// © 2016 and later: Unicode, Inc. and others. // License & terms of use: http://www.unicode.org/copyright.html /* ********************************************************************** * Copyright (C) 1999-2011, International Business Machines * Corporation and others. All Rights Reserved. ********************************************************************** * Date Name Description * 11/17/99 aliu Creation. ********************************************************************** */ #include "unicode/utypes.h" #if !UCONFIG_NO_TRANSLITERATION #include "unicode/rep.h" #include "unicode/unifilt.h" #include "unicode/uniset.h" #include "unicode/utf16.h" #include "rbt_rule.h" #include "rbt_data.h" #include "cmemory.h" #include "strmatch.h" #include "strrepl.h" #include "util.h" #include "putilimp.h" static const UChar FORWARD_OP[] = {32,62,32,0}; // " > " U_NAMESPACE_BEGIN /** * Construct a new rule with the given input, output text, and other * attributes. A cursor position may be specified for the output text. * @param input input string, including key and optional ante and * post context * @param anteContextPos offset into input to end of ante context, or -1 if * none. Must be <= input.length() if not -1. * @param postContextPos offset into input to start of post context, or -1 * if none. Must be <= input.length() if not -1, and must be >= * anteContextPos. * @param output output string * @param cursorPosition offset into output at which cursor is located, or -1 if * none. If less than zero, then the cursor is placed after the * <code>output</code>; that is, -1 is equivalent to * <code>output.length()</code>. If greater than * <code>output.length()</code> then an exception is thrown. * @param segs array of UnicodeFunctors corresponding to input pattern * segments, or null if there are none. The array itself is adopted, * but the pointers within it are not. * @param segsCount number of elements in segs[] * @param anchorStart TRUE if the the rule is anchored on the left to * the context start * @param anchorEnd TRUE if the rule is anchored on the right to the * context limit */ TransliterationRule::TransliterationRule(const UnicodeString& input, int32_t anteContextPos, int32_t postContextPos, const UnicodeString& outputStr, int32_t cursorPosition, int32_t cursorOffset, UnicodeFunctor** segs, int32_t segsCount, UBool anchorStart, UBool anchorEnd, const TransliterationRuleData* theData, UErrorCode& status) : UMemory(), segments(0), data(theData) { if (U_FAILURE(status)) { return; } // Do range checks only when warranted to save time if (anteContextPos < 0) { anteContextLength = 0; } else { if (anteContextPos > input.length()) { // throw new IllegalArgumentException("Invalid ante context"); status = U_ILLEGAL_ARGUMENT_ERROR; return; } anteContextLength = anteContextPos; } if (postContextPos < 0) { keyLength = input.length() - anteContextLength; } else { if (postContextPos < anteContextLength || postContextPos > input.length()) { // throw new IllegalArgumentException("Invalid post context"); status = U_ILLEGAL_ARGUMENT_ERROR; return; } keyLength = postContextPos - anteContextLength; } if (cursorPosition < 0) { cursorPosition = outputStr.length(); } else if (cursorPosition > outputStr.length()) { // throw new IllegalArgumentException("Invalid cursor position"); status = U_ILLEGAL_ARGUMENT_ERROR; return; } // We don't validate the segments array. The caller must // guarantee that the segments are well-formed (that is, that // all $n references in the output refer to indices of this // array, and that no array elements are null). this->segments = segs; this->segmentsCount = segsCount; pattern = input; flags = 0; if (anchorStart) { flags |= ANCHOR_START; } if (anchorEnd) { flags |= ANCHOR_END; } anteContext = NULL; if (anteContextLength > 0) { anteContext = new StringMatcher(pattern, 0, anteContextLength, FALSE, *data); /* test for NULL */ if (anteContext == 0) { status = U_MEMORY_ALLOCATION_ERROR; return; } } key = NULL; if (keyLength > 0) { key = new StringMatcher(pattern, anteContextLength, anteContextLength + keyLength, FALSE, *data); /* test for NULL */ if (key == 0) { status = U_MEMORY_ALLOCATION_ERROR; return; } } int32_t