// Copyright 2013 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "base/strings/safe_sprintf.h" #include <stddef.h> #include <stdint.h> #include <stdio.h> #include <string.h> #include <limits> #include <memory> #include "base/logging.h" #include "base/macros.h" #include "build/build_config.h" #include "testing/gtest/include/gtest/gtest.h" // Death tests on Android are currently very flaky. No need to add more flaky // tests, as they just make it hard to spot real problems. // TODO(markus): See if the restrictions on Android can eventually be lifted. #if defined(GTEST_HAS_DEATH_TEST) && !defined(OS_ANDROID) #define ALLOW_DEATH_TEST #endif namespace base { namespace strings { TEST(SafeSPrintfTest, Empty) { char buf[2] = { 'X', 'X' }; // Negative buffer size should always result in an error. EXPECT_EQ(-1, SafeSNPrintf(buf, static_cast<size_t>(-1), "")); EXPECT_EQ('X', buf[0]); EXPECT_EQ('X', buf[1]); // Zero buffer size should always result in an error. EXPECT_EQ(-1, SafeSNPrintf(buf, 0, "")); EXPECT_EQ('X', buf[0]); EXPECT_EQ('X', buf[1]); // A one-byte buffer should always print a single NUL byte. EXPECT_EQ(0, SafeSNPrintf(buf, 1, "")); EXPECT_EQ(0, buf[0]); EXPECT_EQ('X', buf[1]); buf[0] = 'X'; // A larger buffer should leave the trailing bytes unchanged. EXPECT_EQ(0, SafeSNPrintf(buf, 2, "")); EXPECT_EQ(0, buf[0]); EXPECT_EQ('X', buf[1]); buf[0] = 'X'; // The same test using SafeSPrintf() instead of SafeSNPrintf(). EXPECT_EQ(0, SafeSPrintf(buf, "")); EXPECT_EQ(0, buf[0]); EXPECT_EQ('X', buf[1]); buf[0] = 'X'; } TEST(SafeSPrintfTest, NoArguments) { // Output a text message that doesn't require any substitutions. This // is roughly equivalent to calling strncpy() (but unlike strncpy(), it does // always add a trailing NUL; it always deduplicates '%' characters). static const char text[] = "hello world"; char ref[20], buf[20]; memset(ref, 'X', sizeof(ref)); memcpy(buf, ref, sizeof(buf)); // A negative buffer size should always result in an error. EXPECT_EQ(-1, SafeSNPrintf(buf, static_cast<size_t>(-1), text)); EXPECT_TRUE(!memcmp(buf, ref, sizeof(buf))); // Zero buffer size should always result in an error. EXPECT_EQ(-1, SafeSNPrintf(buf, 0, text)); EXPECT_TRUE(!memcmp(buf, ref, sizeof(buf))); // A one-byte buffer should always print a single NUL byte. EXPECT_EQ(static_cast<ssize_t>(sizeof(text))-1, SafeSNPrintf(buf, 1, text)); EXPECT_EQ(0, buf[0]); EXPECT_TRUE(!memcmp(buf+1, ref+1, sizeof(buf)-1)); memcpy(buf, ref, sizeof(buf)); // A larger (but limited) buffer should always leave the trailing bytes // unchanged. EXPECT_EQ(static_cast<ssize_t>(sizeof(text))-1, SafeSNPrintf(buf, 2, text)); EXPECT_EQ(text[0], buf[0]); EXPECT_EQ(0, buf[1]); EXPECT_TRUE(!memcmp(buf+2, ref+2, sizeof(buf)-2)); memcpy(buf, ref, sizeof(buf)); // A unrestricted buffer length should always leave the trailing bytes // unchanged. EXPECT_EQ(static_cast<ssize_t>(sizeof(text))-1, SafeSNPrintf(buf, sizeof(buf), text)); EXPECT_EQ(std::string(text), std::string(buf)); EXPECT_TRUE(!memcmp(buf + sizeof(text), ref + sizeof(text), sizeof(buf) - sizeof(text))); memcpy(buf, ref, sizeof(buf)); // The same test using SafeSPrintf() instead of SafeSNPrintf(). EXPECT_EQ(static_cast<ssize_t>(sizeof(text))-1, SafeSPrintf(buf, text)); EXPECT_EQ(std::string(text), std::string(buf)); EXPECT_TRUE(!memcmp(buf + sizeof(text), ref + sizeof(text), sizeof(buf) - sizeof(text))); memcpy(buf, ref, sizeof(buf)); // Check for deduplication of '%' percent