// © 2016 and later: Unicode, Inc. and others. // License & terms of use: http://www.unicode.org/copyright.html /* ******************************************************************************* * * Copyright (C) 2009-2016, International Business Machines * Corporation and others. All Rights Reserved. * ******************************************************************************* * file name: n2builder.cpp * encoding: UTF-8 * tab size: 8 (not used) * indentation:4 * * created on: 2009nov25 * created by: Markus W. Scherer * * Builds Normalizer2 data and writes a binary .nrm file. * For the file format see source/common/normalizer2impl.h. */ #include "unicode/utypes.h" #include "n2builder.h" #include <stdio.h> #include <stdlib.h> #include <string.h> #include <vector> #include "unicode/errorcode.h" #include "unicode/localpointer.h" #include "unicode/putil.h" #include "unicode/udata.h" #include "unicode/uniset.h" #include "unicode/unistr.h" #include "unicode/usetiter.h" #include "unicode/ustring.h" #include "charstr.h" #include "extradata.h" #include "hash.h" #include "normalizer2impl.h" #include "norms.h" #include "toolutil.h" #include "unewdata.h" #include "utrie2.h" #include "uvectr32.h" #include "writesrc.h" #if !UCONFIG_NO_NORMALIZATION /* UDataInfo cf. udata.h */ static UDataInfo dataInfo={ sizeof(UDataInfo), 0, U_IS_BIG_ENDIAN, U_CHARSET_FAMILY, U_SIZEOF_UCHAR, 0, { 0x4e, 0x72, 0x6d, 0x32 }, /* dataFormat="Nrm2" */ { 3, 0, 0, 0 }, /* formatVersion */ { 10, 0, 0, 0 } /* dataVersion (Unicode version) */ }; U_NAMESPACE_BEGIN class HangulIterator { public: struct Range { UChar32 start, end; }; HangulIterator() : rangeIndex(0) {} const Range *nextRange() { if(rangeIndex<UPRV_LENGTHOF(ranges)) { return ranges+rangeIndex++; } else { return NULL; } } private: static const Range ranges[4]; int32_t rangeIndex; }; const HangulIterator::Range HangulIterator::ranges[4]={ { Hangul::JAMO_L_BASE, Hangul::JAMO_L_END }, { Hangul::JAMO_V_BASE, Hangul::JAMO_V_END }, // JAMO_T_BASE+1: not U+11A7 { Hangul::JAMO_T_BASE+1, Hangul::JAMO_T_END }, { Hangul::HANGUL_BASE, Hangul::HANGUL_END }, }; Normalizer2DataBuilder::Normalizer2DataBuilder(UErrorCode &errorCode) : norms(errorCode), phase(0), overrideHandling(OVERRIDE_PREVIOUS), optimization(OPTIMIZE_NORMAL), norm16Trie(nullptr), norm16TrieLength(0) { memset(unicodeVersion, 0, sizeof(unicodeVersion)); memset(indexes, 0, sizeof(indexes)); memset(smallFCD, 0, sizeof(smallFCD)); } Normalizer2DataBuilder::~Normalizer2DataBuilder() { utrie2_close(norm16Trie); } void Normalizer2DataBuilder::setUnicodeVersion(const char *v) { UVersionInfo nullVersion={ 0, 0, 0, 0 }; UVersionInfo version; u_versionFromString(version, v); if( 0!=memcmp(version, unicodeVersion, U_MAX_VERSION_LENGTH) && 0!=memcmp(nullVersion, unicodeVersion, U_MAX_VERSION_LENGTH) ) { char buffer[U_MAX_VERSION_STRING_LENGTH]; u_versionToString(unicodeVersion, buffer); fprintf(stderr, "gennorm2 error: multiple inconsistent Unicode version numbers %s vs. %s\n", buffer, v); exit(U_ILLEGAL_ARGUMENT_ERROR); } memcpy(unicodeVersion, version, U_MAX_VERSION_LENGTH); } Norm *Normalizer2DataBuilder::checkNormForMapping(Norm *p, UChar32 c) { if(p!=NULL) { if(p->mappingType!=Norm::NONE) { if( overrideHandling==OVERRIDE_NONE || (overrideHandling==OVERRIDE_PREVIOUS && p->mappingPhase==phase) ) { fprintf(stderr, "error in gennorm2 phase %d: " "not permitted to override mapping for U+%04lX from phase %d\n", (int)phase, (long)c, (int)p->mappingPhase); exit(U_INVALID_FORMAT_ERROR); } delete p->mapping; p->mapping=NULL; } p->mappingPhase=phase; } return p; } void Normalizer2DataBuilder::setOverrideHandling(OverrideHandling oh) { overrideHandling=oh; ++phase; } void Normalizer2DataBuilder::setCC(UChar32 c, uint8_t cc) { norms.createNorm(c)->cc=cc; norms.ccSet.add(c); } static UBool isWellFormed(const UnicodeString &s) { UErrorCode errorCode=U_ZERO_ERROR; u_strToUTF8(NULL, 0, NULL, toUCharPtr(s.getBuffer()), s.length(), &errorCode); return U_SUCCESS(errorCode) || errorCode==U_BUFFER_OVERFLOW_ERROR; } void Normalizer2DataBuilder::setOneWayMapping(UChar32 c, const UnicodeString &m) { if(!isWellFormed(m)) { fprintf(stderr, "error