/****************************************************************************** * * Copyright (C) 2012 Ittiam Systems Pvt Ltd, Bangalore * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at: * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ******************************************************************************/ /** ******************************************************************************* * @file * ihevc_itrans.c * * @brief * Contains function definitions for single stage inverse transform * * @author * 100470 * * @par List of Functions: * - ihevc_itrans_4x4_ttype1() * - ihevc_itrans_4x4() * - ihevc_itrans_8x8() * - ihevc_itrans_16x16() * - ihevc_itrans_32x32() * * @remarks * None * ******************************************************************************* */ #include <stdio.h> #include <string.h> #include "ihevc_typedefs.h" #include "ihevc_macros.h" #include "ihevc_platform_macros.h" #include "ihevc_defs.h" #include "ihevc_trans_tables.h" #include "ihevc_func_selector.h" #include "ihevc_trans_macros.h" #define NON_OPTIMIZED 1 /** ******************************************************************************* * * @brief * This function performs Single stage Inverse transform type 1 (DST) for * 4x4 input block * * @par Description: * Performs single stage 4x4 inverse transform type 1 by utilizing the * symmetry of transformation matrix and reducing number of multiplications * wherever possible but keeping the number of operations * (addition,multiplication and shift)same * * @param[in] pi2_src * Input 4x4 coefficients * * @param[out] pi2_dst * Output 4x4 block * * @param[in] src_strd * Input stride * * @param[in] dst_strd * Output Stride * * @param[in] i4_shift * Output shift * * @param[in] zero_cols * Zero columns in pi2_src * * @returns Void * * @remarks * None * ******************************************************************************* */ void ihevc_itrans_4x4_ttype1(WORD16 *pi2_src, WORD16 *pi2_dst, WORD32 src_strd, WORD32 dst_strd, WORD32 i4_shift, WORD32 zero_cols) { WORD32 i, c[4]; WORD32 add; add = 1 << (i4_shift - 1); for(i = 0; i < TRANS_SIZE_4; i++) { /* Checking for Zero Cols */ if((zero_cols & 1) == 1) { memset(pi2_dst, 0, TRANS_SIZE_4 * sizeof(WORD16)); } else { // Intermediate Variables c[0] = pi2_src[0] + pi2_src[2 * src_strd]; c[1] = pi2_src[2 * src_strd] + pi2_src[3 * src_strd]; c[2] = pi2_src[0] - pi2_src[3 * src_strd]; c[3] = 74 * pi2_src[src_strd]; pi2_dst[0] = CLIP_S16((29 * c[0] + 55 * c[1] + c[3] + add) >> i4_shift); pi2_dst[1] = CLIP_S16((55 * c[2] - 29 * c[1] + c[3] + add) >> i4_shift); pi2_dst[2] = CLIP_S16((74 * (pi2_src[0] - pi2_src[2 * src_strd] + pi2_src[3 * src_strd]) + add) >> i4_shift); pi2_dst[3] = CLIP_S16((55 * c[0] + 29 * c[2] - c[3] + add) >> i4_shift); } pi2_src++; pi2_dst += dst_strd; zero_cols = zero_cols >> 1; } } /** ******************************************************************************* * * @brief * This function performs Single stage Inverse transform for 4x4 input * block * * @par Description: * Performs single