characters. EXPECT_EQ(1, SafeSPrintf(buf, "%%")); EXPECT_EQ(2, SafeSPrintf(buf, "%%%%")); EXPECT_EQ(2, SafeSPrintf(buf, "%%X")); EXPECT_EQ(3, SafeSPrintf(buf, "%%%%X")); #if defined(NDEBUG) EXPECT_EQ(1, SafeSPrintf(buf, "%")); EXPECT_EQ(2, SafeSPrintf(buf, "%%%")); EXPECT_EQ(2, SafeSPrintf(buf, "%X")); EXPECT_EQ(3, SafeSPrintf(buf, "%%%X")); #elif defined(ALLOW_DEATH_TEST) EXPECT_DEATH(SafeSPrintf(buf, "%"), "src.1. == '%'"); EXPECT_DEATH(SafeSPrintf(buf, "%%%"), "src.1. == '%'"); EXPECT_DEATH(SafeSPrintf(buf, "%X"), "src.1. == '%'"); EXPECT_DEATH(SafeSPrintf(buf, "%%%X"), "src.1. == '%'"); #endif } TEST(SafeSPrintfTest, OneArgument) { // Test basic single-argument single-character substitution. const char text[] = "hello world"; const char fmt[] = "hello%cworld"; char ref[20], buf[20]; memset(ref, 'X', sizeof(buf)); memcpy(buf, ref, sizeof(buf)); // A negative buffer size should always result in an error. EXPECT_EQ(-1, SafeSNPrintf(buf, static_cast<size_t>(-1), fmt, ' ')); EXPECT_TRUE(!memcmp(buf, ref, sizeof(buf))); // Zero buffer size should always result in an error. EXPECT_EQ(-1, SafeSNPrintf(buf, 0, fmt, ' ')); EXPECT_TRUE(!memcmp(buf, ref, sizeof(buf))); // A one-byte buffer should always print a single NUL byte. EXPECT_EQ(static_cast<ssize_t>(sizeof(text))-1, SafeSNPrintf(buf, 1, fmt, ' ')); EXPECT_EQ(0, buf[0]); EXPECT_TRUE(!memcmp(buf+1, ref+1, sizeof(buf)-1)); memcpy(buf, ref, sizeof(buf)); // A larger (but limited) buffer should always leave the trailing bytes // unchanged. EXPECT_EQ(static_cast<ssize_t>(sizeof(text))-1, SafeSNPrintf(buf, 2, fmt, ' ')); EXPECT_EQ(text[0], buf[0]); EXPECT_EQ(0, buf[1]); EXPECT_TRUE(!memcmp(buf+2, ref+2, sizeof(buf)-2)); memcpy(buf, ref, sizeof(buf)); // A unrestricted buffer length should always leave the trailing bytes // unchanged. EXPECT_EQ(static_cast<ssize_t>(sizeof(text))-1, SafeSNPrintf(buf, sizeof(buf), fmt, ' ')); EXPECT_EQ(std::string(text), std::string(buf)); EXPECT_TRUE(!memcmp(buf + sizeof(text), ref + sizeof(text), sizeof(buf) - sizeof(text))); memcpy(buf, ref, sizeof(buf)); // The same test using SafeSPrintf() instead of SafeSNPrintf(). EXPECT_EQ(static_cast<ssize_t>(sizeof(text))-1, SafeSPrintf(buf, fmt, ' ')); EXPECT_EQ(std::string(text), std::string(buf)); EXPECT_TRUE(!memcmp(buf + sizeof(text), ref + sizeof(text), sizeof(buf) - sizeof(text))); memcpy(buf, ref, sizeof(buf)); // Check for deduplication of '%' percent characters. EXPECT_EQ(1, SafeSPrintf(buf, "%%", 0)); EXPECT_EQ(2, SafeSPrintf(buf, "%%%%", 0)); EXPECT_EQ(2, SafeSPrintf(buf, "%Y", 0)); EXPECT_EQ(2, SafeSPrintf(buf, "%%Y", 0)); EXPECT_EQ(3, SafeSPrintf(buf, "%%%Y", 0)); EXPECT_EQ(3, SafeSPrintf(buf, "%%%%Y", 0)); #if defined(NDEBUG) EXPECT_EQ(1, SafeSPrintf(buf, "%", 0)); EXPECT_EQ(2, SafeSPrintf(buf, "%%%", 0)); #elif defined(ALLOW_DEATH_TEST) EXPECT_DEATH(SafeSPrintf(buf, "%", 0), "ch"); EXPECT_DEATH(SafeSPrintf(buf, "%%%", 0), "ch"); #endif } TEST(SafeSPrintfTest, MissingArg) { #if defined(NDEBUG) char buf[20]; EXPECT_EQ(3, SafeSPrintf(buf, "%c%c", 'A')); EXPECT_EQ("A%c", std::string(buf)); #elif defined(ALLOW_DEATH_TEST) char buf[20]; EXPECT_DEATH(SafeSPrintf(buf, "%c%c", 'A'), "cur_arg < max_args"); #endif } TEST(SafeSPrintfTest, ASANFriendlyBufferTest) { // Print into a buffer that is sized exactly to size. ASAN can verify that // nobody attempts to write past the end of the buffer. // There is a more complicated test in PrintLongString() that covers a lot // more edge case, but it is also harder to debug in case of a failure. const char kTestString[] = "This is a test"; std::unique_ptr<char[]> buf(new