in gennorm2 phase %d: " "illegal one-way mapping from U+%04lX to malformed string\n", (int)phase, (long)c); exit(U_INVALID_FORMAT_ERROR); } Norm *p=checkNormForMapping(norms.createNorm(c), c); p->mapping=new UnicodeString(m); p->mappingType=Norm::ONE_WAY; p->setMappingCP(); norms.mappingSet.add(c); } void Normalizer2DataBuilder::setRoundTripMapping(UChar32 c, const UnicodeString &m) { if(U_IS_SURROGATE(c)) { fprintf(stderr, "error in gennorm2 phase %d: " "illegal round-trip mapping from surrogate code point U+%04lX\n", (int)phase, (long)c); exit(U_INVALID_FORMAT_ERROR); } if(!isWellFormed(m)) { fprintf(stderr, "error in gennorm2 phase %d: " "illegal round-trip mapping from U+%04lX to malformed string\n", (int)phase, (long)c); exit(U_INVALID_FORMAT_ERROR); } int32_t numCP=u_countChar32(toUCharPtr(m.getBuffer()), m.length()); if(numCP!=2) { fprintf(stderr, "error in gennorm2 phase %d: " "illegal round-trip mapping from U+%04lX to %d!=2 code points\n", (int)phase, (long)c, (int)numCP); exit(U_INVALID_FORMAT_ERROR); } Norm *p=checkNormForMapping(norms.createNorm(c), c); p->mapping=new UnicodeString(m); p->mappingType=Norm::ROUND_TRIP; p->mappingCP=U_SENTINEL; norms.mappingSet.add(c); } void Normalizer2DataBuilder::removeMapping(UChar32 c) { // createNorm(c), not getNorm(c), to record a non-mapping and detect conflicting data. Norm *p=checkNormForMapping(norms.createNorm(c), c); p->mappingType=Norm::REMOVED; norms.mappingSet.add(c); } UBool Normalizer2DataBuilder::mappingHasCompBoundaryAfter(const BuilderReorderingBuffer &buffer, Norm::MappingType mappingType) const { if(buffer.isEmpty()) { return FALSE; // Maps-to-empty-string is no boundary of any kind. } int32_t lastStarterIndex=buffer.lastStarterIndex(); if(lastStarterIndex<0) { return FALSE; // no starter } const int32_t lastIndex=buffer.length()-1; if(mappingType==Norm::ONE_WAY && lastStarterIndex<lastIndex && buffer.ccAt(lastIndex)>1) { // One-way mapping where after the last starter is at least one combining mark // with a combining class greater than 1, // which means that another combining mark can reorder before it. // By contrast, in a round-trip mapping this does not prevent a boundary as long as // the starter or composite does not combine-forward with a following combining mark. return FALSE; } UChar32 starter=buffer.charAt(lastStarterIndex); if(lastStarterIndex==0 && norms.combinesBack(starter)) { // The last starter is at the beginning of the mapping and combines backward. return FALSE; } if(Hangul::isJamoL(starter) || (Hangul::isJamoV(starter) && 0<lastStarterIndex && Hangul::isJamoL(buffer.charAt(lastStarterIndex-1)))) { // A Jamo leading consonant or an LV pair combines-forward if it is at the end, // otherwise it is blocked. return lastStarterIndex!=lastIndex; } // Note: There can be no Hangul syllable in the fully decomposed mapping. // Multiple starters can combine into one. // Look for the first of the last sequence of starters, excluding Jamos. int32_t i=lastStarterIndex; UChar32 c; while(0<i && buffer.ccAt(i-1)==0 && !Hangul::isJamo(c=buffer.charAt(i-1))) { starter=c; --i; } // Compose as far as possible, and see if further compositions with // characters following this mapping are possible. const Norm *starterNorm=norms.getNorm(starter); if(i==lastStarterIndex && (starterNorm==nullptr || starterNorm->compositions==nullptr)) { return TRUE; // The last starter does not combine forward. } uint8_t prevCC=0; while(++i<buffer.length()) { uint8_t cc=buffer.ccAt(i); // !=0 if after last starter if(i>lastStarterIndex && norms.combinesWithCCBetween(*starterNorm, prevCC, cc)) { // The starter combines with a mark that reorders before the current one. return FALSE; } UChar32 c=buffer.charAt(i); if(starterNorm!