postContextLength = pattern.length() - keyLength - anteContextLength; postContext = NULL; if (postContextLength > 0) { postContext = new StringMatcher(pattern, anteContextLength + keyLength, pattern.length(), FALSE, *data); /* test for NULL */ if (postContext == 0) { status = U_MEMORY_ALLOCATION_ERROR; return; } } this->output = new StringReplacer(outputStr, cursorPosition + cursorOffset, data); /* test for NULL */ if (this->output == 0) { status = U_MEMORY_ALLOCATION_ERROR; return; } } /** * Copy constructor. */ TransliterationRule::TransliterationRule(TransliterationRule& other) : UMemory(other), anteContext(NULL), key(NULL), postContext(NULL), pattern(other.pattern), anteContextLength(other.anteContextLength), keyLength(other.keyLength), flags(other.flags), data(other.data) { segments = NULL; segmentsCount = 0; if (other.segmentsCount > 0) { segments = (UnicodeFunctor **)uprv_malloc(other.segmentsCount * sizeof(UnicodeFunctor *)); uprv_memcpy(segments, other.segments, (size_t)other.segmentsCount*sizeof(segments[0])); } if (other.anteContext != NULL) { anteContext = (StringMatcher*) other.anteContext->clone(); } if (other.key != NULL) { key = (StringMatcher*) other.key->clone(); } if (other.postContext != NULL) { postContext = (StringMatcher*) other.postContext->clone(); } output = other.output->clone(); } TransliterationRule::~TransliterationRule() { uprv_free(segments); delete anteContext; delete key; delete postContext; delete output; } /** * Return the preceding context length. This method is needed to * support the <code>Transliterator</code> method * <code>getMaximumContextLength()</code>. Internally, this is * implemented as the anteContextLength, optionally plus one if * there is a start anchor. The one character anchor gap is * needed to make repeated incremental transliteration with * anchors work. */ int32_t TransliterationRule::getContextLength(void) const { return anteContextLength + ((flags & ANCHOR_START) ? 1 : 0); } /** * Internal method. Returns 8-bit index value for this rule. * This is the low byte of the first character of the key, * unless the first character of the key is a set. If it's a * set, or otherwise can match multiple keys, the index value is -1. */ int16_t TransliterationRule::getIndexValue() const { if (anteContextLength == pattern.length()) { // A pattern with just ante context {such as foo)>bar} can // match any key. return -1; } UChar32 c = pattern.char32At(anteContextLength); return (int16_t)(data->lookupMatcher(c) == NULL ? (c & 0xFF) : -1); } /** * Internal method. Returns true if this rule matches the given * index value. The index value is an 8-bit integer, 0..255, * representing the low byte of the first character of the key. * It matches this rule if it matches the first character of the * key, or if the first character of the key is a set, and the set * contains any character with a low byte equal to the index * value. If the rule contains only ante context, as in foo)>bar, * then it will match any key. */ UBool TransliterationRule::matchesIndexValue(uint8_t v) const { // Delegate to the key, or if there is none, to the postContext. // If there is neither then we match any key; return true. UnicodeMatcher *m = (key != NULL) ? key : postContext; return (m != NULL) ? m->matchesIndexValue(v) : TRUE; } /** * Return true if this rule masks another rule. If r1 masks r2 then * r1 matches any input string that r2 matches. If r1 masks r2 and r2 masks * r1 then r1 == r2. Examples: "a>x" masks "ab>y". "a>x" masks "a[b]>y". * "[c]a>x" masks "[dc]a>y". */ UBool TransliterationRule::masks(const TransliterationRule& r2) const { /* Rule r1 masks rule r2 if the string formed of the * antecontext, key, and postcontext overlaps in the following * way: * * r1: aakkkpppp * r2: aaakkkkkpppp * ^ * * The strings must be aligned at the first character of the * key. The length of r1 to the left of the alignment point * must be <= the length of r2 to the left; ditto for the * right. The characters of r1 must equal (or be a superset * of) the corresponding characters of r2. The superset * operation should be performed to check for UnicodeSet * masking. * * Anchors: Two