char[sizeof(kTestString)]); EXPECT_EQ(static_cast<ssize_t>(sizeof(kTestString) - 1), SafeSNPrintf(buf.get(), sizeof(kTestString), kTestString)); EXPECT_EQ(std::string(kTestString), std::string(buf.get())); EXPECT_EQ(static_cast<ssize_t>(sizeof(kTestString) - 1), SafeSNPrintf(buf.get(), sizeof(kTestString), "%s", kTestString)); EXPECT_EQ(std::string(kTestString), std::string(buf.get())); } TEST(SafeSPrintfTest, NArgs) { // Pre-C++11 compilers have a different code path, that can only print // up to ten distinct arguments. // We test both SafeSPrintf() and SafeSNPrintf(). This makes sure we don't // have typos in the copy-n-pasted code that is needed to deal with various // numbers of arguments. char buf[12]; EXPECT_EQ(1, SafeSPrintf(buf, "%c", 1)); EXPECT_EQ("\1", std::string(buf)); EXPECT_EQ(2, SafeSPrintf(buf, "%c%c", 1, 2)); EXPECT_EQ("\1\2", std::string(buf)); EXPECT_EQ(3, SafeSPrintf(buf, "%c%c%c", 1, 2, 3)); EXPECT_EQ("\1\2\3", std::string(buf)); EXPECT_EQ(4, SafeSPrintf(buf, "%c%c%c%c", 1, 2, 3, 4)); EXPECT_EQ("\1\2\3\4", std::string(buf)); EXPECT_EQ(5, SafeSPrintf(buf, "%c%c%c%c%c", 1, 2, 3, 4, 5)); EXPECT_EQ("\1\2\3\4\5", std::string(buf)); EXPECT_EQ(6, SafeSPrintf(buf, "%c%c%c%c%c%c", 1, 2, 3, 4, 5, 6)); EXPECT_EQ("\1\2\3\4\5\6", std::string(buf)); EXPECT_EQ(7, SafeSPrintf(buf, "%c%c%c%c%c%c%c", 1, 2, 3, 4, 5, 6, 7)); EXPECT_EQ("\1\2\3\4\5\6\7", std::string(buf)); EXPECT_EQ(8, SafeSPrintf(buf, "%c%c%c%c%c%c%c%c", 1, 2, 3, 4, 5, 6, 7, 8)); EXPECT_EQ("\1\2\3\4\5\6\7\10", std::string(buf)); EXPECT_EQ(9, SafeSPrintf(buf, "%c%c%c%c%c%c%c%c%c", 1, 2, 3, 4, 5, 6, 7, 8, 9)); EXPECT_EQ("\1\2\3\4\5\6\7\10\11", std::string(buf)); EXPECT_EQ(10, SafeSPrintf(buf, "%c%c%c%c%c%c%c%c%c%c", 1, 2, 3, 4, 5, 6, 7, 8, 9, 10)); // Repeat all the tests with SafeSNPrintf() instead of SafeSPrintf(). EXPECT_EQ("\1\2\3\4\5\6\7\10\11\12", std::string(buf)); EXPECT_EQ(1, SafeSNPrintf(buf, 11, "%c", 1)); EXPECT_EQ("\1", std::string(buf)); EXPECT_EQ(2, SafeSNPrintf(buf, 11, "%c%c", 1, 2)); EXPECT_EQ("\1\2", std::string(buf)); EXPECT_EQ(3, SafeSNPrintf(buf, 11, "%c%c%c", 1, 2, 3)); EXPECT_EQ("\1\2\3", std::string(buf)); EXPECT_EQ(4, SafeSNPrintf(buf, 11, "%c%c%c%c", 1, 2, 3, 4)); EXPECT_EQ("\1\2\3\4", std::string(buf)); EXPECT_EQ(5, SafeSNPrintf(buf, 11, "%c%c%c%c%c", 1, 2, 3, 4, 5)); EXPECT_EQ("\1\2\3\4\5", std::string(buf)); EXPECT_EQ(6, SafeSNPrintf(buf, 11, "%c%c%c%c%c%c", 1, 2, 3, 4, 5, 6)); EXPECT_EQ("\1\2\3\4\5\6", std::string(buf)); EXPECT_EQ(7, SafeSNPrintf(buf, 11, "%c%c%c%c%c%c%c", 1, 2, 3, 4, 5, 6, 7)); EXPECT_EQ("\1\2\3\4\5\6\7", std::string(buf)); EXPECT_EQ(8, SafeSNPrintf(buf, 11, "%c%c%c%c%c%c%c%c", 1, 2, 3, 4, 5, 6, 7, 8)); EXPECT_EQ("\1\2\3\4\5\6\7\10", std::string(buf)); EXPECT_EQ(9, SafeSNPrintf(buf, 11, "%c%c%c%c%c%c%c%c%c", 1, 2, 3, 4, 5, 6, 7, 8, 9)); EXPECT_EQ("\1\2\3\4\5\6\7\10\11", std::string(buf)); EXPECT_EQ(10, SafeSNPrintf(buf, 11, "%c%c%c%c%c%c%c%c%c%c", 1, 2, 3, 4, 5, 6, 7, 8, 9, 10)); EXPECT_EQ("\1\2\3\4\5\6\7\10\11\12", std::string(buf)); EXPECT_EQ(11, SafeSPrintf(buf, "%c%c%c%c%c%c%c%c%c%c%c", 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11)); EXPECT_EQ("\1\2\3\4\5\6\7\10\11\12\13", std::string(buf)); EXPECT_EQ(11, SafeSNPrintf(buf, 12, "%c%c%c%c%c%c%c%c%c%c%c", 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11)); EXPECT_EQ("\1\2\3\4\5\6\7\10\11\12\13", std::string(buf)); } TEST(SafeSPrintfTest, DataTypes) { char buf[40]; // Bytes