// Copyright 2015 The Gemmlowp Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "test.h" #include <array> #include <cstdint> #include <cstdlib> #include <ctime> #include <iostream> #include <memory> #include <string> #include <vector> #ifdef __APPLE__ #include <TargetConditionals.h> #endif #include "../eight_bit_int_gemm/eight_bit_int_gemm.h" #include "../internal/kernel_reference.h" #include "test_data.h" namespace gemmlowp { void ReferenceEightBitIntGemm(bool transpose_a, bool transpose_b, bool transpose_c, int m, int n, int k, const std::uint8_t* a, std::int32_t a_offset, int lda, const std::uint8_t* b, std::int32_t b_offset, int ldb, std::uint8_t* c, std::int32_t c_offset, std::int32_t c_mult_int, std::int32_t c_shift, int ldc) { ScopedProfilingLabel("ReferenceEightBitIntGemm"); assert((c_shift >= 0) && (c_shift <= 32)); assert(a != nullptr); assert(b != nullptr); assert(c != nullptr); int a_i_stride; int a_l_stride; if (transpose_a) { a_i_stride = lda; a_l_stride = 1; } else { a_i_stride = 1; a_l_stride = lda; } int b_j_stride; int b_l_stride; if (transpose_b) { b_j_stride = 1; b_l_stride = ldb; } else { b_j_stride = ldb; b_l_stride = 1; } int c_i_stride; int c_j_stride; if (transpose_c) { c_i_stride = ldc; c_j_stride = 1; } else { c_i_stride = 1; c_j_stride = ldc; } int i, j, l; const std::int32_t kRoundingTerm = (c_shift < 1) ? 0 : (1 << (c_shift - 1)); for (j = 0; j < n; j++) { for (i = 0; i < m; i++) { std::int32_t total = 0; for (l = 0; l < k; l++) { const int a_index = i * a_i_stride + l * a_l_stride; const std::uint8_t a_as_byte = a[a_index]; const std::int32_t a_as_int = static_cast<std::int32_t>(a_as_byte) + a_offset; const int b_index = j * b_j_stride + l * b_l_stride; const std::uint8_t b_as_byte = b[b_index]; const std::int32_t b_as_int = static_cast<std::int32_t>(b_as_byte) + b_offset; const std::int32_t mult_as_int = a_as_int * b_as_int; total += mult_as_int; } std::int32_t output = (((total + c_offset) * c_mult_int) + kRoundingTerm) >> c_shift; if (output > 255) { output = 255; } if (output < 0) { output = 0; } const int c_index = i * c_i_stride + j * c_j_stride; c[c_index] = static_cast<std::uint8_t>(output); } } } typedef VectorMap<const std::int32_t, VectorShape::Col> OffsetColMap; typedef VectorMap<const std::int32_t, VectorShape::Row> OffsetRowMap; typedef VectorDup<const std::int32_t, VectorShape::Col> OffsetColDup; typedef VectorDup<const std::int32_t, VectorShape::Row> OffsetRowDup; // *GemmWrapper's allow to wrap various Gemm functions in a uniform // interface, so we can use the same testing code to test all of them template <typename Kernel, typename Scalar, typename tBitDepthParams> struct SingleThreadGemmWrapper { typedef tBitDepthParams BitDepthParams; static const char* Name() { static char buf[256]; snprintf(buf, sizeof(buf), "SingleThreadGemm, Kernel: %s", Kernel().Name()); return buf; } typedef SingleThreadGemmContext Context; template <MapOrder LhsOrder, MapOrder RhsOrder, MapOrder ResultOrder> static bool Gemm(Context* context, const MatrixMap<const Scalar, LhsOrder>& lhs, const MatrixMap<const Scalar, RhsOrder>& rhs, MatrixMap<Scalar, ResultOrder>* result, int lhs_offset, int rhs_offset, int result_offset, int result_mult_int, int result_shift) { ScopedProfilingLabel("SingleThreadGemmWrapper::Gemm"); const int rows = lhs.rows(); const int cols = rhs.cols(); if (rows < cols) { // SingleThreadGemm is never called with rows < cols. // That case is handled earlier. return false; } const OffsetColDup lhs_offset_vector(lhs_offset, rows); const OffsetRowDup rhs_offset_vector(rhs_offset, cols); SingleThreadGemm<typename Kernel::Format, Scalar, Scalar, BitDepthParams, LhsOrder, RhsOrder, ResultOrder, OffsetColDup, OffsetRowDup>( context, Kernel(), lhs, rhs, result, lhs_offset_vector, rhs_offset_vector, MakeStandardOutputPipeline(result_offset, result_mult_int, result_shift)); return true; } }; template <typename Kernel, typename Scalar, typename tBitDepthParams> struct MultiThreadGemmWrapper { typedef tBitDepthParams BitDepthParams; static const char* Name() { static char buf[256]; snprintf(buf, sizeof(buf), "MultiThreadGemm, Kernel: %s", Kernel().Name()); return buf; } typedef MultiThreadGemmContext Context; template <MapOrder LhsOrder, MapOrder RhsOrder, MapOrder ResultOrder> static bool Gemm(Context* context, const MatrixMap<const Scalar, LhsOrder>& lhs, const MatrixMap<const Scalar, RhsOrder>& rhs, MatrixMap<Scalar, ResultOrder>* result, int lhs_offset, int rhs_offset, int result_offset, int result_mult_int, int