stage 4x4 inverse transform by utilizing the symmetry of * transformation matrix and reducing number of multiplications wherever * possible but keeping the number of operations(addition,multiplication and * shift) same * * @param[in] pi2_src * Input 4x4 coefficients * * @param[out] pi2_dst * Output 4x4 block * * @param[in] src_strd * Input stride * * @param[in] dst_strd * Output Stride * * @param[in] i4_shift * Output shift * * @param[in] zero_cols * Zero columns in pi2_src * * @returns Void * * @remarks * None * ******************************************************************************* */ #if NON_OPTIMIZED void ihevc_itrans_4x4(WORD16 *pi2_src, WORD16 *pi2_dst, WORD32 src_strd, WORD32 dst_strd, WORD32 i4_shift, WORD32 zero_cols) { WORD32 j; WORD32 e[2], o[2]; WORD32 add; add = 1 << (i4_shift - 1); for(j = 0; j < TRANS_SIZE_4; j++) { /* Checking for Zero Cols */ if((zero_cols & 1) == 1) { memset(pi2_dst, 0, TRANS_SIZE_4 * sizeof(WORD16)); } else { /* Utilizing symmetry properties to the maximum to minimize the number of multiplications */ o[0] = g_ai2_ihevc_trans_4[1][0] * pi2_src[src_strd] + g_ai2_ihevc_trans_4[3][0] * pi2_src[3 * src_strd]; o[1] = g_ai2_ihevc_trans_4[1][1] * pi2_src[src_strd] + g_ai2_ihevc_trans_4[3][1] * pi2_src[3 * src_strd]; e[0] = g_ai2_ihevc_trans_4[0][0] * pi2_src[0] + g_ai2_ihevc_trans_4[2][0] * pi2_src[2 * src_strd]; e[1] = g_ai2_ihevc_trans_4[0][1] * pi2_src[0] + g_ai2_ihevc_trans_4[2][1] * pi2_src[2 * src_strd]; pi2_dst[0] = CLIP_S16(((e[0] + o[0] + add) >> i4_shift)); pi2_dst[1] = CLIP_S16(((e[1] + o[1] + add) >> i4_shift)); pi2_dst[2] = CLIP_S16(((e[1] - o[1] + add) >> i4_shift)); pi2_dst[3] = CLIP_S16(((e[0] - o[0] + add) >> i4_shift)); } pi2_src++; pi2_dst += dst_strd; zero_cols = zero_cols >> 1; } } #else void ihevc_itrans_4x4(WORD16 *pi2_src, WORD16 *pi2_dst, WORD32 src_strd, WORD32 dst_strd, WORD32 i4_shift, WORD32 zero_cols) { WORD32 j; WORD32 e[2], o[2]; WORD32 add; add = 1 << (i4_shift - 1); /***************************************************************************/ /* Transform Matrix 4x4 */ /* 0 1 2 3 */ /* 0 { 64, 64, 64, 64}, */ /* 1 { 83, 36,-36,-83}, */ /* 2 { 64,-64,-64, 64}, */ /* 3 { 36,-83, 83,-36} */ /***************************************************************************/ for(j = 0; j < TRANS_SIZE_4; j++) { WORD32 temp; /* Checking for Zero Cols */ if((zero_cols & 1) == 1) { memset(pi2_dst, 0, TRANS_SIZE_4 * sizeof(WORD16)); } else { /* Common operation in o[0] and o[1] */ temp = (pi2_src[src_strd] + pi2_src[3 * src_strd]) * 36; o[0] = temp + 47 * pi2_src[src_strd]; o[1] = temp - 119 * pi2_src[3 * src_strd]; e[0] = (pi2_src[0] + pi2_src[2 * src_strd]) << 6; e[1] = (pi2_src[0] - pi2_src[2 * src_strd]) << 6; pi2_dst[0] = CLIP_S16(((e[0] + o[0] + add) >> i4_shift)); pi2_dst[1] = CLIP_S16(((e[1] + o[1] + add) >> i4_shift)); pi2_dst[2] = CLIP_S16(((e[1] - o[1] + add) >> i4_shift)); pi2_dst[3] = CLIP_S16(((e[0] - o[0] + add) >> i4_shift)); } pi2_src++; pi2_dst += dst_strd; zero_cols = zero_cols >> 1; } } #endif /** ******************************************************************************* * * @brief * This function performs Single stage Inverse transform for 8x8 input * block * * @par Description: * Performs single stage 8x8 inverse transform by utilizing the symmetry of * transformation matrix and reducing number of multiplications wherever * possible but keeping the number of operations(addition,multiplication and * shift) same * * @param[in] pi2_src * Input 8x8 coefficients * * @param[out] pi2_dst * Output 8x8 block * * @param[in] src_strd * Input stride * * @param[in] dst_strd * Output Stride * * @param[in] i4_shift * Output shift * * @param[in] zero_cols * Zero columns in pi2_src * * @returns Void * * @remarks * None * ******************************************************************************* */ #if NON_OPTIMIZED void ihevc_itrans_8x8(WORD16 *pi2_src, WORD16 *pi2_dst, WORD32 src_strd, WORD32 dst_strd, WORD32 i4_shift, WORD32 zero_cols) { WORD32 j, k; WORD32 e[4], o[4]; WORD32 ee[2], eo[2]; WORD32 add; add = 1 << (i4_shift - 1); for(j = 0; j < TRANS_SIZE_8; j++) { /* Checking for Zero Cols */ if((zero_cols & 1) == 1) { memset(pi2_dst, 0, TRANS_SIZE_8 * sizeof(WORD16)); } else { /* Utilizing symmetry properties to the maximum to minimize the number of multiplications */ for(k = 0; k < 4; k++) { o[k] = g_ai2_ihevc_trans_8[1][k] * pi2_src[src_strd] + g_ai2_ihevc_trans_8[3][k] * pi2_src[3 * src_strd] + g_ai2_ihevc_trans_8[5][k] * pi2_src[5 * src_strd] + g_ai2_ihevc_trans_8[7][k] * pi2_src[7 * src_strd]; } eo[0] = g_ai2_ihevc_trans_8[2][0] * pi2_src[2 * src_strd] + g_ai2_ihevc_trans_8[6][0] * pi2_src[6 * src_strd]; eo[1] = g_ai2_ihevc_trans_8[2][1] * pi2_src[2 * src_strd] + g_ai2_ihevc_trans_8[6][1] * pi2_src[6 * src_strd]; ee[0] = g_ai2_ihevc_trans_8[0][0] * pi2_src[0] + g_ai2_ihevc_trans_8[4][0] * pi2_src[4 * src_strd]; ee[1] = g_ai2_ihevc_trans_8[0][1] * pi2_src[0] + g_ai2_ihevc_trans_8[4][1] * pi2_src[4 * src_strd]; /* Combining e and o terms at each hierarchy levels to calculate the final spatial domain vector */ e[0] = ee[0] + eo[0]; e[3] = ee[0] - eo[0]; e[1] = ee[1] + eo[1]; e[2] = ee[1] - eo[1]; for(k = 0; k < 4; k++) { pi2_dst[k] = CLIP_S16(((e[k] + o[k] + add) >> i4_shift)); pi2_dst[k + 4] = CLIP_S16(((e[3 - k] - o[3 - k] + add) >> i4_shift)); } } pi2_src++; pi2_dst += dst_strd; zero_cols = zero_cols >> 1; } } #else void ihevc_itrans_8x8(WORD16 *pi2_src, WORD16 *pi2_dst, WORD32 src_strd, WORD32 dst_strd, WORD32 i4_shift, WORD32 zero_cols) { /* Transform Matrix 8x8 */ /* 0 1 2 3 4 5 6 7 */ /* 0 - 64 64 64 64 64 64 64 64 */ /* 1 - 89 75 50 18 -18 -50 -75 -89 */ /* 2 - 83 36 -36 -83 -83 -36 36 83 */ /* 3 - 75 -18 -89 -50 50 89 18 -75 */ /* 4 - 64 -64 -64 64 64 -64 -64 64 */ /* 5 - 50 -89 18 75 -75 -18 89 -50 */ /* 6 - 36 -83 83 -36 -36 83 -83 36 */ /* 7 - 18 -50 75 -89 89 -75 50 -18 */ /* 0th and 4th row will have no multiplications */ /* 2nd and 6th row has only two coefff multiplies */ /* 1st, 3rd, 5th and 7th rows have o mirror symmetry */ WORD32 j, k; WORD32 temp1, temp2; WORD32 e[4], o[4]; WORD32 