EXPECT_EQ(1, SafeSPrintf(buf, "%d", (uint8_t)1)); EXPECT_EQ("1", std::string(buf)); EXPECT_EQ(3, SafeSPrintf(buf, "%d", (uint8_t)-1)); EXPECT_EQ("255", std::string(buf)); EXPECT_EQ(1, SafeSPrintf(buf, "%d", (int8_t)1)); EXPECT_EQ("1", std::string(buf)); EXPECT_EQ(2, SafeSPrintf(buf, "%d", (int8_t)-1)); EXPECT_EQ("-1", std::string(buf)); EXPECT_EQ(4, SafeSPrintf(buf, "%d", (int8_t)-128)); EXPECT_EQ("-128", std::string(buf)); // Half-words EXPECT_EQ(1, SafeSPrintf(buf, "%d", (uint16_t)1)); EXPECT_EQ("1", std::string(buf)); EXPECT_EQ(5, SafeSPrintf(buf, "%d", (uint16_t)-1)); EXPECT_EQ("65535", std::string(buf)); EXPECT_EQ(1, SafeSPrintf(buf, "%d", (int16_t)1)); EXPECT_EQ("1", std::string(buf)); EXPECT_EQ(2, SafeSPrintf(buf, "%d", (int16_t)-1)); EXPECT_EQ("-1", std::string(buf)); EXPECT_EQ(6, SafeSPrintf(buf, "%d", (int16_t)-32768)); EXPECT_EQ("-32768", std::string(buf)); // Words EXPECT_EQ(1, SafeSPrintf(buf, "%d", (uint32_t)1)); EXPECT_EQ("1", std::string(buf)); EXPECT_EQ(10, SafeSPrintf(buf, "%d", (uint32_t)-1)); EXPECT_EQ("4294967295", std::string(buf)); EXPECT_EQ(1, SafeSPrintf(buf, "%d", (int32_t)1)); EXPECT_EQ("1", std::string(buf)); EXPECT_EQ(2, SafeSPrintf(buf, "%d", (int32_t)-1)); EXPECT_EQ("-1", std::string(buf)); // Work-around for an limitation of C90 EXPECT_EQ(11, SafeSPrintf(buf, "%d", (int32_t)-2147483647-1)); EXPECT_EQ("-2147483648", std::string(buf)); // Quads EXPECT_EQ(1, SafeSPrintf(buf, "%d", (uint64_t)1)); EXPECT_EQ("1", std::string(buf)); EXPECT_EQ(20, SafeSPrintf(buf, "%d", (uint64_t)-1)); EXPECT_EQ("18446744073709551615", std::string(buf)); EXPECT_EQ(1, SafeSPrintf(buf, "%d", (int64_t)1)); EXPECT_EQ("1", std::string(buf)); EXPECT_EQ(2, SafeSPrintf(buf, "%d", (int64_t)-1)); EXPECT_EQ("-1", std::string(buf)); // Work-around for an limitation of C90 EXPECT_EQ(20, SafeSPrintf(buf, "%d", (int64_t)-9223372036854775807LL-1)); EXPECT_EQ("-9223372036854775808", std::string(buf)); // Strings (both const and mutable). EXPECT_EQ(4, SafeSPrintf(buf, "test")); EXPECT_EQ("test", std::string(buf)); EXPECT_EQ(4, SafeSPrintf(buf, buf)); EXPECT_EQ("test", std::string(buf)); // Pointer char addr[20]; sprintf(addr, "0x%llX", (unsigned long long)(uintptr_t)buf); SafeSPrintf(buf, "%p", buf); EXPECT_EQ(std::string(addr), std::string(buf)); SafeSPrintf(buf, "%p", (const char *)buf); EXPECT_EQ(std::string(addr), std::string(buf)); sprintf(addr, "0x%llX", (unsigned long long)(uintptr_t)sprintf); SafeSPrintf(buf, "%p", sprintf); EXPECT_EQ(std::string(addr), std::string(buf)); // Padding for pointers is a little more complicated because of the "0x" // prefix. Padding with '0' zeros is relatively straight-forward, but // padding with ' ' spaces requires more effort. sprintf(addr, "0x%017llX", (unsigned long long)(uintptr_t)buf); SafeSPrintf(buf, "%019p", buf); EXPECT_EQ(std::string(addr), std::string(buf)); sprintf(addr, "0x%llX", (unsigned long long)(uintptr_t)buf); memset(addr, ' ', (char*)memmove(addr + sizeof(addr) - strlen(addr) - 1, addr, strlen(addr)+1) - addr); SafeSPrintf(buf, "%19p", buf); EXPECT_EQ(std::string(addr), std::string(buf)); } namespace { void PrintLongString(char* buf, size_t sz) { // Output a reasonably complex expression into a limited-size buffer. // At least one byte is available for writing the NUL character. CHECK_GT(sz, static_cast<size_t>(0)); // Allocate slightly more space, so that we can verify that SafeSPrintf() // never writes past the end of the buffer. std::unique_ptr<char[]> tmp(new char[sz + 2]); memset(tmp.get(), 'X', sz+2); // Use SafeSPrintf() to output a complex list of arguments: // - test padding and truncating %c single