=nullptr && (prevCC<cc || prevCC==0) && norms.getNormRef(c).combinesBack && (starter=starterNorm->combine(c))>=0) { // The starter combines with c into a composite replacement starter. starterNorm=norms.getNorm(starter); if(i>=lastStarterIndex && (starterNorm==nullptr || starterNorm->compositions==nullptr)) { return TRUE; // The composite does not combine further. } // Keep prevCC because we "removed" the combining mark. } else if(cc==0) { starterNorm=norms.getNorm(c); if(i==lastStarterIndex && (starterNorm==nullptr || starterNorm->compositions==nullptr)) { return TRUE; // The new starter does not combine forward. } prevCC=0; } else { prevCC=cc; } } if(prevCC==0) { return FALSE; // forward-combining starter at the very end } if(norms.combinesWithCCBetween(*starterNorm, prevCC, 256)) { // The starter combines with another mark. return FALSE; } return TRUE; } UBool Normalizer2DataBuilder::mappingRecomposes(const BuilderReorderingBuffer &buffer) const { if(buffer.lastStarterIndex()<0) { return FALSE; // no starter } const Norm *starterNorm=nullptr; uint8_t prevCC=0; for(int32_t i=0; i<buffer.length(); ++i) { UChar32 c=buffer.charAt(i); uint8_t cc=buffer.ccAt(i); if(starterNorm!=nullptr && (prevCC<cc || prevCC==0) && norms.getNormRef(c).combinesBack && starterNorm->combine(c)>=0) { return TRUE; // normal composite } else if(cc==0) { if(Hangul::isJamoL(c)) { if((i+1)<buffer.length() && Hangul::isJamoV(buffer.charAt(i+1))) { return TRUE; // Hangul syllable } starterNorm=nullptr; } else { starterNorm=norms.getNorm(c); } } prevCC=cc; } return FALSE; } void Normalizer2DataBuilder::postProcess(Norm &norm) { // Prerequisites: Compositions are built, mappings are recursively decomposed. // Mappings are not yet in canonical order. // // This function works on a Norm struct. We do not know which code point(s) map(s) to it. // Therefore, we cannot compute algorithmic mapping deltas here. // Error conditions are checked, but printed later when we do know the offending code point. if(norm.hasMapping()) { if(norm.mapping->length()>Normalizer2Impl::MAPPING_LENGTH_MASK) { norm.error="mapping longer than maximum of 31"; return; } // Ensure canonical order. BuilderReorderingBuffer buffer; if(norm.rawMapping!=nullptr) { norms.reorder(*norm.rawMapping, buffer); buffer.reset(); } norms.reorder(*norm.mapping, buffer); if(buffer.isEmpty()) { // A character that is deleted (maps to an empty string) must // get the worst-case lccc and tccc values because arbitrary // characters on both sides will become adjacent. norm.leadCC=1; norm.trailCC=0xff; } else { norm.leadCC=buffer.ccAt(0); norm.trailCC=buffer.ccAt(buffer.length()-1); } norm.hasCompBoundaryBefore= !buffer.isEmpty() && norm.leadCC==0 && !norms.combinesBack(buffer.charAt(0)); norm.hasCompBoundaryAfter= norm.compositions==nullptr && mappingHasCompBoundaryAfter(buffer, norm.mappingType); if(norm.combinesBack) { norm.error="combines-back and decomposes, not possible in Unicode normalization"; } else if(norm.mappingType==Norm::ROUND_TRIP) { if(norm.compositions!=NULL) { norm.type=Norm::YES_NO_COMBINES_FWD; } else { norm.type=Norm::YES_NO_MAPPING_ONLY; } } else { // one-way mapping if(norm.compositions!=NULL) { norm.error="combines-forward and has a one-way mapping, " "not possible in Unicode normalization"; } else if(buffer.isEmpty()) { norm.type=Norm::NO_NO_EMPTY; } else if(!norm.hasCompBoundaryBefore) { norm.type=Norm::NO_NO_COMP_NO_MAYBE_CC; } else if(mappingRecomposes(buffer)) { norm.type=Norm::NO_NO_COMP_BOUNDARY_BEFORE; } else { // The mapping is comp-normalized. norm.type=Norm::NO_NO_COMP_YES; } } } else { // no mapping norm.leadCC=norm.trailCC=norm.cc; norm.hasCompBoundaryBefore= norm.cc==0 && !norm.combinesBack; norm.hasCompBoundaryAfter= norm.cc==0 && !norm.combinesBack && norm.compositions==nullptr; if(norm.combinesBack) { if(norm.compositions!=nullptr) { // Earlier code checked ccc=0. norm.type=Norm::MAYBE_YES_COMBINES_FWD; } else { norm.type=Norm::MAYBE_YES_SIMPLE; // any ccc } } else if(norm.compositions!=nullptr) { // Earlier code checked ccc=0. norm.type=Norm::YES_YES_COMBINES_FWD; } else if(norm.cc!=0) { norm.type=Norm::YES_YES_WITH_CC; } else { norm.type=Norm::INERT; } } } class Norm16Writer : public Norms::Enumerator { public: Norm16Writer(Norms &n, Normalizer2DataBuilder &b) : Norms::Enumerator(n), builder(b) {} void rangeHandler(UChar32 start, UChar32 end, Norm &norm) U_OVERRIDE { builder.writeNorm16(start, end, norm); } Normalizer2DataBuilder &builder; }; void Normalizer2DataBuilder::setSmallFCD(UChar32 c) { UChar32 lead= c<=0xffff ? c : U16_LEAD(c); smallFCD[lead>>8]|=(uint8_t)1<<((lead>>5)&7); } void Normalizer2DataBuilder::writeNorm16(UChar32 start, UChar32 end, Norm &norm) { if((norm.leadCC|norm.trailCC)!