// © 2016 and later: Unicode, Inc. and others. // License & terms of use: http://www.unicode.org/copyright.html /* ******************************************************************************* * Copyright (C) 2013-2015, International Business Machines * Corporation and others. All Rights Reserved. ******************************************************************************* * collationdatareader.cpp * * created on: 2013feb07 * created by: Markus W. Scherer */ #include "unicode/utypes.h" #if !UCONFIG_NO_COLLATION #include "unicode/ucol.h" #include "unicode/udata.h" #include "unicode/uscript.h" #include "cmemory.h" #include "collation.h" #include "collationdata.h" #include "collationdatareader.h" #include "collationfastlatin.h" #include "collationkeys.h" #include "collationrootelements.h" #include "collationsettings.h" #include "collationtailoring.h" #include "collunsafe.h" #include "normalizer2impl.h" #include "uassert.h" #include "ucmndata.h" #include "utrie2.h" U_NAMESPACE_BEGIN namespace { int32_t getIndex(const int32_t *indexes, int32_t length, int32_t i) { return (i < length) ? indexes[i] : -1; } } // namespace void CollationDataReader::read(const CollationTailoring *base, const uint8_t *inBytes, int32_t inLength, CollationTailoring &tailoring, UErrorCode &errorCode) { if(U_FAILURE(errorCode)) { return; } if(base != NULL) { if(inBytes == NULL || (0 <= inLength && inLength < 24)) { errorCode = U_ILLEGAL_ARGUMENT_ERROR; return; } const DataHeader *header = reinterpret_cast<const DataHeader *>(inBytes); if(!(header->dataHeader.magic1 == 0xda && header->dataHeader.magic2 == 0x27 && isAcceptable(tailoring.version, NULL, NULL, &header->info))) { errorCode = U_INVALID_FORMAT_ERROR; return; } if(base->getUCAVersion() != tailoring.getUCAVersion()) { errorCode = U_COLLATOR_VERSION_MISMATCH; return; } int32_t headerLength = header->dataHeader.headerSize; inBytes += headerLength; if(inLength >= 0) { inLength -= headerLength; } } if(inBytes == NULL || (0 <= inLength && inLength < 8)) { errorCode = U_ILLEGAL_ARGUMENT_ERROR; return; } const int32_t *inIndexes = reinterpret_cast<const int32_t *>(inBytes); int32_t indexesLength = inIndexes[IX_INDEXES_LENGTH]; if(indexesLength < 2 || (0 <= inLength && inLength < indexesLength * 4)) { errorCode = U_INVALID_FORMAT_ERROR; // Not enough indexes. return; } // Assume that the tailoring data is in initial state, // with NULL pointers and 0 lengths. // Set pointers to non-empty data parts. // Do this in order of their byte offsets. (Should help porting to Java.) int32_t index; // one of the indexes[] slots int32_t offset; // byte offset for the index part int32_t length; // number of bytes in the index part if(indexesLength > IX_TOTAL_SIZE) { length = inIndexes[IX_TOTAL_SIZE]; } else if(indexesLength > IX_REORDER_CODES_OFFSET) { length = inIndexes[indexesLength - 1]; } else { length = 0; // only indexes, and inLength was already checked for them } if(0 <= inLength && inLength < length) { errorCode = U_INVALID_FORMAT_ERROR; return; } const CollationData *baseData = base == NULL ? NULL : base->data; const int32_t *reorderCodes = NULL; int32_t reorderCodesLength = 0; const uint32_t *reorderRanges = NULL; int32_t reorderRangesLength = 0; index = IX_REORDER_CODES_OFFSET; offset = getIndex(inIndexes, indexesLength, index); length = getIndex(inIndexes, indexesLength, index + 1) - offset; if(length >= 4) { if(baseData == NULL) { // We assume for collation settings that // the base data does not have a reordering. errorCode = U_INVALID_FORMAT_ERROR; return; } reorderCodes = reinterpret_cast<const int32_t *>(inBytes + offset); reorderCodesLength = length / 4; // The reorderRanges (if any) are the trailing reorderCodes entries. // Split the array at the boundary. // Script or reorder codes do not exceed 16-bit values. // Range limits are stored in the upper 16 bits, and are never 0. while(reorderRangesLength < reorderCodesLength && (reorderCodes[reorderCodesLength - reorderRangesLength - 1] & 