characters. // - test truncating %s simple strings. // - test mismatching arguments and truncating (for %d != %s). // - test zero-padding and truncating %x hexadecimal numbers. // - test outputting and truncating %d MININT. // - test outputting and truncating %p arbitrary pointer values. // - test outputting, padding and truncating NULL-pointer %s strings. char* out = tmp.get(); size_t out_sz = sz; size_t len; for (std::unique_ptr<char[]> perfect_buf;;) { size_t needed = SafeSNPrintf(out, out_sz, #if defined(NDEBUG) "A%2cong %s: %d %010X %d %p%7s", 'l', "string", "", #else "A%2cong %s: %%d %010X %d %p%7s", 'l', "string", #endif 0xDEADBEEF, std::numeric_limits<intptr_t>::min(), PrintLongString, static_cast<char*>(NULL)) + 1; // Various sanity checks: // The numbered of characters needed to print the full string should always // be bigger or equal to the bytes that have actually been output. len = strlen(tmp.get()); CHECK_GE(needed, len+1); // The number of characters output should always fit into the buffer that // was passed into SafeSPrintf(). CHECK_LT(len, out_sz); // The output is always terminated with a NUL byte (actually, this test is // always going to pass, as strlen() already verified this) EXPECT_FALSE(tmp[len]); // ASAN can check that we are not overwriting buffers, iff we make sure the // buffer is exactly the size that we are expecting to be written. After // running SafeSNPrintf() the first time, it is possible to compute the // correct buffer size for this test. So, allocate a second buffer and run // the exact same SafeSNPrintf() command again. if (!perfect_buf.get()) { out_sz = std::min(needed, sz); out = new char[out_sz]; perfect_buf.reset(out); } else { break; } } // All trailing bytes are unchanged. for (size_t i = len+1; i < sz+2; ++i) EXPECT_EQ('X', tmp[i]); // The text that was generated by SafeSPrintf() should always match the // equivalent text generated by sprintf(). Please note that the format // string for sprintf() is not complicated, as it does not have the // benefit of getting type information from the C++ compiler. // // N.B.: It would be so much cleaner to use snprintf(). But unfortunately, // Visual Studio doesn't support this function, and the work-arounds // are all really awkward. char ref[256]; CHECK_LE(sz, sizeof(ref)); sprintf(ref, "A long string: %%d 00DEADBEEF %lld 0x%llX <NULL>", static_cast<long long>(std::numeric_limits<intptr_t>::min()), static_cast<unsigned long long>( reinterpret_cast<uintptr_t>(PrintLongString))); ref[sz-1] = '\000'; #if defined(NDEBUG) const size_t kSSizeMax = std::numeric_limits<ssize_t>::max(); #else const size_t kSSizeMax = internal::GetSafeSPrintfSSizeMaxForTest(); #endif // Compare the output from SafeSPrintf() to the one from sprintf(). EXPECT_EQ(std::string(ref).substr(0, kSSizeMax-1), std::string(tmp.get())); // We allocated a slightly larger buffer, so that we could perform some // extra sanity checks. Now that the tests have all passed, we copy the // data to the output buffer that the caller provided. memcpy(buf, tmp.get(), len+1); } #if !defined(NDEBUG) class ScopedSafeSPrintfSSizeMaxSetter { public: ScopedSafeSPrintfSSizeMaxSetter(size_t sz) { old_ssize_max_ = internal::GetSafeSPrintfSSizeMaxForTest(); internal::SetSafeSPrintfSSizeMaxForTest(sz); } ~ScopedSafeSPrintfSSizeMaxSetter() { internal::SetSafeSPrintfSSizeMaxForTest(old_ssize_max_); } private: size_t old_ssize_max_; DISALLOW_COPY_AND_ASSIGN(ScopedSafeSPrintfSSizeMaxSetter); }; #endif } // anonymous namespace TEST(SafeSPrintfTest, Truncation) { // We