result_shift) { ScopedProfilingLabel("MultiThreadGemmWrapper::Gemm"); context->set_max_num_threads(0); const int rows = lhs.rows(); const int cols = rhs.cols(); if (rows < cols) { // SingleThreadGemm is never called with rows < cols. // That case is handled earlier. return false; } const OffsetColDup lhs_offset_vector(lhs_offset, rows); const OffsetRowDup rhs_offset_vector(rhs_offset, cols); MultiThreadGemm<typename Kernel::Format, Scalar, Scalar, BitDepthParams, LhsOrder, RhsOrder, ResultOrder, OffsetColDup, OffsetRowDup>( context, Kernel(), lhs, rhs, result, lhs_offset_vector, rhs_offset_vector, MakeStandardOutputPipeline(result_offset, result_mult_int, result_shift)); return true; } }; template <typename Scalar, typename tBitDepthParams> struct PublicGemmWrapper { typedef tBitDepthParams BitDepthParams; static const char* Name() { return "public Gemm"; } typedef GemmContext Context; template <MapOrder LhsOrder, MapOrder RhsOrder, MapOrder ResultOrder> static bool Gemm(Context* context, const MatrixMap<const Scalar, LhsOrder>& lhs, const MatrixMap<const Scalar, RhsOrder>& rhs, MatrixMap<Scalar, ResultOrder>* result, int lhs_offset, int rhs_offset, int result_offset, int result_mult_int, int result_shift) { ScopedProfilingLabel("PublicGemmWrapper::Gemm"); gemmlowp::Gemm<std::uint8_t, BitDepthParams, LhsOrder, RhsOrder, ResultOrder>(context, lhs, rhs, result, lhs_offset, rhs_offset, result_offset, result_mult_int, result_shift); return true; } }; template <eight_bit_int_gemm::BitDepthSetting BitDepth> struct BitDepthParamsForSettings {}; template <> struct BitDepthParamsForSettings<eight_bit_int_gemm::BitDepthSetting::A8B8> : DefaultL8R8BitDepthParams {}; template <> struct BitDepthParamsForSettings<eight_bit_int_gemm::BitDepthSetting::A5B7> : DefaultL7R5BitDepthParams {}; template <typename Scalar, eight_bit_int_gemm::BitDepthSetting BitDepth> struct EightBitIntGemmWrapper { typedef BitDepthParamsForSettings<BitDepth> BitDepthParams; static const char* Name() { return "EightBitIntGemm"; } typedef void Context; template <MapOrder LhsOrder, MapOrder RhsOrder, MapOrder ResultOrder> static bool Gemm(Context*, const MatrixMap<const Scalar, LhsOrder>& lhs, const MatrixMap<const Scalar, RhsOrder>& rhs, MatrixMap<Scalar, ResultOrder>* result, int lhs_offset, int rhs_offset, int result_offset, int result_mult_int, int result_shift) { ScopedProfilingLabel("EightBitIntGemmWrapper::Gemm"); const bool transpose_c = ResultOrder == MapOrder::RowMajor; const bool transpose_a = LhsOrder == MapOrder::RowMajor; const bool transpose_b = RhsOrder == MapOrder::RowMajor; eight_bit_int_gemm::EightBitIntGemm( transpose_a, transpose_b, transpose_c, lhs.rows(), rhs.cols(), lhs.cols(), lhs.data(), lhs_offset, lhs.stride(), rhs.data(), rhs_offset, rhs.stride(), result->data(), result_offset, result_mult_int, result_shift, result->stride(), BitDepth); return true; } }; template <typename Scalar> struct ReferenceEightBitIntGemmWrapper { typedef DefaultL8R8BitDepthParams BitDepthParams; static const char* Name() { return "ReferenceEightBitIntGemm"; } template <MapOrder LhsOrder, MapOrder RhsOrder, MapOrder ResultOrder> static bool Gemm(bool transpose_a, bool transpose_b, bool transpose_c, const MatrixMap<const Scalar, LhsOrder>& lhs, const MatrixMap<const Scalar, RhsOrder>& rhs, MatrixMap<Scalar, ResultOrder>* result, int lhs_offset, int rhs_offset, int result_offset, int result_mult_int, int result_shift) { ScopedProfilingLabel("ReferenceEightBitIntGemmWrapper::Gemm"); ReferenceEightBitIntGemm(transpose_a, transpose_b, transpose_c, lhs.rows(), rhs.cols(), lhs.cols(), lhs.data(), lhs_offset, lhs.stride(), rhs.data(), rhs_offset, rhs.stride(), result->data(), result_offset, result_mult_int, result_shift, result->stride()); return true; } }; const char* OrderName(MapOrder order) { return order == MapOrder::ColMajor ? "ColMajor" : "RowMajor"; } struct ResultStats { ResultStats() : count(0), med_val(0), mean_signed_diff(0), med_signed_diff(0), med_unsigned_diff(0), max_unsigned_diff(0) {} int count; int med_val; float mean_signed_diff; int med_signed_diff; int med_unsigned_diff; int max_unsigned_diff; std::vector<int> count_diff_by_pot_slice; }; void GetResultStats(const std::uint8_t* actual, const std::uint8_t* expected, size_t count, ResultStats* stats) { ScopedProfilingLabel("GetResultStats"); std::vector<std::uint8_t> results; std::vector<std::int16_t> signed_diffs; std::vector<std::uint8_t> unsigned_diffs; std::int64_t signed_diffs_sum = 0; for (size_t i = 0; i < count; i++) { results.push_back(actual[i]); std::int16_t signed_diff = actual[i] - expected[i]; signed_diffs.push_back(signed_diff); unsigned_diffs.push_back(std::abs(signed_diff)); signed_diffs_sum += signed_diff; } std::sort(results.begin(), results.end()); std::sort(signed_diffs.begin(), signed_diffs.end()); std::sort(unsigned_diffs.begin(), unsigned_diffs.end()); const size_t middle = count / 2; stats->count = count; stats->med_val = results[middle]; stats->mean_signed_diff = float(signed_diffs_sum) / count; stats->med_signed_diff = signed_diffs[middle]; stats->med_unsigned_diff = unsigned_diffs[middle]; stats->max_unsigned_diff = unsigned_diffs.back(); // Size 9 for 9 different POT values: 2^0, ..., 2^8 stats->count_diff_by_pot_slice.resize(9); auto cur = unsigned_diffs.begin(); size_t checksum = 0; for (int exponent = 0; exponent < 9; exponent++) { int pot = 1 << exponent; auto next = std::lower_bound(cur, unsigned_diffs.end(), pot); checksum += stats->count_diff_by_pot_slice[exponent] = next - cur; cur = next; } assert(checksum == count); } struct ResultStatsBounds { ResultStatsBounds() : mean_signed_diff(0), med_signed_diff(0), med_unsigned_diff(0), max_unsigned_diff(0) {} float mean_signed_diff; int med_signed_diff; int med_unsigned_diff; int max_unsigned_diff; }; bool CheckResultStatsBounds(const ResultStats& stats, const ResultStatsBounds& bounds) { return stats.max_unsigned_diff <= bounds.max_unsigned_diff && stats.med_unsigned_diff <= bounds.med_unsigned_diff && std::abs(stats.med_signed_diff) <= bounds.med_signed_diff && std::abs(stats.mean_signed_diff) <= bounds.mean_signed_diff; } void ReportResultStats(const ResultStats& stats, const ResultStatsBounds& bounds) { printf(" number of matrix entries: %d\n", stats.count); printf(" median value: %d\n", stats.med_val); printf(" median unsigned diff: %d (tolerating %d)\n", stats.med_unsigned_diff, bounds.med_unsigned_diff); printf(" max unsigned diff: %d (tolerating %d)\n", stats.max_unsigned_diff, bounds.max_unsigned_diff); printf(" median signed diff: %d (tolerating %d)\n", stats.med_signed_diff, bounds.med_signed_diff); printf(" mean signed diff: %.3g (tolerating %.3g)\n", stats.mean_signed_diff, bounds.mean_signed_diff); printf("No error: %.2f %% of entries\n", 100.f * stats.count_diff_by_pot_slice[0] / stats.count); for (int exponent = 1; exponent < 9; exponent++) { printf("Error in %d..%d range: %.2f %% of entries\n", 1 << (exponent - 1), (1 << exponent) - 1, 100.f * stats.count_diff_by_pot_slice[exponent] / stats.count); } } // Our approach to choosing result_shift values for testing, is bisection. // This function takes an interval, [result_shift_min .. result_shift_max]. // If too much saturation occurred in either direction, it bisects accordingly, // recursing until the interval contains only one value. // The primary reason why we prefer this over computing optimal shift values, // is that we actually want to exercise some saturation, as there is nontrivial // code handling that in gemmlowp. // Secondarily, this is faster than computing optimal shifts, since in 90% of // cases the first-tried shift value 16 turns out to be good enough. template <typename GemmWrapper, typename LhsType, typename RhsType, typename ResultType> void test_gemm_impl(typename GemmWrapper::Context* context, const LhsType& lhs, const RhsType& rhs, ResultType* result, int lhs_offset, int rhs_offset, int result_offset, int result_mult_int, int result_shift_min, int result_shift_max) { const int rows = lhs.rows(); const int cols = rhs.cols(); Check(lhs.cols() == rhs.rows()); const int depth = lhs.cols(); const int result_shift = (result_shift_min + result_shift_max) / 2; if (!GemmWrapper::Gemm(context, lhs.const_map(), rhs.const_map(), &result->map(), lhs_offset, rhs_offset, result_offset, result_mult_int, result_shift)) { // Internal GEMM functions are not required to handle all cases // (e.g. rows < cols) as these are supposed to have been handled // ahead of them. Their test wrappers return false in that case. return; } typedef typename ResultType::Scalar Scalar; static const MapOrder kLhsOrder = LhsType::kOrder; static const MapOrder kRhsOrder = RhsType::kOrder; static const MapOrder kResultOrder = ResultType::kOrder; ResultType ref_result(rows, cols); const bool transpose_c = kResultOrder == MapOrder::RowMajor; const bool transpose_a = kLhsOrder == MapOrder::RowMajor; const bool transpose_b = kRhsOrder == MapOrder::RowMajor; ReferenceEightBitIntGemmWrapper<Scalar>::Gemm( transpose_a, transpose_b, transpose_c, lhs.const_map(), rhs.const_map(), &ref_result.map(), lhs_offset, rhs_offset, result_offset, result_mult_int, result_shift); typedef typename GemmWrapper::BitDepthParams