=0) { for(UChar32 c=start; c<=end; ++c) { setSmallFCD(c); } } int32_t norm16; switch(norm.type) { case Norm::INERT: norm16=Normalizer2Impl::INERT; break; case Norm::YES_YES_COMBINES_FWD: norm16=norm.offset*2; break; case Norm::YES_NO_COMBINES_FWD: norm16=indexes[Normalizer2Impl::IX_MIN_YES_NO]+norm.offset*2; break; case Norm::YES_NO_MAPPING_ONLY: norm16=indexes[Normalizer2Impl::IX_MIN_YES_NO_MAPPINGS_ONLY]+norm.offset*2; break; case Norm::NO_NO_COMP_YES: norm16=indexes[Normalizer2Impl::IX_MIN_NO_NO]+norm.offset*2; break; case Norm::NO_NO_COMP_BOUNDARY_BEFORE: norm16=indexes[Normalizer2Impl::IX_MIN_NO_NO_COMP_BOUNDARY_BEFORE]+norm.offset*2; break; case Norm::NO_NO_COMP_NO_MAYBE_CC: norm16=indexes[Normalizer2Impl::IX_MIN_NO_NO_COMP_NO_MAYBE_CC]+norm.offset*2; break; case Norm::NO_NO_EMPTY: norm16=indexes[Normalizer2Impl::IX_MIN_NO_NO_EMPTY]+norm.offset*2; break; case Norm::NO_NO_DELTA: { // Positive offset from minNoNoDelta, shifted left for additional bits. int32_t offset=(norm.offset+Normalizer2Impl::MAX_DELTA)<<Normalizer2Impl::DELTA_SHIFT; if(norm.trailCC==0) { // DELTA_TCCC_0==0 } else if(norm.trailCC==1) { offset|=Normalizer2Impl::DELTA_TCCC_1; } else { offset|=Normalizer2Impl::DELTA_TCCC_GT_1; } norm16=getMinNoNoDelta()+offset; break; } case Norm::MAYBE_YES_COMBINES_FWD: norm16=indexes[Normalizer2Impl::IX_MIN_MAYBE_YES]+norm.offset*2; break; case Norm::MAYBE_YES_SIMPLE: norm16=Normalizer2Impl::MIN_NORMAL_MAYBE_YES+norm.cc*2; // ccc=0..255 break; case Norm::YES_YES_WITH_CC: U_ASSERT(norm.cc!=0); norm16=Normalizer2Impl::MIN_YES_YES_WITH_CC-2+norm.cc*2; // ccc=1..255 break; default: // Should not occur. exit(U_INTERNAL_PROGRAM_ERROR); } U_ASSERT((norm16&1)==0); if(norm.hasCompBoundaryAfter) { norm16|=Normalizer2Impl::HAS_COMP_BOUNDARY_AFTER; } IcuToolErrorCode errorCode("gennorm2/writeNorm16()"); utrie2_setRange32(norm16Trie, start, end, (uint32_t)norm16, TRUE, errorCode); // Set the minimum code points for real data lookups in the quick check loops. UBool isDecompNo= (Norm::YES_NO_COMBINES_FWD<=norm.type && norm.type<=Norm::NO_NO_DELTA) || norm.cc!=0; if(isDecompNo && start<indexes[Normalizer2Impl::IX_MIN_DECOMP_NO_CP]) { indexes[Normalizer2Impl::IX_MIN_DECOMP_NO_CP]=start; } UBool isCompNoMaybe= norm.type>=Norm::NO_NO_COMP_YES; if(isCompNoMaybe && start<indexes[Normalizer2Impl::IX_MIN_COMP_NO_MAYBE_CP]) { indexes[Normalizer2Impl::IX_MIN_COMP_NO_MAYBE_CP]=start; } if(norm.leadCC!=0 && start<indexes[Normalizer2Impl::IX_MIN_LCCC_CP]) { indexes[Normalizer2Impl::IX_MIN_LCCC_CP]=start; } } void Normalizer2DataBuilder::setHangulData() { HangulIterator hi; const HangulIterator::Range *range; // Check that none of the Hangul/Jamo code points have data. while((range=hi.nextRange())!=NULL) { for(UChar32 c=range->start; c<=range->end; ++c) { if(utrie2_get32(norm16Trie, c)>Normalizer2Impl::INERT) { fprintf(stderr, "gennorm2 error: " "illegal mapping/composition/ccc data for Hangul or Jamo U+%04lX\n", (long)c); exit(U_INVALID_FORMAT_ERROR); } } } // Set data for algorithmic runtime handling. IcuToolErrorCode errorCode("gennorm2/setHangulData()"); // Jamo V/T are maybeYes if(Hangul::JAMO_V_BASE<indexes[Normalizer2Impl::IX_MIN_COMP_NO_MAYBE_CP]) { indexes[Normalizer2Impl::IX_MIN_COMP_NO_MAYBE_CP]=Hangul::JAMO_V_BASE; } utrie2_setRange32(norm16Trie, Hangul::JAMO_L_BASE, Hangul::JAMO_L_END, Normalizer2Impl::JAMO_L, TRUE, errorCode); utrie2_setRange32(norm16Trie, Hangul::JAMO_V_BASE, Hangul::JAMO_V_END, Normalizer2Impl::JAMO_VT, TRUE, errorCode); // JAMO_T_BASE+1: not U+11A7 utrie2_setRange32(norm16Trie, Hangul::JAMO_T_BASE+1, Hangul::JAMO_T_END, Normalizer2Impl::JAMO_VT, TRUE, errorCode); // Hangul LV encoded as minYesNo uint32_t lv=indexes[Normalizer2Impl::IX_MIN_YES_NO]; // Hangul LVT encoded as minYesNoMappingsOnly|HAS_COMP_BOUNDARY_AFTER uint32_t lvt=indexes[Normalizer2Impl::IX_MIN_YES_NO_MAPPINGS_ONLY]| Normalizer2Impl::HAS_COMP_BOUNDARY_AFTER; if(Hangul::HANGUL_BASE<indexes[Normalizer2Impl::IX_MIN_DECOMP_NO_CP]) { indexes[Normalizer2Impl::IX_MIN_DECOMP_NO_CP]=Hangul::HANGUL_BASE; } // Set