use PrintLongString() to print a complex long string and then // truncate to all possible lengths. This ends up exercising a lot of // different code paths in SafeSPrintf() and IToASCII(), as truncation can // happen in a lot of different states. char ref[256]; PrintLongString(ref, sizeof(ref)); for (size_t i = strlen(ref)+1; i; --i) { char buf[sizeof(ref)]; PrintLongString(buf, i); EXPECT_EQ(std::string(ref, i - 1), std::string(buf)); } // When compiling in debug mode, we have the ability to fake a small // upper limit for the maximum value that can be stored in an ssize_t. // SafeSPrintf() uses this upper limit to determine how many bytes it will // write to the buffer, even if the caller claimed a bigger buffer size. // Repeat the truncation test and verify that this other code path in // SafeSPrintf() works correctly, too. #if !defined(NDEBUG) for (size_t i = strlen(ref)+1; i > 1; --i) { ScopedSafeSPrintfSSizeMaxSetter ssize_max_setter(i); char buf[sizeof(ref)]; PrintLongString(buf, sizeof(buf)); EXPECT_EQ(std::string(ref, i - 1), std::string(buf)); } // kSSizeMax is also used to constrain the maximum amount of padding, before // SafeSPrintf() detects an error in the format string. ScopedSafeSPrintfSSizeMaxSetter ssize_max_setter(100); char buf[256]; EXPECT_EQ(99, SafeSPrintf(buf, "%99c", ' ')); EXPECT_EQ(std::string(99, ' '), std::string(buf)); *buf = '\000'; #if defined(ALLOW_DEATH_TEST) EXPECT_DEATH(SafeSPrintf(buf, "%100c", ' '), "padding <= max_padding"); #endif EXPECT_EQ(0, *buf); #endif } TEST(SafeSPrintfTest, Padding) { char buf[40], fmt[40]; // Chars %c EXPECT_EQ(1, SafeSPrintf(buf, "%c", 'A')); EXPECT_EQ("A", std::string(buf)); EXPECT_EQ(2, SafeSPrintf(buf, "%2c", 'A')); EXPECT_EQ(" A", std::string(buf)); EXPECT_EQ(2, SafeSPrintf(buf, "%02c", 'A')); EXPECT_EQ(" A", std::string(buf)); EXPECT_EQ(4, SafeSPrintf(buf, "%-2c", 'A')); EXPECT_EQ("%-2c", std::string(buf)); SafeSPrintf(fmt, "%%%dc", std::numeric_limits<ssize_t>::max() - 1); EXPECT_EQ(std::numeric_limits<ssize_t>::max()-1, SafeSPrintf(buf, fmt, 'A')); SafeSPrintf(fmt, "%%%dc", static_cast<size_t>(std::numeric_limits<ssize_t>::max())); #if defined(NDEBUG) EXPECT_EQ(2, SafeSPrintf(buf, fmt, 'A')); EXPECT_EQ("%c", std::string(buf)); #elif defined(ALLOW_DEATH_TEST) EXPECT_DEATH(SafeSPrintf(buf, fmt, 'A'), "padding <= max_padding"); #endif // Octal %o EXPECT_EQ(1, SafeSPrintf(buf, "%o", 1)); EXPECT_EQ("1", std::string(buf)); EXPECT_EQ(2, SafeSPrintf(buf, "%2o", 1)); EXPECT_EQ(" 1", std::string(buf)); EXPECT_EQ(2, SafeSPrintf(buf, "%02o", 1)); EXPECT_EQ("01", std::string(buf)); EXPECT_EQ(12, SafeSPrintf(buf, "%12o", -1)); EXPECT_EQ(" 37777777777", std::string(buf)); EXPECT_EQ(12, SafeSPrintf(buf, "%012o", -1)); EXPECT_EQ("037777777777", std::string(buf)); EXPECT_EQ(23, SafeSPrintf(buf, "%23o", -1LL)); EXPECT_EQ(" 1777777777777777777777", std::string(buf)); EXPECT_EQ(23, SafeSPrintf(buf, "%023o", -1LL)); EXPECT_EQ("01777777777777777777777", std::string(buf)); EXPECT_EQ(3, SafeSPrintf(buf, "%2o", 0111)); EXPECT_EQ("111", std::string(buf)); EXPECT_EQ(4, SafeSPrintf(buf, "%-2o", 1)); EXPECT_EQ("%-2o", std::string(buf)); SafeSPrintf(fmt, "%%%do", std::numeric_limits<ssize_t>::max()-1); EXPECT_EQ(std::numeric_limits<ssize_t>::max()-1, SafeSNPrintf(buf, 4, fmt, 1)); EXPECT_EQ(" ", std::string(buf)); SafeSPrintf(fmt, "%%0%do", std::numeric_limits<ssize_t>::max()-1); EXPECT_EQ(std::numeric_limits<ssize_t>::max()-1, SafeSNPrintf(buf, 4, fmt, 