BitDepthParams; ResultStats stats; GetResultStats(result->data(), ref_result.data(), rows * cols, &stats); // Adjust shifts until we get meaningful results int new_result_shift_min = result_shift_min; int new_result_shift_max = result_shift_max; bool retry = false; if (stats.med_val < 32) { new_result_shift_max = (result_shift_min + result_shift_max) / 2; retry = true; } if (stats.med_val > 224) { new_result_shift_min = (result_shift_min + result_shift_max) / 2; retry = true; } if (retry) { if (result_shift_min != result_shift_max) { test_gemm_impl<GemmWrapper>(context, lhs, rhs, result, lhs_offset, rhs_offset, result_offset, result_mult_int, new_result_shift_min, new_result_shift_max); } return; } ResultStatsBounds bounds; // Check results const bool good = CheckResultStatsBounds(stats, bounds); printf( "%s: %dx%dx%d %s x %s -> %s, %s, offsets %d/%d/%d, mult %d, shift %d\n", good ? "PASS" : "FAIL", rows, depth, cols, OrderName(kLhsOrder), OrderName(kRhsOrder), OrderName(kResultOrder), GemmWrapper::Name(), lhs_offset, rhs_offset, result_offset, result_mult_int, result_shift); if (!good) { ReportResultStats(stats, bounds); int bad_coeffs_printed = 0; for (int c = 0; c < result->cols() && bad_coeffs_printed < 200; c++) { for (int r = 0; r < result->rows() && bad_coeffs_printed < 200; r++) { if (ref_result(r, c) != (*result)(r, c)) { printf("bad coeff: at (%d, %d), expected %d, got %d\n", r, c, ref_result(r, c), (*result)(r, c)); bad_coeffs_printed++; } } } } Check(good); } template <typename GemmWrapper, typename LhsType, typename RhsType, typename ResultType> void test_gemm(typename GemmWrapper::Context* context, const LhsType& lhs, const RhsType& rhs, ResultType* result, int lhs_offset, int rhs_offset, int result_offset, int result_mult_int) { test_gemm_impl<GemmWrapper>(context, lhs, rhs, result, lhs_offset, rhs_offset, result_offset, result_mult_int, 0, 32); } enum class WhatParamsToTest { All, OnlyGenericCase, }; template <typename GemmWrapper, MapOrder LhsOrder, MapOrder RhsOrder, MapOrder ResultOrder> void test_gemm(typename GemmWrapper::Context* context, int rows, int depth, int cols, WhatParamsToTest params_to_test) { typedef std::uint8_t Scalar; typedef Matrix<Scalar, LhsOrder> LhsType; using BitDepthParams = typename GemmWrapper::BitDepthParams; LhsType lhs(rows, depth); MakeRandom<typename BitDepthParams::LhsRange>(&lhs); typedef Matrix<Scalar, RhsOrder> RhsType; RhsType rhs(depth, cols); MakeRandom<typename BitDepthParams::RhsRange>(&rhs); typedef Matrix<Scalar, ResultOrder> ResultType; ResultType result(rows, cols); MakeZero(&result); if (params_to_test == WhatParamsToTest::All) { test_gemm<GemmWrapper>(context, lhs, rhs, &result, 0, 0, 0, 1); test_gemm<GemmWrapper>(context, lhs, rhs, &result, 10, 0, 0, 1); test_gemm<GemmWrapper>(context, lhs, rhs, &result, 0, 10, 0, 1); test_gemm<GemmWrapper>(context, lhs, rhs, &result, 0, 0, 10, 1); test_gemm<GemmWrapper>(context, lhs, rhs, &result, 0, 0, 0, 10); test_gemm<GemmWrapper>(context, lhs, rhs, &result, 10, 10, 10, 10); test_gemm<GemmWrapper>(context, lhs, rhs, &result, 256, 1, 17, 4); } test_gemm<GemmWrapper>(context, lhs, rhs, &result, -75, -91, 74980, 123); } enum class WhatOrdersToTest { All, OnlyRCC }; template <typename GemmWrapper> void test_gemm(typename GemmWrapper::Context* context, int rows, int depth, int cols, WhatParamsToTest params_to_test, WhatOrdersToTest orders_to_test) { #define GEMMLOWP_ONE_TEST(LhsOrder, RhsOrder, ResultOrder) \ do { \ test_gemm<GemmWrapper, MapOrder::LhsOrder, MapOrder::RhsOrder, \ MapOrder::ResultOrder>(context, rows, depth, cols, \ params_to_test); \ } while (false) if (orders_to_test == WhatOrdersToTest::All) { GEMMLOWP_ONE_TEST(ColMajor, ColMajor, ColMajor); GEMMLOWP_ONE_TEST(RowMajor, ColMajor, ColMajor); GEMMLOWP_ONE_TEST(ColMajor, RowMajor, ColMajor); GEMMLOWP_ONE_TEST(RowMajor, RowMajor, ColMajor); GEMMLOWP_ONE_TEST(ColMajor, ColMajor, RowMajor); GEMMLOWP_ONE_TEST(RowMajor, ColMajor, RowMajor); GEMMLOWP_ONE_TEST(ColMajor, RowMajor, RowMajor); GEMMLOWP_ONE_TEST(RowMajor, RowMajor, RowMajor); } else { GEMMLOWP_ONE_TEST(RowMajor, ColMajor, ColMajor); } #undef GEMMLOWP_ONE_TEST } template <typename Kernel> void test_gemm_kernel(MultiThreadGemmContext* context) { typedef MultiThreadGemmWrapper<Kernel, std::uint8_t, DefaultL8R8BitDepthParams> GemmWrapper; test_gemm<GemmWrapper>(context, 1, 1, 1, WhatParamsToTest::OnlyGenericCase, WhatOrdersToTest::OnlyRCC); test_gemm<GemmWrapper>(context, 2, 2, 2, WhatParamsToTest::OnlyGenericCase, WhatOrdersToTest::OnlyRCC); test_gemm<GemmWrapper>(context, 3, 