the first LV, then write all other Hangul syllables as LVT, // then overwrite the remaining LV. // The UTrie2 should be able to compact this into 7 32-item blocks // because JAMO_T_COUNT is 28 and the UTrie2 granularity is 4. // (7*32=8*28 smallest common multiple) utrie2_set32(norm16Trie, Hangul::HANGUL_BASE, lv, errorCode); utrie2_setRange32(norm16Trie, Hangul::HANGUL_BASE+1, Hangul::HANGUL_END, lvt, TRUE, errorCode); UChar32 c=Hangul::HANGUL_BASE; while((c+=Hangul::JAMO_T_COUNT)<=Hangul::HANGUL_END) { utrie2_set32(norm16Trie, c, lv, errorCode); } errorCode.assertSuccess(); } namespace { struct Norm16Summary { uint32_t maxNorm16; // ANDing values yields 0 bits where any value has a 0. // Used for worst-case HAS_COMP_BOUNDARY_AFTER. uint32_t andedNorm16; }; } // namespace U_CDECL_BEGIN static UBool U_CALLCONV enumRangeMaxValue(const void *context, UChar32 /*start*/, UChar32 /*end*/, uint32_t value) { Norm16Summary *p=(Norm16Summary *)context; if(value>p->maxNorm16) { p->maxNorm16=value; } p->andedNorm16&=value; return TRUE; } U_CDECL_END void Normalizer2DataBuilder::processData() { IcuToolErrorCode errorCode("gennorm2/processData()"); norm16Trie=utrie2_open(Normalizer2Impl::INERT, Normalizer2Impl::INERT, errorCode); errorCode.assertSuccess(); // Build composition lists before recursive decomposition, // so that we still have the raw, pair-wise mappings. CompositionBuilder compBuilder(norms); norms.enumRanges(compBuilder); // Recursively decompose all mappings. Decomposer decomposer(norms); do { decomposer.didDecompose=FALSE; norms.enumRanges(decomposer); } while(decomposer.didDecompose); // Set the Norm::Type and other properties. int32_t normsLength=norms.length(); for(int32_t i=1; i<normsLength; ++i) { postProcess(norms.getNormRefByIndex(i)); } // Write the properties, mappings and composition lists to // appropriate parts of the "extra data" array. ExtraData extra(norms, optimization==OPTIMIZE_FAST); norms.enumRanges(extra); extraData=extra.yesYesCompositions; indexes[Normalizer2Impl::IX_MIN_YES_NO]=extraData.length()*2; extraData.append(extra.yesNoMappingsAndCompositions); indexes[Normalizer2Impl::IX_MIN_YES_NO_MAPPINGS_ONLY]=extraData.length()*2; extraData.append(extra.yesNoMappingsOnly); indexes[Normalizer2Impl::IX_MIN_NO_NO]=extraData.length()*2; extraData.append(extra.noNoMappingsCompYes); indexes[Normalizer2Impl::IX_MIN_NO_NO_COMP_BOUNDARY_BEFORE]=extraData.length()*2; extraData.append(extra.noNoMappingsCompBoundaryBefore); indexes[Normalizer2Impl::IX_MIN_NO_NO_COMP_NO_MAYBE_CC]=extraData.length()*2; extraData.append(extra.noNoMappingsCompNoMaybeCC); indexes[Normalizer2Impl::IX_MIN_NO_NO_EMPTY]=extraData.length()*2; extraData.append(extra.noNoMappingsEmpty); indexes[Normalizer2Impl::IX_LIMIT_NO_NO]=extraData.length()*2; // Pad the maybeYesCompositions length to a multiple of 4, // so that NO_NO_DELTA bits 2..1 can be used without subtracting the center. while(extra.maybeYesCompositions.length()&3) { extra.maybeYesCompositions.append((UChar)0); } extraData.insert(0, extra.maybeYesCompositions); indexes[Normalizer2Impl::IX_MIN_MAYBE_YES]= Normalizer2Impl::MIN_NORMAL_MAYBE_YES- extra.maybeYesCompositions.length()*2; // Pad to even length for 4-byte alignment of following data. if(extraData.length()&1) { extraData.append((UChar)0); } int32_t minNoNoDelta=getMinNoNoDelta(); U_ASSERT((minNoNoDelta&7)==0); if(indexes[Normalizer2Impl::IX_LIMIT_NO_NO]>minNoNoDelta) { fprintf(stderr, "gennorm2 error: " "data structure overflow, too much mapping composition data\n"); exit(U_BUFFER_OVERFLOW_ERROR); } // writeNorm16() and setHangulData() reduce these as needed. indexes[Normalizer2Impl::IX_MIN_DECOMP_NO_CP]=0x110000; indexes[Normalizer2Impl::IX_MIN_COMP_NO_MAYBE_CP]=0x110000; indexes[Normalizer2Impl::IX_MIN_LCCC_CP]=0x110000; // Map each code point to its norm16 value, // including the properties that fit directly, // and the offset to the "extra data" if necessary. Norm16Writer norm16Writer(norms, *this); norms.enumRanges(norm16Writer); setHangulData(); // Look for the "worst" norm16 value of