ee[2], eo[2]; WORD32 add; add = 1 << (i4_shift - 1); for(j = 0; j < TRANS_SIZE_8; j++) { /* Checking for Zero Cols */ if((zero_cols & 1) == 1) { memset(pi2_dst, 0, TRANS_SIZE_8 * sizeof(WORD16)); } else { /* Utilizing symmetry properties to the maximum to minimize the number of multiplications */ /* o[0] = 89 *pi2_src[8] + 75 *pi2_src[3*8] + 50 *pi2_src[5*8] + 18 *pi2_src[7*8]; o[1] = 75 *pi2_src[8] + -18 *pi2_src[3*8] + -89 *pi2_src[5*8] + -50 *pi2_src[7*8]; o[2] = 50 *pi2_src[8] + -89 *pi2_src[3*8] + 18 *pi2_src[5*8] + 75 *pi2_src[7*8]; o[3] = 18 *pi2_src[8] + -50 *pi2_src[3*8] + 75 *pi2_src[5*8] + -89 *pi2_src[7*8]; */ /* Optimization: 4 mul + 2 add ---> 3 mul + 3 add */ /* temp1 = (pi2_src[8 ] + pi2_src[3*8]) * 75; temp2 = (pi2_src[5*8] + pi2_src[7*8]) * 50; o[0] = temp1 + 14 * pi2_src[8 ] + temp2 - 32 * pi2_src[7*8]; o[1] = temp1 - 93 * pi2_src[3*8] - temp2 - 39 * pi2_src[5*8]; */ temp1 = (pi2_src[src_strd] + pi2_src[3 * src_strd]) * 75; temp2 = (pi2_src[5 * src_strd] + pi2_src[7 * src_strd]) * 50; o[0] = temp1 + 14 * pi2_src[src_strd] + temp2 - (pi2_src[7 * src_strd] << 5); o[1] = temp1 - 93 * pi2_src[3 * src_strd] - temp2 - 39 * pi2_src[5 * src_strd]; /* Optimization: 4 mul + 2 add ---> 3 mul + 3 add */ /* temp1 = (pi2_src[8 ] - pi2_src[3*8]) * 50; temp2 = (pi2_src[5*8] + pi2_src[7*8]) * 75; o[2] = temp1 - 39 * pi2_src[3*8] + temp2 - 57 * pi2_src[5*8]; o[3] = temp1 - 32 * pi2_src[8 ] + temp2 - 164 * pi2_src[7*8]; */ temp1 = (pi2_src[src_strd] - pi2_src[3 * src_strd]) * 50; temp2 = (pi2_src[5 * src_strd] + pi2_src[7 * src_strd]) * 75; o[2] = temp1 - 39 * pi2_src[3 * src_strd] + temp2 - 57 * pi2_src[5 * src_strd]; o[3] = temp1 - (pi2_src[src_strd] << 5) + temp2 - 164 * pi2_src[7 * src_strd]; /* eo[0] = 83 *pi2_src[ 2*8 ] + 36 *pi2_src[ 6*8 ]; eo[1] = 36 *pi2_src[ 2*8 ] + -83 *pi2_src[ 6*8 ]; ee[0] = 64 *pi2_src[ 0 ] + 64 *pi2_src[ 4*8 ]; ee[1] = 64 *pi2_src[ 0 ] + -64 *pi2_src[ 4*8 ]; */ /* Optimization: 4 mul + 2 add ---> 3 mul + 3 add */ temp1 = (pi2_src[2 * src_strd] + pi2_src[6 * src_strd]) * 36; eo[0] = temp1 + 47 * pi2_src[2 * src_strd]; eo[1] = temp1 - 119 * pi2_src[6 * src_strd]; /* Optimization: 4 mul + 2 add ---> 2 i4_shift + 2 add */ ee[0] = (pi2_src[0] + pi2_src[4 * src_strd]) << 6; ee[1] = (pi2_src[0] - pi2_src[4 * src_strd]) << 6; e[0] = ee[0] + eo[0]; e[3] = ee[0] - eo[0]; e[1] = ee[1] + eo[1]; e[2] = ee[1] - eo[1]; for(k = 0; k < 4; k++) { pi2_dst[k] = CLIP_S16(((e[k] + o[k] + add) >> i4_shift)); pi2_dst[k + 4] = CLIP_S16(((e[3 - k] - o[3 - k] + add) >> i4_shift)); } } pi2_src++; pi2_dst += dst_strd; zero_cols = zero_cols >> 1; } } #endif /** ******************************************************************************* * * @brief * This function performs Single stage Inverse transform for 16x16 input * block * * @par Description: * Performs single stage 16x16 inverse transform by utilizing the symmetry * of transformation matrix and reducing number of multiplications wherever * possible but keeping the number of operations (addition,multiplication * and shift) same * * @param[in] pi2_src * Input 16x16 coefficients * * @param[out] pi2_dst * Output 16x16 block * * @param[in] src_strd * Input stride * * @param[in] dst_strd * Output Stride * * @param[in] i4_shift * Output shift * * @param[in] zero_cols * Zero columns in pi2_src * * @returns Void * * @remarks * None * ******************************************************************************* */ #if NON_OPTIMIZED void ihevc_itrans_16x16(WORD16 *pi2_src, WORD16 *pi2_dst, WORD32 src_strd, WORD32 dst_strd, WORD32 i4_shift, WORD32 zero_cols) { WORD32 j, k; WORD32 e[8], o[8]; WORD32 ee[4], eo[4]; WORD32 eee[2], eeo[2]; WORD32 add; add = 1 << (i4_shift - 1); for(j = 0; j < TRANS_SIZE_16; j++) { /* Checking for Zero Cols */ if((zero_cols & 1) == 1) { memset(pi2_dst, 0, TRANS_SIZE_16 * sizeof(WORD16)); } else { /* Utilizing symmetry properties to the maximum to minimize the number of multiplications */ for(k = 0; k < 8; k++) { o[k] = g_ai2_ihevc_trans_16[1][k] * pi2_src[src_strd] + g_ai2_ihevc_trans_16[3][k] * pi2_src[3 * src_strd] + g_ai2_ihevc_trans_16[5][k] * pi2_src[5 * src_strd] + g_ai2_ihevc_trans_16[7][k] * pi2_src[7 * src_strd] + g_ai2_ihevc_trans_16[9][k] * pi2_src[9 * src_strd] + g_ai2_ihevc_trans_16[11][k] * pi2_src[11 * src_strd] + g_ai2_ihevc_trans_16[13][k] * pi2_src[13 * src_strd] + g_ai2_ihevc_trans_16[15][k] * pi2_src[15 * src_strd]; } for(k = 0; k < 4; k++) { eo[k] = g_ai2_ihevc_trans_16[2][k] * pi2_src[2 * src_strd] + g_ai2_ihevc_trans_16[6][k] * pi2_src[6 * src_strd] + g_ai2_ihevc_trans_16[10][k] * pi2_src[10 * src_strd] + g_ai2_ihevc_trans_16[14][k] * pi2_src[14 * src_strd]; } eeo[0] = g_ai2_ihevc_trans_16[4][0] * pi2_src[4 * src_strd] + g_ai2_ihevc_trans_16[12][0] * pi2_src[12 * src_strd]; eee[0] = g_ai2_ihevc_trans_16[0][0] * pi2_src[0] + g_ai2_ihevc_trans_16[8][0] * pi2_src[8 * src_strd]; eeo[1] = g_ai2_ihevc_trans_16[4][1] * pi2_src[4 * src_strd] + g_ai2_ihevc_trans_16[12][1] * pi2_src[12 * src_strd]; eee[1] = g_ai2_ihevc_trans_16[0][1] * pi2_src[0] + g_ai2_ihevc_trans_16[8][1] * pi2_src[8 * src_strd]; /* Combining e and o terms at each hierarchy levels to calculate the final spatial domain vector */ for(k = 0; k < 2; k++) { ee[k] = eee[k] + eeo[k]; ee[k + 2] = eee[1 - k] - eeo[1 - k]; } for(k = 0; k < 4; k++) { e[k] = ee[k] + eo[k]; e[k + 4] = ee[3 - k] - eo[3 - k]; } for(k = 0; k < 8; k++) { pi2_dst[k] = CLIP_S16(((e[k] + o[k] + add) >> i4_shift)); pi2_dst[k + 8] = CLIP_S16(((e[7 - k] - o[7 - k] + add) >> i4_shift)); } } pi2_src++; pi2_dst += dst_strd; zero_cols = zero_cols >> 1; } } #else void ihevc_itrans_16x16(WORD16 *pi2_src, WORD16 *pi2_dst, WORD32 src_strd, WORD32 dst_strd, WORD32 i4_shift, WORD32 zero_cols) { WORD32 j, k; WORD32 e[8], o[8]; WORD32 ee[4], eo[4]; WORD32 eee[2], eeo[2]; WORD32 add; WORD32 temp1, temp2; add = 1 << (i4_shift - 1); /***************************************************************************/ /* Transform Matrix 16x16 */ /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */ /* 0 { 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64}, */ /* 1 { 90, 87, 