patterns that differ only in anchors only * mask one another if they are exactly equal, and r2 has * all the anchors r1 has (optionally, plus some). Here Y * means the row masks the column, N means it doesn't. * * ab ^ab ab$ ^ab$ * ab Y Y Y Y * ^ab N Y N Y * ab$ N N Y Y * ^ab$ N N N Y * * Post context: {a}b masks ab, but not vice versa, since {a}b * matches everything ab matches, and {a}b matches {|a|}b but ab * does not. Pre context is different (a{b} does not align with * ab). */ /* LIMITATION of the current mask algorithm: Some rule * maskings are currently not detected. For example, * "{Lu}]a>x" masks "A]a>y". This can be added later. TODO */ int32_t len = pattern.length(); int32_t left = anteContextLength; int32_t left2 = r2.anteContextLength; int32_t right = len - left; int32_t right2 = r2.pattern.length() - left2; int32_t cachedCompare = r2.pattern.compare(left2 - left, len, pattern); // TODO Clean this up -- some logic might be combinable with the // next statement. // Test for anchor masking if (left == left2 && right == right2 && keyLength <= r2.keyLength && 0 == cachedCompare) { // The following boolean logic implements the table above return (flags == r2.flags) || (!(flags & ANCHOR_START) && !(flags & ANCHOR_END)) || ((r2.flags & ANCHOR_START) && (r2.flags & ANCHOR_END)); } return left <= left2 && (right < right2 || (right == right2 && keyLength <= r2.keyLength)) && (0 == cachedCompare); } static inline int32_t posBefore(const Replaceable& str, int32_t pos) { return (pos > 0) ? pos - U16_LENGTH(str.char32At(pos-1)) : pos - 1; } static inline int32_t posAfter(const Replaceable& str, int32_t pos) { return (pos >= 0 && pos < str.length()) ? pos + U16_LENGTH(str.char32At(pos)) : pos + 1; } /** * Attempt a match and replacement at the given position. Return * the degree of match between this rule and the given text. The * degree of match may be mismatch, a partial match, or a full * match. A mismatch means at least one character of the text * does not match the context or key. A partial match means some * context and key characters match, but the text is not long * enough to match all of them. A full match means all context * and key characters match. * * If a full match is obtained, perform a replacement, update pos, * and return U_MATCH. Otherwise both text and pos are unchanged. * * @param text the text * @param pos the position indices * @param incremental if TRUE, test for partial matches that may * be completed by additional text inserted at pos.limit. * @return one of <code>U_MISMATCH</code>, * <code>U_PARTIAL_MATCH</code>, or <code>U_MATCH</code>. If * incremental is FALSE then U_PARTIAL_MATCH will not be returned. */ UMatchDegree TransliterationRule::matchAndReplace(Replaceable& text, UTransPosition& pos, UBool incremental) const { // Matching and replacing are done in one method because the // replacement operation needs information obtained during the // match. Another way to do this is to have the match method // create a match result struct with relevant offsets, and to pass // this into the replace method. // ============================ MATCH =========================== // Reset segment match data if (segments != NULL) { for (int32_t i=0; i<segmentsCount; ++i) { ((StringMatcher*) segments[i])->resetMatch(); } } // int32_t lenDelta, keyLimit; int32_t keyLimit; // ------------------------ Ante Context ------------------------ // A mismatch in the ante context, or with the start anchor, // is an outright U_MISMATCH regardless of whether we are // incremental or not. int32_t oText; // offset into 'text' // int32_t newStart = 0; int32_t minOText; // Note (1): We process text in 16-bit code units, rather than // 32-bit code points. This works because stand-ins are // always in the BMP and because we are doing a literal match // operation, which can be done 16-bits at a time. int32_t anteLimit = posBefore(text, pos.contextStart); UMatchDegree match; // Start reverse match at char before pos.start oText = posBefore(text, pos.start); if (anteContext != NULL) { match = anteContext->matches(text, oText, anteLimit, FALSE); if (match != U_MATCH) { return U_MISMATCH; } } minOText = posAfter(text, oText); // ------------------------ Start Anchor ------------------------ if (((flags & ANCHOR_START) != 0) && oText != anteLimit) { return U_MISMATCH; } // -------------------- Key and Post Context -------------------- oText = pos.start; if (key != NULL) { match = key->matches(text, oText, pos.limit, incremental); if (match != U_MATCH) { return match; } } keyLimit = oText; if (postContext != NULL) { if (incremental && keyLimit == pos.limit) { // The key matches just before pos.limit, and there is // a postContext. Since we are in incremental mode, // we must assume more characters may be inserted at // pos.limit -- this is a partial match. return U_PARTIAL_MATCH; } match = postContext->matches(text, oText, pos.contextLimit, incremental); if (match != U_MATCH) { return match; } } // ------------------------- Stop Anchor ------------------------ if (((flags & ANCHOR_END)) != 0) { if (oText != pos.contextLimit) { return U_MISMATCH; } if (incremental) { return U_PARTIAL_MATCH; } } // =========================== REPLACE ========================== // We have a full match. The key is between pos.start and // keyLimit. int32_t newStart; int32_t newLength = output->toReplacer()->replace(text, pos.start, keyLimit, newStart); int32_t lenDelta = newLength - (keyLimit - pos.start); oText += lenDelta; pos.limit += lenDelta; pos.contextLimit += lenDelta; // Restrict new value of start to [minOText, min(oText, pos.limit)]. pos.start = uprv_max(minOText, uprv_min(uprv_min(oText, pos.limit), newStart)); return U_MATCH; } /** * Create a source string that represents this rule. Append it to the * given string. */ UnicodeString& TransliterationRule::toRule(UnicodeString& rule, UBool escapeUnprintable) const { // Accumulate special characters (and non-specials following them) // into quoteBuf. Append quoteBuf, within single quotes, when // a non-quoted element must be inserted. UnicodeString str, quoteBuf; // Do not emit the braces '{' '}' around the pattern if there // is neither anteContext nor postContext. UBool emitBraces = (anteContext != NULL) || (postContext != NULL); // Emit start anchor if ((flags & ANCHOR_START) != 0) { rule.append((UChar)94/*^*/); } // Emit the input pattern ICU_Utility::appendToRule(rule, anteContext, escapeUnprintable, quoteBuf); if (emitBraces) { ICU_Utility::appendToRule(rule, (UChar) 0x007B /*{*/, TRUE, escapeUnprintable, quoteBuf); } ICU_Utility::appendToRule(rule, key, escapeUnprintable, quoteBuf); if (emitBraces) { ICU_Utility::appendToRule(rule, (UChar) 0x007D /*}*/, TRUE, escapeUnprintable, quoteBuf); } ICU_Utility::appendToRule(rule, postContext, escapeUnprintable, quoteBuf); // Emit end anchor if ((flags & ANCHOR_END) != 0) { rule.append((UChar)36/*$*/); } ICU_Utility::appendToRule(rule, UnicodeString(TRUE, FORWARD_OP, 3), TRUE, escapeUnprintable, quoteBuf); // Emit the output pattern ICU_Utility::appendToRule(rule, output->toReplacer()->toReplacerPattern(str, escapeUnprintable), TRUE, escapeUnprintable, quoteBuf); ICU_Utility::appendToRule(rule, (UChar) 0x003B /*;*/, TRUE, escapeUnprintable, quoteBuf); return rule; } void TransliterationRule::setData(const TransliterationRuleData* d) { data = d; if (anteContext != NULL) anteContext->setData(d); if (postContext != NULL) postContext->setData(d); if (key != NULL) key->setData(d); // assert(output != NULL); output->setData(d); // Don't have to do segments since they are in the context or key } /** * Union the set of all characters that may be modified by this rule * into the given set. */ void TransliterationRule::addSourceSetTo(UnicodeSet& toUnionTo) const { int32_t limit = anteContextLength + keyLength; for (int32_t i=anteContextLength; i<limit; ) { UChar32 ch = pattern.char32At(i); i += U16_LENGTH(ch); const UnicodeMatcher* matcher = data->lookupMatcher(ch); if (matcher == NULL) { toUnionTo.add(ch); } else { matcher->addMatchSetTo(toUnionTo); } } } /** * Union the set of all characters that may be emitted by this rule * into the given set. */ void TransliterationRule::addTargetSetTo(UnicodeSet& toUnionTo) const { output->toReplacer()->addReplacementSetTo(toUnionTo); } U_NAMESPACE_END #endif /* #if !UCONFIG_NO_TRANSLITERATION */ //eof