any supplementary code point // corresponding to a lead surrogate, and set it as that surrogate's value. // Enables UTF-16 quick check inner loops to look at only code units. // // We could be more sophisticated: // We could collect a bit set for whether there are values in the different // norm16 ranges (yesNo, maybeYes, yesYesWithCC etc.) // and select the best value that only breaks the composition and/or decomposition // inner loops if necessary. // However, that seems like overkill for an optimization for supplementary characters. for(UChar lead=0xd800; lead<0xdc00; ++lead) { uint32_t surrogateCPNorm16=utrie2_get32(norm16Trie, lead); Norm16Summary summary={ surrogateCPNorm16, surrogateCPNorm16 }; utrie2_enumForLeadSurrogate(norm16Trie, lead, NULL, enumRangeMaxValue, &summary); uint32_t norm16=summary.maxNorm16; if(norm16>=(uint32_t)indexes[Normalizer2Impl::IX_LIMIT_NO_NO] && norm16>(uint32_t)indexes[Normalizer2Impl::IX_MIN_NO_NO]) { // Set noNo ("worst" value) if it got into "less-bad" maybeYes or ccc!=0. // Otherwise it might end up at something like JAMO_VT which stays in // the inner decomposition quick check loop. norm16=(uint32_t)indexes[Normalizer2Impl::IX_LIMIT_NO_NO]-1; } norm16= (norm16&~Normalizer2Impl::HAS_COMP_BOUNDARY_AFTER)| (summary.andedNorm16&Normalizer2Impl::HAS_COMP_BOUNDARY_AFTER); utrie2_set32ForLeadSurrogateCodeUnit(norm16Trie, lead, norm16, errorCode); } // Adjust supplementary minimum code points to break quick check loops at their lead surrogates. // For an empty data file, minCP=0x110000 turns into 0xdc00 (first trail surrogate) // which is harmless. // As a result, the minimum code points are always BMP code points. int32_t minCP=indexes[Normalizer2Impl::IX_MIN_DECOMP_NO_CP]; if(minCP>=0x10000) { indexes[Normalizer2Impl::IX_MIN_DECOMP_NO_CP]=U16_LEAD(minCP); } minCP=indexes[Normalizer2Impl::IX_MIN_COMP_NO_MAYBE_CP]; if(minCP>=0x10000) { indexes[Normalizer2Impl::IX_MIN_COMP_NO_MAYBE_CP]=U16_LEAD(minCP); } minCP=indexes[Normalizer2Impl::IX_MIN_LCCC_CP]; if(minCP>=0x10000) { indexes[Normalizer2Impl::IX_MIN_LCCC_CP]=U16_LEAD(minCP); } utrie2_freeze(norm16Trie, UTRIE2_16_VALUE_BITS, errorCode); norm16TrieLength=utrie2_serialize(norm16Trie, NULL, 0, errorCode); if(errorCode.get()!=U_BUFFER_OVERFLOW_ERROR) { fprintf(stderr, "gennorm2 error: unable to freeze/serialize the normalization trie - %s\n", errorCode.errorName()); exit(errorCode.reset()); } errorCode.reset(); int32_t offset=(int32_t)sizeof(indexes); indexes[Normalizer2Impl::IX_NORM_TRIE_OFFSET]=offset; offset+=norm16TrieLength; indexes[Normalizer2Impl::IX_EXTRA_DATA_OFFSET]=offset; offset+=extraData.length()*2; indexes[Normalizer2Impl::IX_SMALL_FCD_OFFSET]=offset; offset+=sizeof(smallFCD); int32_t totalSize=offset; for(int32_t i=Normalizer2Impl::IX_RESERVED3_OFFSET; i<=Normalizer2Impl::IX_TOTAL_SIZE; ++i) { indexes[i]=totalSize; } if(beVerbose) { printf("size of normalization trie: %5ld bytes\n", (long)norm16TrieLength); printf("size of 16-bit extra data: %5ld uint16_t\n", (long)extraData.length()); printf("size of small-FCD data: %5ld bytes\n", (long)sizeof(smallFCD)); printf("size of binary data file contents: %5ld bytes\n", (long)totalSize); printf("minDecompNoCodePoint: U+%04lX\n", (long)indexes[Normalizer2Impl::IX_MIN_DECOMP_NO_CP]); printf("minCompNoMaybeCodePoint: U+%04lX\n", (long)indexes[Normalizer2Impl::IX_MIN_COMP_NO_MAYBE_CP]); printf("minLcccCodePoint: U+%04lX\n", (long)indexes[Normalizer2Impl::IX_MIN_LCCC_CP]); printf("minYesNo: (with compositions) 0x%04x\n", (int)indexes[Normalizer2Impl::IX_MIN_YES_NO]); printf("minYesNoMappingsOnly: 0x%04x\n", (int)indexes[Normalizer2Impl::IX_MIN_YES_NO_MAPPINGS_ONLY]); printf("minNoNo: (comp-normalized) 0x%04x\n", (int)indexes[Normalizer2Impl::IX_MIN_NO_NO]); printf("minNoNoCompBoundaryBefore: 0x%04x\n", (int)indexes[Normalizer2Impl::IX_MIN_NO_NO_COMP_BOUNDARY_BEFORE]); printf("minNoNoCompNoMaybeCC: 0x%04x\n", (int)indexes[Normalizer2Impl::IX_MIN_NO_NO_COMP_NO_MAYBE_CC]); printf("minNoNoEmpty: 0x%04x\n", (int)indexes[Normalizer2Impl::IX_MIN_NO_NO_EMPTY]); printf("limitNoNo: 0x%04x\n", (int)indexes[Normalizer2Impl::IX_LIMIT_NO_NO]); printf("minNoNoDelta: 