80, 70, 57, 43, 25, 9, -9,-25,-43,-57,-70,-80,-87,-90}, */ /* 2 { 89, 75, 50, 18,-18,-50,-75,-89,-89,-75,-50,-18, 18, 50, 75, 89}, */ /* 3 { 87, 57, 9,-43,-80,-90,-70,-25, 25, 70, 90, 80, 43, -9,-57,-87}, */ /* 4 { 83, 36,-36,-83,-83,-36, 36, 83, 83, 36,-36,-83,-83,-36, 36, 83}, */ /* 5 { 80, 9,-70,-87,-25, 57, 90, 43,-43,-90,-57, 25, 87, 70, -9,-80}, */ /* 6 { 75,-18,-89,-50, 50, 89, 18,-75,-75, 18, 89, 50,-50,-89,-18, 75}, */ /* 7 { 70,-43,-87, 9, 90, 25,-80,-57, 57, 80,-25,-90, -9, 87, 43,-70}, */ /* 8 { 64,-64,-64, 64, 64,-64,-64, 64, 64,-64,-64, 64, 64,-64,-64, 64}, */ /* 9 { 57,-80,-25, 90, -9,-87, 43, 70,-70,-43, 87, 9,-90, 25, 80,-57}, */ /* 10 { 50,-89, 18, 75,-75,-18, 89,-50,-50, 89,-18,-75, 75, 18,-89, 50}, */ /* 11 { 43,-90, 57, 25,-87, 70, 9,-80, 80, -9,-70, 87,-25,-57, 90,-43}, */ /* 12 { 36,-83, 83,-36,-36, 83,-83, 36, 36,-83, 83,-36,-36, 83,-83, 36}, */ /* 13 { 25,-70, 90,-80, 43, 9,-57, 87,-87, 57, -9,-43, 80,-90, 70,-25}, */ /* 14 { 18,-50, 75,-89, 89,-75, 50,-18,-18, 50,-75, 89,-89, 75,-50, 18}, */ /* 15 { 9,-25, 43,-57, 70,-80, 87,-90, 90,-87, 80,-70, 57,-43, 25, -9} */ /***************************************************************************/ for(j = 0; j < TRANS_SIZE_16; j++) { /* Checking for Zero Cols */ if((zero_cols & 1) == 1) { memset(pi2_dst, 0, TRANS_SIZE_16 * sizeof(WORD16)); } else { /* Utilizing symmetry properties to the maximum to minimize the number of multiplications */ { /* o[k] = g_ai2_ihevc_trans_16[ 1][k]*pi2_src[ src_strd ] + g_ai2_ihevc_trans_16[ 3][k]*pi2_src[ 3*src_strd ] + g_ai2_ihevc_trans_16[ 5][k]*pi2_src[ 5*src_strd ] + g_ai2_ihevc_trans_16[ 7][k]*pi2_src[ 7*src_strd ] + g_ai2_ihevc_trans_16[ 9][k]*pi2_src[ 9*src_strd ] + g_ai2_ihevc_trans_16[11][k]*pi2_src[11*src_strd ] + g_ai2_ihevc_trans_16[13][k]*pi2_src[13*src_strd ] + g_ai2_ihevc_trans_16[15][k]*pi2_src[15*src_strd ]; */ o[0] = 90 * pi2_src[src_strd] + 87 * pi2_src[3 * src_strd] + 80 * pi2_src[5 * src_strd] + 70 * pi2_src[7 * src_strd] + 57 * pi2_src[9 * src_strd] + 43 * pi2_src[11 * src_strd] + 25 * pi2_src[13 * src_strd] + 9 * pi2_src[15 * src_strd]; o[1] = 87 * pi2_src[src_strd] + 57 * pi2_src[3 * src_strd] + 9 * pi2_src[5 * src_strd] + -43 * pi2_src[7 * src_strd] + -80 * pi2_src[9 * src_strd] + -90 * pi2_src[11 * src_strd] + -70 * pi2_src[13 * src_strd] + -25 * pi2_src[15 * src_strd]; o[2] = 80 * pi2_src[src_strd] + 9 * pi2_src[3 * src_strd] + -70 * pi2_src[5 * src_strd] + -87 * pi2_src[7 * src_strd] + -25 * pi2_src[9 * src_strd] + 57 * pi2_src[11 * src_strd] + 90 * pi2_src[13 * src_strd] + 43 * pi2_src[15 * src_strd]; o[3] = 70 * pi2_src[src_strd] + -43 * pi2_src[3 * src_strd] + -87 * pi2_src[5 * src_strd] + 9 * pi2_src[7 * src_strd] + 90 * pi2_src[9 * src_strd] + 25 * pi2_src[11 * src_strd] + -80 * pi2_src[13 * src_strd] + -57 * pi2_src[15 * src_strd]; o[4] = 57 * pi2_src[src_strd] + -80 * pi2_src[3 * src_strd] + -25 * pi2_src[5 * src_strd] + 90 * pi2_src[7 * src_strd] + -9 * pi2_src[9 * src_strd] + -87 * pi2_src[11 * src_strd] + 43 * pi2_src[13 * src_strd] + 70 * pi2_src[15 * src_strd]; o[5] = 43 * pi2_src[src_strd] + -90 * pi2_src[3 * src_strd] + 57 * pi2_src[5 * src_strd] + 25 * pi2_src[7 * src_strd] + -87 * pi2_src[9 * src_strd] + 70 * pi2_src[11 * src_strd] + 9 * pi2_src[13 * src_strd] + -80 * pi2_src[15 * src_strd]; o[6] = 25 * pi2_src[src_strd] + -70 * pi2_src[3 * src_strd] + 90 * pi2_src[5 * src_strd] + -80 * pi2_src[7 * src_strd] + 43 * pi2_src[9 * src_strd] + 9 * pi2_src[11 * src_strd] + -57 * pi2_src[13 * src_strd] + 87 * pi2_src[15 * src_strd]; o[7] = 9 * pi2_src[src_strd] + -25 * pi2_src[3 * src_strd] + 43 * pi2_src[5 * src_strd] + -57 * pi2_src[7 * src_strd] + 70 * pi2_src[9 * src_strd] + -80 * pi2_src[11 * src_strd] + 87 * pi2_src[13 * src_strd] + -90 * pi2_src[15 * src_strd]; } { temp1 = (pi2_src[2 * src_strd] + pi2_src[6 * src_strd]) * 75; temp2 = (pi2_src[10 * src_strd] + pi2_src[14 * src_strd]) * 50; eo[0] = temp1 + 14 * pi2_src[2 * src_strd] + temp2 - (pi2_src[14 * src_strd] << 5); eo[1] = temp1 - 93 * pi2_src[6 * src_strd] - temp2 - 39 * pi2_src[10 * src_strd]; temp1 = (pi2_src[2 * src_strd] - pi2_src[6 * src_strd]) * 50; temp2 = (pi2_src[10 * src_strd] + pi2_src[14 * src_strd]) * 75; eo[2] = temp1 - 39 * pi2_src[6 * src_strd] + temp2 - 57 * pi2_src[10 * src_strd]; eo[3] = temp1 - (pi2_src[2 * src_strd] << 5) + temp2 - 164 * pi2_src[14 * src_strd]; } temp1 = (pi2_src[4 * src_strd] + pi2_src[12 * src_strd]) * 36; eeo[0] = temp1 + 47 * pi2_src[4 * src_strd]; eeo[1] = temp1 - 119 * pi2_src[12 * src_strd]; eee[0] = (pi2_src[0] + pi2_src[8 * src_strd]) << 6; eee[1] = (pi2_src[0] - pi2_src[8 * src_strd]) << 6; /* Combining e and o terms at each hierarchy levels to calculate the final spatial domain vector */ for(k = 0; k < 2; k++) { ee[k] = eee[k] + eeo[k]; ee[k + 2] = eee[1 - k] - eeo[1 - k]; } for(k = 0; k < 4; k++) { e[k] = ee[k] + eo[k]; e[k + 4] = ee[3 - k] - eo[3 - k]; } for(k = 0; k < 8; k++) { pi2_dst[k] = CLIP_S16(((e[k] + o[k] + add) >> i4_shift)); pi2_dst[k + 8] = CLIP_S16(((e[7 - k] - o[7 - k] + add) >> i4_shift)); } } pi2_src++; pi2_dst += dst_strd; zero_cols = zero_cols >> 1; } } #endif /** ******************************************************************************* * * @brief * This function performs Single stage Inverse transform for 32x32 input * block * * @par Description: * Performs single stage 32x32 inverse transform by utilizing the symmetry * of transformation matrix and reducing number of multiplications wherever * possible but keeping the number of operations (addition,multiplication * and shift) same * * @param[in] pi2_src * Input 32x32 coefficients * * @param[out] pi2_dst * Output 32x32 block * * @param[in] src_strd * Input stride * * @param[in] dst_strd * Output Stride * * @param[in] i4_shift * Output shift * * @param[in] zero_cols * Zero columns in pi2_src * * @returns Void * * @remarks * None * ******************************************************************************* */ void ihevc_itrans_32x32(WORD16 *pi2_src, WORD16 *pi2_dst, WORD32 src_strd, WORD32 dst_strd, WORD32 i4_shift, WORD32 zero_cols) { WORD32 j, k; WORD32 