3, 3, WhatParamsToTest::OnlyGenericCase, WhatOrdersToTest::OnlyRCC); test_gemm<GemmWrapper>(context, 4, 4, 4, WhatParamsToTest::OnlyGenericCase, WhatOrdersToTest::OnlyRCC); test_gemm<GemmWrapper>(context, 5, 5, 5, WhatParamsToTest::OnlyGenericCase, WhatOrdersToTest::OnlyRCC); test_gemm<GemmWrapper>(context, 9, 11, 13, WhatParamsToTest::OnlyGenericCase, WhatOrdersToTest::OnlyRCC); test_gemm<GemmWrapper>(context, 50, 50, 50, WhatParamsToTest::All, WhatOrdersToTest::OnlyRCC); test_gemm<GemmWrapper>(context, 200, 200, 200, WhatParamsToTest::OnlyGenericCase, WhatOrdersToTest::All); test_gemm<GemmWrapper>(context, 50, 5000, 50, WhatParamsToTest::OnlyGenericCase, WhatOrdersToTest::OnlyRCC); } template <typename GemmWrapper> void test_gemm(typename GemmWrapper::Context* context) { test_gemm<GemmWrapper>(context, 1, 1, 1, WhatParamsToTest::All, WhatOrdersToTest::OnlyRCC); test_gemm<GemmWrapper>(context, 2, 1, 1, WhatParamsToTest::All, WhatOrdersToTest::OnlyRCC); test_gemm<GemmWrapper>(context, 1, 2, 1, WhatParamsToTest::All, WhatOrdersToTest::OnlyRCC); test_gemm<GemmWrapper>(context, 1, 1, 2, WhatParamsToTest::All, WhatOrdersToTest::OnlyRCC); test_gemm<GemmWrapper>(context, 2, 2, 2, WhatParamsToTest::All, WhatOrdersToTest::OnlyRCC); test_gemm<GemmWrapper>(context, 3, 3, 3, WhatParamsToTest::All, WhatOrdersToTest::OnlyRCC); test_gemm<GemmWrapper>(context, 4, 4, 4, WhatParamsToTest::All, WhatOrdersToTest::OnlyRCC); test_gemm<GemmWrapper>(context, 5, 5, 5, WhatParamsToTest::All, WhatOrdersToTest::OnlyRCC); test_gemm<GemmWrapper>(context, 6, 6, 6, WhatParamsToTest::All, WhatOrdersToTest::OnlyRCC); test_gemm<GemmWrapper>(context, 3, 5, 7, WhatParamsToTest::All, WhatOrdersToTest::OnlyRCC); test_gemm<GemmWrapper>(context, 7, 3, 5, WhatParamsToTest::All, WhatOrdersToTest::OnlyRCC); test_gemm<GemmWrapper>(context, 5, 7, 3, WhatParamsToTest::All, WhatOrdersToTest::OnlyRCC); test_gemm<GemmWrapper>(context, 8, 8, 8, WhatParamsToTest::All, WhatOrdersToTest::All); test_gemm<GemmWrapper>(context, 16, 16, 16, WhatParamsToTest::All, WhatOrdersToTest::OnlyRCC); test_gemm<GemmWrapper>(context, 32, 32, 32, WhatParamsToTest::All, WhatOrdersToTest::OnlyRCC); test_gemm<GemmWrapper>(context, 64, 64, 64, WhatParamsToTest::All, WhatOrdersToTest::All); test_gemm<GemmWrapper>(context, 128, 128, 128, WhatParamsToTest::All, WhatOrdersToTest::OnlyRCC); test_gemm<GemmWrapper>(context, 16, 17, 16, WhatParamsToTest::All, WhatOrdersToTest::OnlyRCC); test_gemm<GemmWrapper>(context, 37, 55, 73, WhatParamsToTest::All, WhatOrdersToTest::OnlyRCC); test_gemm<GemmWrapper>(context, 57, 87, 117, WhatParamsToTest::All, WhatOrdersToTest::OnlyRCC); test_gemm<GemmWrapper>(context, 93, 83, 73, WhatParamsToTest::All, WhatOrdersToTest::OnlyRCC); test_gemm<GemmWrapper>(context, 109, 89, 99, WhatParamsToTest::All, WhatOrdersToTest::OnlyRCC); test_gemm<GemmWrapper>(context, 78, 101, 82, WhatParamsToTest::All, WhatOrdersToTest::OnlyRCC); test_gemm<GemmWrapper>(context, 512, 512, 512, WhatParamsToTest::OnlyGenericCase, WhatOrdersToTest::OnlyRCC); test_gemm<GemmWrapper>(context, 1024, 1024, 1024, WhatParamsToTest::OnlyGenericCase, WhatOrdersToTest::OnlyRCC); test_gemm<GemmWrapper>(context, 567, 2345, 123, WhatParamsToTest::OnlyGenericCase, WhatOrdersToTest::OnlyRCC); test_gemm<GemmWrapper>(context, 100, 5000, 100, WhatParamsToTest::OnlyGenericCase, WhatOrdersToTest::OnlyRCC); test_gemm<GemmWrapper>(context, 1, 1, 1000, WhatParamsToTest::OnlyGenericCase, WhatOrdersToTest::OnlyRCC); test_gemm<GemmWrapper>(context, 1000, 1, 1, WhatParamsToTest::OnlyGenericCase, WhatOrdersToTest::OnlyRCC); test_gemm<GemmWrapper>(context, 1, 1000, 1, WhatParamsToTest::OnlyGenericCase, WhatOrdersToTest::OnlyRCC); test_gemm<GemmWrapper>(context, 1, 1000, 1000, WhatParamsToTest::OnlyGenericCase, WhatOrdersToTest::OnlyRCC); test_gemm<GemmWrapper>(context, 1000, 1, 1000, WhatParamsToTest::OnlyGenericCase, WhatOrdersToTest::OnlyRCC); test_gemm<GemmWrapper>(context, 1000, 1000, 1, WhatParamsToTest::OnlyGenericCase, WhatOrdersToTest::OnlyRCC); test_gemm<GemmWrapper>(context, 777, 3456, 1, WhatParamsToTest::OnlyGenericCase, WhatOrdersToTest::OnlyRCC); test_gemm<GemmWrapper>(context, 4567, 555, 1, WhatParamsToTest::OnlyGenericCase, WhatOrdersToTest::OnlyRCC); // Test all storage orders test_gemm<GemmWrapper>(context, 70, 90, 110, WhatParamsToTest::All, WhatOrdersToTest::All); test_gemm<GemmWrapper>(context, 300, 400, 500, WhatParamsToTest::OnlyGenericCase, WhatOrdersToTest::All); } template <typename GemmWrapper> void test_gemv(typename GemmWrapper::Context* context) { test_gemm<GemmWrapper>(context, 