0x%04x\n", (int)minNoNoDelta); printf("minMaybeYes: 0x%04x\n", (int)indexes[Normalizer2Impl::IX_MIN_MAYBE_YES]); } UVersionInfo nullVersion={ 0, 0, 0, 0 }; if(0==memcmp(nullVersion, unicodeVersion, 4)) { u_versionFromString(unicodeVersion, U_UNICODE_VERSION); } memcpy(dataInfo.dataVersion, unicodeVersion, 4); } void Normalizer2DataBuilder::writeBinaryFile(const char *filename) { processData(); IcuToolErrorCode errorCode("gennorm2/writeBinaryFile()"); LocalArray<uint8_t> norm16TrieBytes(new uint8_t[norm16TrieLength]); utrie2_serialize(norm16Trie, norm16TrieBytes.getAlias(), norm16TrieLength, errorCode); errorCode.assertSuccess(); UNewDataMemory *pData= udata_create(NULL, NULL, filename, &dataInfo, haveCopyright ? U_COPYRIGHT_STRING : NULL, errorCode); if(errorCode.isFailure()) { fprintf(stderr, "gennorm2 error: unable to create the output file %s - %s\n", filename, errorCode.errorName()); exit(errorCode.reset()); } udata_writeBlock(pData, indexes, sizeof(indexes)); udata_writeBlock(pData, norm16TrieBytes.getAlias(), norm16TrieLength); udata_writeUString(pData, toUCharPtr(extraData.getBuffer()), extraData.length()); udata_writeBlock(pData, smallFCD, sizeof(smallFCD)); int32_t writtenSize=udata_finish(pData, errorCode); if(errorCode.isFailure()) { fprintf(stderr, "gennorm2: error %s writing the output file\n", errorCode.errorName()); exit(errorCode.reset()); } int32_t totalSize=indexes[Normalizer2Impl::IX_TOTAL_SIZE]; if(writtenSize!=totalSize) { fprintf(stderr, "gennorm2 error: written size %ld != calculated size %ld\n", (long)writtenSize, (long)totalSize); exit(U_INTERNAL_PROGRAM_ERROR); } } void Normalizer2DataBuilder::writeCSourceFile(const char *filename) { processData(); IcuToolErrorCode errorCode("gennorm2/writeCSourceFile()"); const char *basename=findBasename(filename); CharString path(filename, (int32_t)(basename-filename), errorCode); CharString dataName(basename, errorCode); const char *extension=strrchr(basename, '.'); if(extension!=NULL) { dataName.truncate((int32_t)(extension-basename)); } errorCode.assertSuccess(); LocalArray<uint8_t> norm16TrieBytes(new uint8_t[norm16TrieLength]); utrie2_serialize(norm16Trie, norm16TrieBytes.getAlias(), norm16TrieLength, errorCode); errorCode.assertSuccess(); FILE *f=usrc_create(path.data(), basename, "icu/source/tools/gennorm2/n2builder.cpp"); if(f==NULL) { fprintf(stderr, "gennorm2/writeCSourceFile() error: unable to create the output file %s\n", filename); exit(U_FILE_ACCESS_ERROR); return; } fputs("#ifdef INCLUDED_FROM_NORMALIZER2_CPP\n\n", f); char line[100]; sprintf(line, "static const UVersionInfo %s_formatVersion={", dataName.data()); usrc_writeArray(f, line, dataInfo.formatVersion, 8, 4, "};\n"); sprintf(line, "static const UVersionInfo %s_dataVersion={", dataName.data()); usrc_writeArray(f, line, dataInfo.dataVersion, 8, 4, "};\n\n"); sprintf(line, "static const int32_t %s_indexes[Normalizer2Impl::IX_COUNT]={\n", dataName.data()); usrc_writeArray(f, line, indexes, 32, Normalizer2Impl::IX_COUNT, "\n};\n\n"); sprintf(line, "static const uint16_t %s_trieIndex[%%ld]={\n", dataName.data()); usrc_writeUTrie2Arrays(f, line, NULL, norm16Trie, "\n};\n\n"); sprintf(line, "static const uint16_t %s_extraData[%%ld]={\n", dataName.data()); usrc_writeArray(f, line, extraData.getBuffer(), 16, extraData.length(), "\n};\n\n"); sprintf(line, "static const uint8_t %s_smallFCD[%%ld]={\n", dataName.data()); usrc_writeArray(f, line, smallFCD, 8, sizeof(smallFCD), "\n};\n\n"); sprintf(line, "static const UTrie2 %s_trie={\n", dataName.data()); char line2[100]; sprintf(line2, "%s_trieIndex", dataName.data()); usrc_writeUTrie2Struct(f, line, norm16Trie, line2, NULL, "};\n"); fputs("\n#endif // INCLUDED_FROM_NORMALIZER2_CPP\n", f); fclose(f); } namespace { bool equalStrings(const UnicodeString *s1, const UnicodeString *s2) { if(s1 == nullptr) { return s2 == nullptr; } else if(s2 == nullptr) { return false; } else { return *s1 == *s2; } } const char *typeChars = "?