e[16], o[16]; WORD32 ee[8], eo[8]; WORD32 eee[4], eeo[4]; WORD32 eeee[2], eeeo[2]; WORD32 add; add = 1 << (i4_shift - 1); for(j = 0; j < TRANS_SIZE_32; j++) { /* Checking for Zero Cols */ if((zero_cols & 1) == 1) { memset(pi2_dst, 0, TRANS_SIZE_32 * sizeof(WORD16)); } else { /* Utilizing symmetry properties to the maximum to minimize the number of multiplications */ for(k = 0; k < 16; k++) { o[k] = g_ai2_ihevc_trans_32[1][k] * pi2_src[src_strd] + g_ai2_ihevc_trans_32[3][k] * pi2_src[3 * src_strd] + g_ai2_ihevc_trans_32[5][k] * pi2_src[5 * src_strd] + g_ai2_ihevc_trans_32[7][k] * pi2_src[7 * src_strd] + g_ai2_ihevc_trans_32[9][k] * pi2_src[9 * src_strd] + g_ai2_ihevc_trans_32[11][k] * pi2_src[11 * src_strd] + g_ai2_ihevc_trans_32[13][k] * pi2_src[13 * src_strd] + g_ai2_ihevc_trans_32[15][k] * pi2_src[15 * src_strd] + g_ai2_ihevc_trans_32[17][k] * pi2_src[17 * src_strd] + g_ai2_ihevc_trans_32[19][k] * pi2_src[19 * src_strd] + g_ai2_ihevc_trans_32[21][k] * pi2_src[21 * src_strd] + g_ai2_ihevc_trans_32[23][k] * pi2_src[23 * src_strd] + g_ai2_ihevc_trans_32[25][k] * pi2_src[25 * src_strd] + g_ai2_ihevc_trans_32[27][k] * pi2_src[27 * src_strd] + g_ai2_ihevc_trans_32[29][k] * pi2_src[29 * src_strd] + g_ai2_ihevc_trans_32[31][k] * pi2_src[31 * src_strd]; } for(k = 0; k < 8; k++) { eo[k] = g_ai2_ihevc_trans_32[2][k] * pi2_src[2 * src_strd] + g_ai2_ihevc_trans_32[6][k] * pi2_src[6 * src_strd] + g_ai2_ihevc_trans_32[10][k] * pi2_src[10 * src_strd] + g_ai2_ihevc_trans_32[14][k] * pi2_src[14 * src_strd] + g_ai2_ihevc_trans_32[18][k] * pi2_src[18 * src_strd] + g_ai2_ihevc_trans_32[22][k] * pi2_src[22 * src_strd] + g_ai2_ihevc_trans_32[26][k] * pi2_src[26 * src_strd] + g_ai2_ihevc_trans_32[30][k] * pi2_src[30 * src_strd]; } for(k = 0; k < 4; k++) { eeo[k] = g_ai2_ihevc_trans_32[4][k] * pi2_src[4 * src_strd] + g_ai2_ihevc_trans_32[12][k] * pi2_src[12 * src_strd] + g_ai2_ihevc_trans_32[20][k] * pi2_src[20 * src_strd] + g_ai2_ihevc_trans_32[28][k] * pi2_src[28 * src_strd]; } eeeo[0] = g_ai2_ihevc_trans_32[8][0] * pi2_src[8 * src_strd] + g_ai2_ihevc_trans_32[24][0] * pi2_src[24 * src_strd]; eeeo[1] = g_ai2_ihevc_trans_32[8][1] * pi2_src[8 * src_strd] + g_ai2_ihevc_trans_32[24][1] * pi2_src[24 * src_strd]; eeee[0] = g_ai2_ihevc_trans_32[0][0] * pi2_src[0] + g_ai2_ihevc_trans_32[16][0] * pi2_src[16 * src_strd]; eeee[1] = g_ai2_ihevc_trans_32[0][1] * pi2_src[0] + g_ai2_ihevc_trans_32[16][1] * pi2_src[16 * src_strd]; /* Combining e and o terms at each hierarchy levels to calculate the final spatial domain vector */ eee[0] = eeee[0] + eeeo[0]; eee[3] = eeee[0] - eeeo[0]; eee[1] = eeee[1] + eeeo[1]; eee[2] = eeee[1] - eeeo[1]; for(k = 0; k < 4; k++) { ee[k] = eee[k] + eeo[k]; ee[k + 4] = eee[3 - k] - eeo[3 - k]; } for(k = 0; k < 8; k++) { e[k] = ee[k] + eo[k]; e[k + 8] = ee[7 - k] - eo[7 - k]; } for(k = 0; k < 16; k++) { pi2_dst[k] = CLIP_S16(((e[k] + o[k] + add) >> i4_shift)); pi2_dst[k + 16] = CLIP_S16(((e[15 - k] - o[15 - k] + add) >> i4_shift)); } } pi2_src++; pi2_dst += dst_strd; zero_cols = zero_cols >> 1; } }