1)); EXPECT_EQ("000", std::string(buf)); SafeSPrintf(fmt, "%%%do", static_cast<size_t>(std::numeric_limits<ssize_t>::max())); #if defined(NDEBUG) EXPECT_EQ(2, SafeSPrintf(buf, fmt, 1)); EXPECT_EQ("%o", std::string(buf)); #elif defined(ALLOW_DEATH_TEST) EXPECT_DEATH(SafeSPrintf(buf, fmt, 1), "padding <= max_padding"); #endif // Decimals %d EXPECT_EQ(1, SafeSPrintf(buf, "%d", 1)); EXPECT_EQ("1", std::string(buf)); EXPECT_EQ(2, SafeSPrintf(buf, "%2d", 1)); EXPECT_EQ(" 1", std::string(buf)); EXPECT_EQ(2, SafeSPrintf(buf, "%02d", 1)); EXPECT_EQ("01", std::string(buf)); EXPECT_EQ(3, SafeSPrintf(buf, "%3d", -1)); EXPECT_EQ(" -1", std::string(buf)); EXPECT_EQ(3, SafeSPrintf(buf, "%03d", -1)); EXPECT_EQ("-01", std::string(buf)); EXPECT_EQ(3, SafeSPrintf(buf, "%2d", 111)); EXPECT_EQ("111", std::string(buf)); EXPECT_EQ(4, SafeSPrintf(buf, "%2d", -111)); EXPECT_EQ("-111", std::string(buf)); EXPECT_EQ(4, SafeSPrintf(buf, "%-2d", 1)); EXPECT_EQ("%-2d", std::string(buf)); SafeSPrintf(fmt, "%%%dd", std::numeric_limits<ssize_t>::max()-1); EXPECT_EQ(std::numeric_limits<ssize_t>::max()-1, SafeSNPrintf(buf, 4, fmt, 1)); EXPECT_EQ(" ", std::string(buf)); SafeSPrintf(fmt, "%%0%dd", std::numeric_limits<ssize_t>::max()-1); EXPECT_EQ(std::numeric_limits<ssize_t>::max()-1, SafeSNPrintf(buf, 4, fmt, 1)); EXPECT_EQ("000", std::string(buf)); SafeSPrintf(fmt, "%%%dd", static_cast<size_t>(std::numeric_limits<ssize_t>::max())); #if defined(NDEBUG) EXPECT_EQ(2, SafeSPrintf(buf, fmt, 1)); EXPECT_EQ("%d", std::string(buf)); #elif defined(ALLOW_DEATH_TEST) EXPECT_DEATH(SafeSPrintf(buf, fmt, 1), "padding <= max_padding"); #endif // Hex %X EXPECT_EQ(1, SafeSPrintf(buf, "%X", 1)); EXPECT_EQ("1", std::string(buf)); EXPECT_EQ(2, SafeSPrintf(buf, "%2X", 1)); EXPECT_EQ(" 1", std::string(buf)); EXPECT_EQ(2, SafeSPrintf(buf, "%02X", 1)); EXPECT_EQ("01", std::string(buf)); EXPECT_EQ(9, SafeSPrintf(buf, "%9X", -1)); EXPECT_EQ(" FFFFFFFF", std::string(buf)); EXPECT_EQ(9, SafeSPrintf(buf, "%09X", -1)); EXPECT_EQ("0FFFFFFFF", std::string(buf)); EXPECT_EQ(17, SafeSPrintf(buf, "%17X", -1LL)); EXPECT_EQ(" FFFFFFFFFFFFFFFF", std::string(buf)); EXPECT_EQ(17, SafeSPrintf(buf, "%017X", -1LL)); EXPECT_EQ("0FFFFFFFFFFFFFFFF", std::string(buf)); EXPECT_EQ(3, SafeSPrintf(buf, "%2X", 0x111)); EXPECT_EQ("111", std::string(buf)); EXPECT_EQ(4, SafeSPrintf(buf, "%-2X", 1)); EXPECT_EQ("%-2X", std::string(buf)); SafeSPrintf(fmt, "%%%dX", std::numeric_limits<ssize_t>::max()-1); EXPECT_EQ(std::numeric_limits<ssize_t>::max()-1, SafeSNPrintf(buf, 4, fmt, 1)); EXPECT_EQ(" ", std::string(buf)); SafeSPrintf(fmt, "%%0%dX", std::numeric_limits<ssize_t>::max()-1); EXPECT_EQ(std::numeric_limits<ssize_t>::max()-1, SafeSNPrintf(buf, 4, fmt, 1)); EXPECT_EQ("000", std::string(buf)); SafeSPrintf(fmt, "%%%dX", static_cast<size_t>(std::numeric_limits<ssize_t>::max())); #if defined(NDEBUG) EXPECT_EQ(2, SafeSPrintf(buf, fmt, 1)); EXPECT_EQ("%X", std::string(buf)); #elif defined(ALLOW_DEATH_TEST) EXPECT_DEATH(SafeSPrintf(buf, fmt, 1), "padding <= max_padding"); #endif // Pointer %p EXPECT_EQ(3, SafeSPrintf(buf, "%p", (void*)1)); EXPECT_EQ("0x1", std::string(buf)); EXPECT_EQ(4, SafeSPrintf(buf, "%4p", (void*)1)); EXPECT_EQ(" 0x1", std::string(buf)); EXPECT_EQ(4, SafeSPrintf(buf, "%04p", (void*)1)); EXPECT_EQ("0x01", std::string(buf)); EXPECT_EQ(5, SafeSPrintf(buf, "%4p", (void*)0x111)); EXPECT_EQ("0x111", std::string(buf)); EXPECT_EQ(4, SafeSPrintf(buf, "%-2p", (void*)1)); EXPECT_EQ("%-2p", std::string(buf)); SafeSPrintf(fmt, "%%%dp", std::numeric_limits<ssize_t>::max()-1); EXPECT_EQ(std::numeric_limits<ssize_t>::max()-1, SafeSNPrintf(buf, 