2, 2, 1, WhatParamsToTest::All, WhatOrdersToTest::OnlyRCC); test_gemm<GemmWrapper>(context, 3, 3, 1, WhatParamsToTest::All, WhatOrdersToTest::OnlyRCC); test_gemm<GemmWrapper>(context, 4, 4, 1, WhatParamsToTest::All, WhatOrdersToTest::OnlyRCC); test_gemm<GemmWrapper>(context, 5, 5, 1, WhatParamsToTest::All, WhatOrdersToTest::OnlyRCC); test_gemm<GemmWrapper>(context, 6, 6, 1, WhatParamsToTest::All, WhatOrdersToTest::OnlyRCC); test_gemm<GemmWrapper>(context, 3, 5, 1, WhatParamsToTest::All, WhatOrdersToTest::OnlyRCC); test_gemm<GemmWrapper>(context, 7, 3, 1, WhatParamsToTest::All, WhatOrdersToTest::OnlyRCC); test_gemm<GemmWrapper>(context, 5, 7, 1, WhatParamsToTest::All, WhatOrdersToTest::OnlyRCC); test_gemm<GemmWrapper>(context, 8, 8, 1, WhatParamsToTest::All, WhatOrdersToTest::OnlyRCC); test_gemm<GemmWrapper>(context, 32, 32, 1, WhatParamsToTest::All, WhatOrdersToTest::OnlyRCC); test_gemm<GemmWrapper>(context, 128, 128, 1, WhatParamsToTest::All, WhatOrdersToTest::OnlyRCC); test_gemm<GemmWrapper>(context, 321, 123, 1, WhatParamsToTest::All, WhatOrdersToTest::OnlyRCC); // Test all storage orders test_gemm<GemmWrapper>(context, 70, 90, 1, WhatParamsToTest::All, WhatOrdersToTest::All); test_gemm<GemmWrapper>(context, 300, 400, 1, WhatParamsToTest::OnlyGenericCase, WhatOrdersToTest::All); } const char* GetBitDepthName(eight_bit_int_gemm::BitDepthSetting b) { switch (b) { case eight_bit_int_gemm::BitDepthSetting::A8B8: return "Lhs: 8 bit, Rhs: 8 bit"; case eight_bit_int_gemm::BitDepthSetting::A5B7: return "(legacy, no longer requantizing) Lhs: 7 bit, Rhs: 5 bit"; default: abort(); return nullptr; } } // Runs a small set of hand-picked data for per-channel quantized data. // This test case comes from a set of 2 2x2 convolution filters run over a 3x3 // image. void TestWithSmallDataPerChannelQuantization() { const int m = 2; const int n = 9; const int k = 12; // 12 x 2, columnwise. const std::uint8_t a_data[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 255, 255, 255, 64, 64, 64, 64, 64, 64, 0, 0, 0, 255, 255, 255}; const int lda = k; int a_offset[] = {0, -64}; MatrixMap<const std::uint8_t, MapOrder::RowMajor> lhs(a_data, m, k, lda); const OffsetColMap lhs_offset(a_offset, m); // 12 x 9, columnwise. const std::uint8_t b_data[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 255, 255, 255, 0, 0, 0, 0, 0, 0, 255, 255, 255, 0, 0, 0, 0, 0, 0, 127, 127, 127, 0, 0, 0, 127, 127, 127, 0, 0, 0, 255, 255, 255, 0, 0, 0, 0, 0, 0, 255, 255, 255, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 127, 127, 127, 0, 0, 0, 127, 127, 127, 0, 0, 0, 0, 0, 0, 127, 127, 127, 127, 127, 127, 0, 0, 0, 0, 0, 0, 127, 127, 127, 127, 127, 127, 0, 0, 0, 127, 127, 127, 127, 127, 127, 127, 127, 127}; const int ldb = k; int b_offset = -127; MatrixMap<const std::uint8_t, MapOrder::ColMajor> rhs(b_data, k, n, ldb); const OffsetRowDup rhs_offset(b_offset, rhs.cols()); // 2 x 9, columnwise. const std::uint8_t expected_c_data[] = {255, 255, 0, 0, 127, 159, 0, 64, 0, 64, 127, 159, 127, 127, 127, 127, 127, 127}; const int ldc = m; int c_offset[] = {97155, 97346}; int c_mult_int[] = {2741, 2741}; const int c_shift = 21; const int c_count = m * n; std::unique_ptr<std::uint8_t[]> output_data(new std::uint8_t[c_count]); MatrixMap<std::uint8_t, MapOrder::ColMajor> result(output_data.get(), m, n, ldc); const OffsetColMap result_offset(c_offset, m); const OffsetColMap result_mult_int(c_mult_int, m); const int result_shift = c_shift; GemmContext gemm_context; auto output_pipeline = MakeStandardOutputPipeline<VectorShape::Col>( result_offset, result_mult_int, result_shift); GemmWithOutputPipelinePC<std::uint8_t, std::uint8_t, DefaultL8R8BitDepthParams>( &gemm_context, lhs, rhs, &result, lhs_offset, rhs_offset, output_pipeline); ResultStats stats; GetResultStats(output_data.get(), expected_c_data, c_count, &stats); ResultStatsBounds bounds; const bool good = CheckResultStatsBounds(stats, bounds); printf("TestWithSmallDataPerChannelQuantization: %s\n", good ? "PASS" : "FAIL"); ReportResultStats(stats, bounds); Check(good); } // Runs a larger set of hand-picked data for per-channel quantized data. // This test case comes from a set of 22 3x3 convolution filters run over a 5x5 // image. Right now, I have 7 different filters and 15 copies of the first // filter to make sure NEON code path that processes 16 rows at a time is // covered. void TestWithLargeDataPerChannelQuantization() { const int m = 22; const int n = 25; const int k = 27; // 27 x 22, column-wise. const std::uint8_t a_data[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 255, 