0xffff0000) != 0) { ++reorderRangesLength; } U_ASSERT(reorderRangesLength < reorderCodesLength); if(reorderRangesLength != 0) { reorderCodesLength -= reorderRangesLength; reorderRanges = reinterpret_cast<const uint32_t *>(reorderCodes + reorderCodesLength); } } // There should be a reorder table only if there are reorder codes. // However, when there are reorder codes the reorder table may be omitted to reduce // the data size. const uint8_t *reorderTable = NULL; index = IX_REORDER_TABLE_OFFSET; offset = getIndex(inIndexes, indexesLength, index); length = getIndex(inIndexes, indexesLength, index + 1) - offset; if(length >= 256) { if(reorderCodesLength == 0) { errorCode = U_INVALID_FORMAT_ERROR; // Reordering table without reordering codes. return; } reorderTable = inBytes + offset; } else { // If we have reorder codes, then build the reorderTable at the end, // when the CollationData is otherwise complete. } if(baseData != NULL && baseData->numericPrimary != (inIndexes[IX_OPTIONS] & 0xff000000)) { errorCode = U_INVALID_FORMAT_ERROR; return; } CollationData *data = NULL; // Remains NULL if there are no mappings. index = IX_TRIE_OFFSET; offset = getIndex(inIndexes, indexesLength, index); length = getIndex(inIndexes, indexesLength, index + 1) - offset; if(length >= 8) { if(!tailoring.ensureOwnedData(errorCode)) { return; } data = tailoring.ownedData; data->base = baseData; data->numericPrimary = inIndexes[IX_OPTIONS] & 0xff000000; data->trie = tailoring.trie = utrie2_openFromSerialized( UTRIE2_32_VALUE_BITS, inBytes + offset, length, NULL, &errorCode); if(U_FAILURE(errorCode)) { return; } } else if(baseData != NULL) { // Use the base data. Only the settings are tailored. tailoring.data = baseData; } else { errorCode = U_INVALID_FORMAT_ERROR; // No mappings. return; } index = IX_CES_OFFSET; offset = getIndex(inIndexes, indexesLength, index); length = getIndex(inIndexes, indexesLength, index + 1) - offset; if(length >= 8) { if(data == NULL) { errorCode = U_INVALID_FORMAT_ERROR; // Tailored ces without tailored trie. return; } data->ces = reinterpret_cast<const int64_t *>(inBytes + offset); data->cesLength = length / 8; } index = IX_CE32S_OFFSET; offset = getIndex(inIndexes, indexesLength, index); length = getIndex(inIndexes, indexesLength, index + 1) - offset; if(length >= 4) { if(data == NULL) { errorCode = U_INVALID_FORMAT_ERROR; // Tailored ce32s without tailored trie. return; } data->ce32s = reinterpret_cast<const uint32_t *>(inBytes + offset); data->ce32sLength = length / 4; } int32_t jamoCE32sStart = getIndex(inIndexes, indexesLength, IX_JAMO_CE32S_START); if(jamoCE32sStart >= 0) { if(data == NULL || data->ce32s == NULL) { errorCode = U_INVALID_FORMAT_ERROR; // Index into non-existent ce32s[]. return; } data->jamoCE32s = data->ce32s + jamoCE32sStart; } else if(data == NULL) { // Nothing to do. } else if(baseData != NULL) { data->jamoCE32s = baseData->jamoCE32s; } else { errorCode = U_INVALID_FORMAT_ERROR; // No Jamo CE32s for Hangul processing. return; } index = IX_ROOT_ELEMENTS_OFFSET; offset = getIndex(inIndexes, indexesLength, index); length = getIndex(inIndexes, indexesLength, index + 1) - offset; if(length >= 4) { length /= 4; if(data == NULL || length <= CollationRootElements::IX_SEC_TER_BOUNDARIES) { errorCode = U_INVALID_FORMAT_ERROR; return; } data->rootElements = reinterpret_cast<const uint32_t *>(inBytes + offset); data->rootElementsLength = length; uint32_t commonSecTer = data->rootElements[CollationRootElements::IX_COMMON_SEC_AND_TER_CE]; if(commonSecTer != Collation::COMMON_SEC_AND_TER_CE) { errorCode = U_INVALID_FORMAT_ERROR; return; } uint32_t secTerBoundaries = data->rootElements[CollationRootElements::IX_SEC_TER_BOUNDARIES]; if((secTerBoundaries >> 24) < CollationKeys::SEC_COMMON_HIGH) { // [fixed last secondary common byte] is too low, // and secondary weights would collide with compressed common secondaries. errorCode = U_INVALID_FORMAT_ERROR; return; } } index = IX_CONTEXTS_OFFSET; offset = getIndex(inIndexes, indexesLength, index); length = getIndex(inIndexes, indexesLength, index + 1) - offset; if(length >= 2) { if(data == NULL) { errorCode = U_INVALID_FORMAT_ERROR; // Tailored contexts without tailored trie. return; } data->contexts = reinterpret_cast<const UChar *>(inBytes + offset); data->contextsLength = length / 2; } index = IX_UNSAFE_BWD_OFFSET; offset = getIndex(inIndexes, indexesLength, index); length = getIndex(inIndexes, indexesLength, index + 1) - offset; if(length >= 2) { if(data == NULL) { errorCode = U_INVALID_FORMAT_ERROR; return; } if(baseData == NULL) { #if defined(COLLUNSAFE_COLL_VERSION) && defined (COLLUNSAFE_SERIALIZE) tailoring.unsafeBackwardSet = new UnicodeSet(unsafe_serializedData, unsafe_serializedCount, UnicodeSet::kSerialized, errorCode); if(tailoring.unsafeBackwardSet == NULL) { errorCode = U_MEMORY_ALLOCATION_ERROR; return; } else if (U_FAILURE(errorCode)) { return; } #else // Create the unsafe-backward set for the root collator. // Include all non-zero combining marks and trail surrogates. // We do this at load time, rather than at build time, // to simplify Unicode version bootstrapping: // The root data builder only needs the new FractionalUCA.txt data, // but it need not be built with a version of ICU already updated to // the corresponding new Unicode Character Database. // // The following is an optimized version of // new UnicodeSet("[[:^lccc=0:][\\udc00-\\udfff]]"). // It is faster and requires fewer code dependencies. tailoring.unsafeBackwardSet = new UnicodeSet(0xdc00, 0xdfff); // trail surrogates if(tailoring.unsafeBackwardSet == NULL) { errorCode = U_MEMORY_ALLOCATION_ERROR; return; } data->nfcImpl.addLcccChars(*tailoring.unsafeBackwardSet); #endif // !COLLUNSAFE_SERIALIZE || !COLLUNSAFE_COLL_VERSION } else { // Clone the root collator's set contents. tailoring.unsafeBackwardSet = static_cast<UnicodeSet *>( baseData->unsafeBackwardSet->cloneAsThawed()); if(tailoring.unsafeBackwardSet == NULL) { errorCode = U_MEMORY_ALLOCATION_ERROR; return; } } // Add the ranges from the data file to the unsafe-backward set. USerializedSet sset; const uint16_t *unsafeData = reinterpret_cast<const uint16_t *>(inBytes + offset); if(!uset_getSerializedSet(&sset, unsafeData, length / 2)) { errorCode = U_INVALID_FORMAT_ERROR; return; } int32_t count = uset_getSerializedRangeCount(&sset); for(int32_t i = 0; i < count; ++i) { UChar32 start, end; uset_getSerializedRange(&sset, i, &start, &end); tailoring.unsafeBackwardSet->add(start, end); } // Mark each lead surrogate as "unsafe" // if any of its 1024 associated supplementary code points is "unsafe". UChar32 c = 0x10000; for(UChar lead = 0xd800; lead < 0xdc00; ++lead, c += 0x400) { if(!tailoring.unsafeBackwardSet->containsNone(c, c + 0x3ff)) { tailoring.unsafeBackwardSet->add(lead); } } tailoring.unsafeBackwardSet->freeze(); data->unsafeBackwardSet = tailoring.unsafeBackwardSet; } else if(data == NULL) { // Nothing to do. } else if(baseData != NULL) { // No tailoring-specific data: Alias the root collator's set. data->unsafeBackwardSet = baseData->unsafeBackwardSet; } else { errorCode = U_INVALID_FORMAT_ERROR; // No unsafeBackwardSet. return; } // If the fast Latin format version is different, // or the version is set to 0 for "no fast Latin table", // then just always use the normal string comparison path. if(data != NULL) { data->fastLatinTable = NULL; data->fastLatinTableLength = 0; if(((inIndexes[IX_OPTIONS] >> 16) & 0xff) == CollationFastLatin::VERSION) { index = IX_FAST_LATIN_TABLE_OFFSET; offset = getIndex(inIndexes, indexesLength, index); length = getIndex(inIndexes, indexesLength, index + 1) - offset; if(length >= 2) { data->fastLatinTable = reinterpret_cast<const uint16_t *>(inBytes + offset); data->fastLatinTableLength = length / 2; if((*data->fastLatinTable >> 8) != CollationFastLatin::VERSION) { errorCode = U_INVALID_FORMAT_ERROR; // header vs. table version mismatch return; } } else if(baseData != NULL) { data->fastLatinTable = baseData->fastLatinTable; data->fastLatinTableLength = baseData->fastLatinTableLength; } } } index = IX_SCRIPTS_OFFSET; offset = getIndex(inIndexes, indexesLength, index); length = getIndex(inIndexes, indexesLength, index + 1) - offset; if(length >= 2) { if(data == NULL) { errorCode = U_INVALID_FORMAT_ERROR; return; } const uint16_t *scripts = reinterpret_cast<const uint16_t *>(inBytes + offset); int32_t scriptsLength = length / 2; data->numScripts = scripts[0]; // There must be enough entries for both arrays, including more than two range starts. data->scriptStartsLength = scriptsLength - (1 + data->numScripts + 16); if(data->scriptStartsLength <= 2 || CollationData::MAX_NUM_SCRIPT_RANGES < data->scriptStartsLength) { errorCode = U_INVALID_FORMAT_ERROR; return; } data->scriptsIndex = scripts + 1; data->scriptStarts = scripts + 1 + data->numScripts + 16; if(!(data->scriptStarts[0] == 0 && data->scriptStarts[1] == ((Collation::MERGE_SEPARATOR_BYTE + 1) << 8) && data->scriptStarts[data->scriptStartsLength - 1] == (Collation::TRAIL_WEIGHT_BYTE << 8))) { errorCode = U_INVALID_FORMAT_ERROR; return; } } else if(data == NULL) { // Nothing to do. } else if(baseData != NULL) { data->numScripts = baseData->numScripts; data->scriptsIndex = baseData->scriptsIndex; data->scriptStarts = baseData->scriptStarts; data->scriptStartsLength = baseData->scriptStartsLength; } index = IX_COMPRESSIBLE_BYTES_OFFSET; offset = getIndex(inIndexes, indexesLength, index); length = getIndex(inIndexes, indexesLength, index + 1) - offset; if(length >= 256) { if(data == NULL) { errorCode = U_INVALID_FORMAT_ERROR; return; } data->compressibleBytes = reinterpret_cast<const UBool *>(inBytes + offset); } else if(data == NULL) { // Nothing to do. } else if(baseData != NULL) { data->compressibleBytes = baseData->compressibleBytes; } else { errorCode = U_INVALID_FORMAT_ERROR; // No compressibleBytes[]. return; } const CollationSettings &ts = *tailoring.settings; int32_t options = inIndexes[IX_OPTIONS] & 0xffff; uint16_t fastLatinPrimaries[CollationFastLatin::LATIN_LIMIT]; int32_t fastLatinOptions = CollationFastLatin::getOptions( tailoring.data, ts, fastLatinPrimaries, UPRV_LENGTHOF(fastLatinPrimaries)); if(options == ts.options && ts.variableTop != 0 && reorderCodesLength == ts.reorderCodesLength && (reorderCodesLength == 0 || uprv_memcmp(reorderCodes, ts.reorderCodes, reorderCodesLength * 4) == 0) && fastLatinOptions == ts.fastLatinOptions && (fastLatinOptions < 0 || uprv_memcmp(fastLatinPrimaries, ts.fastLatinPrimaries, sizeof(fastLatinPrimaries)) == 0)) { return; } CollationSettings *settings = SharedObject::copyOnWrite(tailoring.settings); if(settings == NULL) { errorCode = U_MEMORY_ALLOCATION_ERROR; return; } settings->options = options; // Set variableTop from options and scripts data. settings->variableTop = tailoring.data->getLastPrimaryForGroup( UCOL_REORDER_CODE_FIRST + settings->getMaxVariable()); if(settings->variableTop == 0) { errorCode = U_INVALID_FORMAT_ERROR; return; } if(reorderCodesLength != 0) { settings->aliasReordering(*baseData, reorderCodes, reorderCodesLength, reorderRanges, reorderRangesLength, reorderTable, errorCode); } settings->fastLatinOptions = CollationFastLatin::getOptions( tailoring.data, *settings, settings->fastLatinPrimaries, UPRV_LENGTHOF(settings->fastLatinPrimaries)); } UBool U_CALLCONV CollationDataReader::isAcceptable(void *context, const char * /* type */, const char * /*name*/, const UDataInfo *pInfo) { if( pInfo->size >= 20 && pInfo->isBigEndian == U_IS_BIG_ENDIAN && pInfo->charsetFamily == U_CHARSET_FAMILY && pInfo->dataFormat[0] == 0x55 && // dataFormat="UCol" pInfo->dataFormat[1] == 0x43 && pInfo->dataFormat[2] == 0x6f && pInfo->dataFormat[3] == 0x6c && pInfo->formatVersion[0] == 5 ) { UVersionInfo *version = static_cast<UVersionInfo *>(context); if(version != NULL) { uprv_memcpy(version, pInfo->dataVersion, 4); } return TRUE; } else { return FALSE; } } U_NAMESPACE_END #endif // !UCONFIG_NO_COLLATION