_ai2_ihevc_trans_8[0][0] * pi2_tmp[0] + g_ai2_ihevc_trans_8[4][0] * pi2_tmp[4 * trans_size]; ee[1] = g_ai2_ihevc_trans_8[0][1] * pi2_tmp[0] + g_ai2_ihevc_trans_8[4][1] * pi2_tmp[4 * trans_size]; /* Combining e and o terms at each hierarchy levels to calculate the final spatial domain vector */ e[0] = ee[0] + eo[0]; e[3] = ee[0] - eo[0]; e[1] = ee[1] + eo[1]; e[2] = ee[1] - eo[1]; for(k = 0; k < 4; k++) { WORD32 itrans_out; itrans_out = CLIP_S16(((e[k] + o[k] + add) >> shift)); pu1_dst[k] = CLIP_U8((itrans_out + pu1_pred[k])); itrans_out = CLIP_S16(((e[3 - k] - o[3 - k] + add) >> shift)); pu1_dst[k + 4] = CLIP_U8((itrans_out + pu1_pred[k + 4])); } pi2_tmp++; pu1_pred += pred_strd; pu1_dst += dst_strd; } } /************************************************************************************************/ /************************************END - IT_RECON_8x8******************************************/ /************************************************************************************************/ } else /* All rows of input are non-zero */ { /************************************************************************************************/ /**********************************START - IT_RECON_8x8******************************************/ /************************************************************************************************/ /* Inverse Transform 1st stage */ shift = IT_SHIFT_STAGE_1; add = 1 << (shift - 1); for(j = 0; j < row_limit_2nd_stage; j++) { /* Checking for Zero Cols */ if((zero_cols & 1) == 1) { memset(pi2_tmp, 0, trans_size * sizeof(WORD16)); } else { /* Utilizing symmetry properties to the maximum to minimize the number of multiplications */ for(k = 0; k < 4; k++) { o[k] = g_ai2_ihevc_trans_8[1][k] * pi2_src[src_strd] + g_ai2_ihevc_trans_8[3][k] * pi2_src[3 * src_strd] + g_ai2_ihevc_trans_8[5][k] * pi2_src[5 * src_strd] + g_ai2_ihevc_trans_8[7][k] * pi2_src[7 * src_strd]; } eo[0] = g_ai2_ihevc_trans_8[2][0] * pi2_src[2 * src_strd] + g_ai2_ihevc_trans_8[6][0] * pi2_src[6 * src_strd]; eo[1] = g_ai2_ihevc_trans_8[2][1] * pi2_src[2 * src_strd] + g_ai2_ihevc_trans_8[6][1] * pi2_src[6 * src_strd]; ee[0] = g_ai2_ihevc_trans_8[0][0] * pi2_src[0] + g_ai2_ihevc_trans_8[4][0] * pi2_src[4 * src_strd]; ee[1] = g_ai2_ihevc_trans_8[0][1] * pi2_src[0] + g_ai2_ihevc_trans_8[4][1] * pi2_src[4 * src_strd]; /* Combining e and o terms at each hierarchy levels to calculate the final spatial domain vector */ e[0] = ee[0] + eo[0]; e[3] = ee[0] - eo[0]; e[1] = ee[1] + eo[1]; e[2] = ee[1] - eo[1]; for(k = 0; k < 4; k++) { pi2_tmp[k] = CLIP_S16(((e[k] + o[k] + add) >> shift)); pi2_tmp[k + 4] = CLIP_S16(((e[3 - k] - o[3 - k] + add) >> shift)); } } pi2_src++; pi2_tmp += trans_size; zero_cols = zero_cols >> 1; } pi2_tmp = pi2_tmp_orig; /* Inverse Transform 2nd stage */ shift = IT_SHIFT_STAGE_2; add = 1 << (shift - 1); if((zero_rows_2nd_stage & 0xF0) == 0xF0) /* First 4 rows of output of 1st stage are non-zero */ { for(j = 0; j < trans_size; j++) { /* Utilizing symmetry properties to the maximum to minimize the number of multiplications */ for(k = 0; k < 4; k++) { o[k] = g_ai2_ihevc_trans_8[1][k] * pi2_tmp[trans_size] + g_ai2_ihevc_trans_8[3][k] * pi2_tmp[3 * trans_size]; } eo[0] = g_ai2_ihevc_trans_8[2][0] * pi2_tmp[2 * trans_size]; eo[1] = g_ai2_ihevc_trans_8[2][1] * pi2_tmp[2 * trans_size]; ee[0] = g_ai2_ihevc_trans_8[0][0] * pi2_tmp[0]; ee[1] = g_ai2_ihevc_trans_8[0][1] * pi2_tmp[0]; /* Combining e and o terms at each hierarchy levels to calculate the final spatial domain vector */ e[0] = ee[0] + eo[0]; e[3] = ee[0] - eo[0]; e[1] = ee[1] + eo[1]; e[2] = ee[1] - eo[1]; for(k = 0; k < 4; k++) { WORD32 itrans_out; itrans_out = CLIP_S16(((e[k] + o[k] + add) >> shift)); pu1_dst[k] = CLIP_U8((itrans_out + pu1_pred[k])); itrans_out = CLIP_S16(((e[3 - k] - o[3 - k] + add) >> shift)); pu1_dst[k + 4] = CLIP_U8((itrans_out + pu1_pred[k + 4])); } pi2_tmp++; pu1_pred += pred_strd; pu1_dst += dst_strd; } } else /* All rows of output of 1st stage are non-zero */ { for(j = 0; j < trans_size; j++) { /* Utilizing symmetry properties to the maximum to minimize the number of multiplications */ for(k = 0; k < 4; k++) { o[k] = g_ai2_ihevc_trans_8[1][k] * pi2_tmp[trans_size] + g_ai2_ihevc_trans_8[3][k] * pi2_tmp[3 * trans_size] + g_ai2_ihevc_trans_8[5][k] * pi2_tmp[5 * trans_size] + g_ai2_ihevc_trans_8[7][k] * pi2_tmp[7 * trans_size]; } eo[0] = g_ai2_ihevc_trans_8[2][0] * pi2_tmp[2 * trans_size] + g_ai2_ihevc_trans_8[6][0] * pi2_tmp[6 * trans_size]; eo[1] = g_ai2_ihevc_trans_8[2][1] * pi2_tmp[2 * trans_size] + g_ai2_ihevc_trans_8[6][1] * pi2_tmp[6 * trans_size]; ee[0] = g_ai2_ihevc_trans_8[0][0] * pi2_tmp[0] + g_ai2_ihevc_trans_8[4][0] * pi2_tmp[4 * trans_size]; ee[1] = g_ai2_ihevc_trans_8[0][1] * pi2_tmp[0] + g_ai2_ihevc_trans_8[4][1] * pi2_tmp[4 * trans_size]; /* Combining e and o terms at each hierarchy levels to calculate the final spatial domain vector */ e[0] = ee[0] + eo[0]; e[3] = ee[0] - eo[0]; e[1] = ee[1] + eo[1]; e[2] = ee[1] - eo[1]; for(k = 0; k < 4; k++) { WORD32 itrans_out; itrans_out = CLIP_S16(((e[k] + o[k] + add) >> shift)); pu1_dst[k] = CLIP_U8((itrans_out + pu1_pred[k])); itrans_out = CLIP_S16(((e[3 - k] - o[3 - k] + add) >> shift)); pu1_dst[k + 4] = CLIP_U8((itrans_out + pu1_pred[k + 4])); } pi2_tmp++; pu1_pred += pred_strd; pu1_dst += dst_strd; } } /************************************************************************************************/ /************************************END - IT_RECON_8x8******************************************/ /************************************************************************************************/ } }