-=>"; void writeMapping(FILE *f, const UnicodeString *m) { if(m != nullptr && !m->isEmpty()) { int32_t i = 0; UChar32 c = m->char32At(i); fprintf(f, "%04lX", (long)c); while((i += U16_LENGTH(c)) < m->length()) { c = m->char32At(i); fprintf(f, " %04lX", (long)c); } } fputs("\n", f); } } // namespace void Normalizer2DataBuilder::writeDataFile(const char *filename, bool writeRemoved) const { // Do not processData() before writing the input-syntax data file. FILE *f = fopen(filename, "w"); if(f == nullptr) { fprintf(stderr, "gennorm2/writeDataFile() error: unable to create the output file %s\n", filename); exit(U_FILE_ACCESS_ERROR); return; } if(unicodeVersion[0] != 0 || unicodeVersion[1] != 0 || unicodeVersion[2] != 0 || unicodeVersion[3] != 0) { char uv[U_MAX_VERSION_STRING_LENGTH]; u_versionToString(unicodeVersion, uv); fprintf(f, "* Unicode %s\n\n", uv); } UnicodeSetIterator ccIter(norms.ccSet); UChar32 start = U_SENTINEL; UChar32 end = U_SENTINEL; uint8_t prevCC = 0; bool done = false; bool didWrite = false; do { UChar32 c; uint8_t cc; if(ccIter.next() && !ccIter.isString()) { c = ccIter.getCodepoint(); cc = norms.getCC(c); } else { c = 0x110000; cc = 0; done = true; } if(cc == prevCC && c == (end + 1)) { end = c; } else { if(prevCC != 0) { if(start == end) { fprintf(f, "%04lX:%d\n", (long)start, (int)prevCC); } else { fprintf(f, "%04lX..%04lX:%d\n", (long)start, (long)end, (int)prevCC); } didWrite = true; } start = end = c; prevCC = cc; } } while(!done); if(didWrite) { fputs("\n", f); } UnicodeSetIterator mIter(norms.mappingSet); start = U_SENTINEL; end = U_SENTINEL; const UnicodeString *prevMapping = nullptr; Norm::MappingType prevType = Norm::NONE; done = false; do { UChar32 c; const Norm *norm; if(mIter.next() && !mIter.isString()) { c = mIter.getCodepoint(); norm = norms.getNorm(c); } else { c = 0x110000; norm = nullptr; done = true; } const UnicodeString *mapping; Norm::MappingType type; if(norm == nullptr) { mapping = nullptr; type = Norm::NONE; } else { type = norm->mappingType; if(type == Norm::NONE) { mapping = nullptr; } else { mapping = norm->mapping; } } if(type == prevType && equalStrings(mapping, prevMapping) && c == (end + 1)) { end = c; } else { if(writeRemoved ? prevType != Norm::NONE : prevType > Norm::REMOVED) { if(start == end) { fprintf(f, "%04lX%c", (long)start, typeChars[prevType]); } else { fprintf(f, "%04lX..%04lX%c", (long)start, (long)end, typeChars[prevType]); } writeMapping(f, prevMapping); } start = end = c; prevMapping = mapping; prevType = type; } } while(!done); fclose(f); } void Normalizer2DataBuilder::computeDiff(const Normalizer2DataBuilder &b1, const Normalizer2DataBuilder &b2, Normalizer2DataBuilder &diff) { // Compute diff = b1 - b2 // so that we should be able to get b1 = b2 + diff. if(0 != memcmp(b1.unicodeVersion, b2.unicodeVersion, U_MAX_VERSION_LENGTH)) { memcpy(diff.unicodeVersion, b1.unicodeVersion, U_MAX_VERSION_LENGTH); } UnicodeSet ccSet(b1.norms.ccSet); ccSet.addAll(b2.norms.ccSet); UnicodeSetIterator ccIter(ccSet); while(ccIter.next() && !ccIter.isString()) { UChar32 c = ccIter.getCodepoint(); uint8_t cc1 = b1.norms.getCC(c); uint8_t cc2 = b2.norms.getCC(c); if(cc1 != cc2) { diff.setCC(c, cc1); } } UnicodeSet mSet(b1.norms.mappingSet); mSet.addAll(b2.norms.mappingSet); UnicodeSetIterator mIter(mSet); while(mIter.next() && !mIter.isString()) { UChar32 c = mIter.getCodepoint(); const Norm *norm1 = b1.norms.getNorm(c); const Norm *norm2 = b2.norms.getNorm(c); const UnicodeString *mapping1; Norm::MappingType type1; if(norm1 == nullptr || !norm1->hasMapping()) { mapping1 = nullptr; type1 = Norm::NONE; } else { mapping1 = norm1->mapping; type1 = norm1->mappingType; } const UnicodeString *mapping2; Norm::MappingType type2; if(norm2 == nullptr || !norm2->hasMapping()) { mapping2 = nullptr; type2 = Norm::NONE; } else { mapping2 = norm2->mapping; type2 = norm2->mappingType; } if(type1 == type2 && equalStrings(mapping1, mapping2)) { // Nothing to do. } else if(type1 == Norm::NONE) { diff.removeMapping(c); } else if(type1 == Norm::ROUND_TRIP) { diff.setRoundTripMapping(c, *mapping1); } else if(type1 == Norm::ONE_WAY) { diff.setOneWayMapping(c, *mapping1); } } } U_NAMESPACE_END #endif /* #if !UCONFIG_NO_NORMALIZATION */ /* * Hey, Emacs, please set the following: * * Local Variables: * indent-tabs-mode: nil * End: */