4, fmt, (void*)1)); EXPECT_EQ(" ", std::string(buf)); SafeSPrintf(fmt, "%%0%dp", std::numeric_limits<ssize_t>::max()-1); EXPECT_EQ(std::numeric_limits<ssize_t>::max()-1, SafeSNPrintf(buf, 4, fmt, (void*)1)); EXPECT_EQ("0x0", std::string(buf)); SafeSPrintf(fmt, "%%%dp", static_cast<size_t>(std::numeric_limits<ssize_t>::max())); #if defined(NDEBUG) EXPECT_EQ(2, SafeSPrintf(buf, fmt, 1)); EXPECT_EQ("%p", std::string(buf)); #elif defined(ALLOW_DEATH_TEST) EXPECT_DEATH(SafeSPrintf(buf, fmt, 1), "padding <= max_padding"); #endif // String EXPECT_EQ(1, SafeSPrintf(buf, "%s", "A")); EXPECT_EQ("A", std::string(buf)); EXPECT_EQ(2, SafeSPrintf(buf, "%2s", "A")); EXPECT_EQ(" A", std::string(buf)); EXPECT_EQ(2, SafeSPrintf(buf, "%02s", "A")); EXPECT_EQ(" A", std::string(buf)); EXPECT_EQ(3, SafeSPrintf(buf, "%2s", "AAA")); EXPECT_EQ("AAA", std::string(buf)); EXPECT_EQ(4, SafeSPrintf(buf, "%-2s", "A")); EXPECT_EQ("%-2s", std::string(buf)); SafeSPrintf(fmt, "%%%ds", std::numeric_limits<ssize_t>::max()-1); EXPECT_EQ(std::numeric_limits<ssize_t>::max()-1, SafeSNPrintf(buf, 4, fmt, "A")); EXPECT_EQ(" ", std::string(buf)); SafeSPrintf(fmt, "%%0%ds", std::numeric_limits<ssize_t>::max()-1); EXPECT_EQ(std::numeric_limits<ssize_t>::max()-1, SafeSNPrintf(buf, 4, fmt, "A")); EXPECT_EQ(" ", std::string(buf)); SafeSPrintf(fmt, "%%%ds", static_cast<size_t>(std::numeric_limits<ssize_t>::max())); #if defined(NDEBUG) EXPECT_EQ(2, SafeSPrintf(buf, fmt, "A")); EXPECT_EQ("%s", std::string(buf)); #elif defined(ALLOW_DEATH_TEST) EXPECT_DEATH(SafeSPrintf(buf, fmt, "A"), "padding <= max_padding"); #endif } TEST(SafeSPrintfTest, EmbeddedNul) { char buf[] = { 'X', 'X', 'X', 'X' }; EXPECT_EQ(2, SafeSPrintf(buf, "%3c", 0)); EXPECT_EQ(' ', buf[0]); EXPECT_EQ(' ', buf[1]); EXPECT_EQ(0, buf[2]); EXPECT_EQ('X', buf[3]); // Check handling of a NUL format character. N.B. this takes two different // code paths depending on whether we are actually passing arguments. If // we don't have any arguments, we are running in the fast-path code, that // looks (almost) like a strncpy(). #if defined(NDEBUG) EXPECT_EQ(2, SafeSPrintf(buf, "%%%")); EXPECT_EQ("%%", std::string(buf)); EXPECT_EQ(2, SafeSPrintf(buf, "%%%", 0)); EXPECT_EQ("%%", std::string(buf)); #elif defined(ALLOW_DEATH_TEST) EXPECT_DEATH(SafeSPrintf(buf, "%%%"), "src.1. == '%'"); EXPECT_DEATH(SafeSPrintf(buf, "%%%", 0), "ch"); #endif } TEST(SafeSPrintfTest, EmitNULL) { char buf[40]; #if defined(__GNUC__) #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wconversion-null" #endif EXPECT_EQ(1, SafeSPrintf(buf, "%d", NULL)); EXPECT_EQ("0", std::string(buf)); EXPECT_EQ(3, SafeSPrintf(buf, "%p", NULL)); EXPECT_EQ("0x0", std::string(buf)); EXPECT_EQ(6, SafeSPrintf(buf, "%s", NULL)); EXPECT_EQ("<NULL>", std::string(buf)); #if defined(__GCC__) #pragma GCC diagnostic pop #endif } TEST(SafeSPrintfTest, PointerSize) { // The internal data representation is a 64bit value, independent of the // native word size. We want to perform sign-extension for signed integers, // but we want to avoid doing so for pointer types. This could be a // problem on systems, where pointers are only 32bit. This tests verifies // that there is no such problem. char *str = reinterpret_cast<char *>(0x80000000u); void *ptr = str; char buf[40]; EXPECT_EQ(10, SafeSPrintf(buf, "%p", str)); EXPECT_EQ("0x80000000", std::string(buf)); EXPECT_EQ(10, SafeSPrintf(buf, "%p", ptr)); EXPECT_EQ("0x80000000", std::string(buf)); } } // namespace strings } // namespace base