255, 255, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 127, 127, 127, 255, 255, 255, 127, 127, 127, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 127, 127, 127, 0, 0, 0, 0, 0, 0, 255, 255, 255, 0, 0, 0, 0, 0, 0, 127, 127, 127, 0, 0, 0, 51, 51, 51, 51, 51, 51, 51, 51, 51, 0, 0, 0, 255, 255, 255, 0, 0, 0, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 0, 0, 0, 51, 51, 51, 51, 51, 51, 255, 255, 255, 51, 51, 51, 51, 51, 51, 0, 0, 0, 51, 51, 51, 0, 0, 0, 64, 64, 64, 0, 0, 0, 64, 64, 64, 255, 255, 255, 64, 64, 64, 0, 0, 0, 64, 64, 64, 0, 0, 0, 36, 36, 36, 0, 0, 0, 36, 36, 36, 0, 0, 0, 255, 255, 255, 0, 0, 0, 36, 36, 36, 0, 0, 0, 36, 36, 36, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 255, 255, 255, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 255, 255, 255, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 255, 255, 255, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 255, 255, 255, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 255, 255, 255, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 255, 255, 255, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 255, 255, 255, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 255, 255, 255, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 255, 255, 255, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 255, 255, 255, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 255, 255, 255, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 255, 255, 255, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 255, 255, 255, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 255, 255, 255, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 255, 255, 255, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }; const int lda = k; int a_offset[] = {0, 0, 0, -51, -51, 0, -36, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; MatrixMap<const std::uint8_t, MapOrder::RowMajor> lhs(a_data, m, k, lda); const OffsetColMap lhs_offset(a_offset, m); // 27 x 25, column-wise. const std::uint8_t b_data[] = { 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 119, 119, 119, 119, 119, 119, 127, 127, 127, 119, 119, 119, 119, 119, 119, 127, 127, 127, 127, 127, 127, 127, 127, 127, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 127, 127, 127, 127, 127, 127, 127, 127, 127, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 127, 127, 127, 127, 127, 127, 127, 127, 127, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 127, 127, 127, 127, 127, 127, 127, 127, 127, 119, 119, 119, 119, 119, 119, 127, 127, 127, 119, 119, 119, 119, 119, 119, 127, 127, 127, 127, 127, 127, 119, 119, 119, 119, 119, 119, 127, 127, 127, 119, 119, 119, 119, 119, 119, 127, 127, 127, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 136, 136, 136, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 136, 136, 136, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 136, 136, 136, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 127, 127, 127, 119, 119, 119, 119, 119, 119, 127, 127, 127, 119, 119, 119, 119, 119, 119, 127, 127, 127, 127, 127, 127, 119, 119, 119, 119, 119, 119, 127, 127, 127, 119, 119, 119, 119, 119, 119, 127, 127, 127, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 136, 136, 136, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 136, 136, 136, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 136, 136, 136, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 127, 127, 127, 119, 119, 119, 119, 119, 119, 127, 127, 127, 119, 119, 119, 119, 119, 119, 127, 127, 127, 127, 127, 127, 119, 119, 119, 119, 119, 119, 127, 127, 127, 119, 119, 119, 119, 119, 119, 127, 127, 127, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 136, 136, 136, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 136, 136, 136, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 136, 136, 136, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 127, 127, 127, 119, 119, 119, 119, 119, 119, 127, 127, 127, 119, 119, 119, 119, 119, 119, 127, 127, 127, 127, 127, 127, 119, 119, 119, 119, 119, 119, 127, 127, 127, 119, 119, 119, 119, 119, 119, 127, 127, 127, 127, 127, 127, 127, 127, 127, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 127, 127, 127, 127, 127, 127, 127, 127, 127, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 127, 127, 127, 127, 127, 127, 127, 127, 127, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 127, 127, 127, 127, 127, 127, 127, 127, 127, 119, 119, 119, 119, 119, 119, 127, 127, 127, 119, 119, 119, 119, 119, 119, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127}; const int ldb = k; int b_offset = -127; MatrixMap<const std::uint8_t, MapOrder::ColMajor> rhs(b_data, k, n, ldb); const OffsetRowDup rhs_offset(b_offset, rhs.cols()); // 22 x 25, column-wise. const std::uint8_t expected_c_data[] = { 7, 37, 37, 67, 67, 39, 79, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 37, 87, 67, 23, 91, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 37, 87, 67, 23, 91, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 37, 87, 67, 23, 91, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 37, 37, 67, 67, 39, 79, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 37, 7, 67, 87, 23, 91, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 87, 87, 7, 103, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 71, 87, 45, 41, 77, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 87, 87, 7, 103, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 37, 7, 67, 87, 23, 91, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 37, 7, 67, 87, 23, 91, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 71, 7, 45, 87, 41, 77, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 255, 135, 135, 255, 255, 143, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 7, 71, 7, 45, 87, 41, 77, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 37, 7, 67, 87, 23, 91, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 37, 7, 67, 87, 23, 91, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 87, 87, 7, 103, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 71, 87, 45, 41, 77, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 87, 87, 7, 103, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 37, 7, 67, 87, 23, 91, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 37, 37, 67, 67, 39, 79, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 37, 87, 67, 23, 91, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 37, 87, 67, 23, 91, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 37, 87, 67, 23, 91, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 37, 37, 67, 67, 39, 79, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 111, 111, 111, 111, 111, 111, 111, 111, 111, 111, 111, 111, 111, 111, 111, 111, 111, 111, 111, 111, 111, 111, }; const int ldc = m; int c_offset[] = { 6477, 12954, 12954, 7793, 7793, 12954, 9282, 6477, 6477, 6477, 6477, 6477, 6477, 6477, 6477, 6477, 6477, 6477, 6477, 6477, 6477, 6477, }; int c_mult_int[] = { 41121, 20560, 20560, 34267, 34267, 21937, 28784, 41121, 41121, 41121, 41121, 41121, 41121, 41121, 41121, 41121, 41121, 41121, 41121, 41121, 41121, 41121, }; const int c_shift = 21; const int c_count = m * n; std::unique_ptr<std::uint8_t[]> output_data(new std::uint8_t[c_count]); MatrixMap<std::uint8_t, MapOrder::ColMajor> result(output_data.get(), m, n, ldc); const OffsetColMap result_offset(c_offset, m); const OffsetColMap result_mult_int(c_mult_int, m); const int result_shift = c_shift; GemmContext gemm_context; auto output_pipeline = MakeStandardOutputPipeline<VectorShape::Col>( result_offset, result_mult_int, result_shift); GemmWithOutputPipelinePC<std::uint8_t, std::uint8_t, DefaultL8R8BitDepthParams>( &gemm_context, lhs, rhs, &result, lhs_offset, rhs_offset, output_pipeline); ResultStats stats; GetResultStats(output_data.get(), expected_c_data, c_count, &stats); ResultStatsBounds bounds; const bool good = CheckResultStatsBounds(stats, bounds); printf("TestWithLargeDataPerChannelQuantization: %s\n", good ? "PASS" : "FAIL"); ReportResultStats(stats, bounds); Check(good); } // Multithreading only activates when the result has more than 16 rows, and also // (result rows) * (result cols) * depth >= 2 x 65 x 1024. Size was selected // to run in 3 threads. // // Based on the following floating point data: // LHS: all zeros except 10.0, 20.0 at the beginning of first 16 rows; // 1.0, 2.0 at the beginning of next 16 rows; 0.1, 0.2 in next 16 rows; // 0.01, 0.02 in last 16 rows. // RHS: all zeros except 1.0 in (0, 0) and 2.0 in (1, 0). // Varying boundaries were used for each 16 rows block of LHS, to test for // correct indexing into offsets. // Expected result: all zeros, except 50.0 at the beginning of first 16 rows; // 5.0 at the beginning of next 16 rows; 0.5 in next 16 rows; 0.05 in last // 16 rows. void TestMultithreadedPerChannelQuantization() { const int m = 64; const int n = 20; const int k = 160; // LHS, m x k. const std::array<std::int32_t, 4> lhs_offsets_terse{{ 0, -51, -85, -109, }}; assert(lhs_offsets_terse.size() * 16 == m); const std::array<std::uint8_t, 4> lhs_first_el{{ 128, 153, 170, 182, }}; assert(lhs_first_el.size() * 16 == m); // lhs_first_el at (i, 0) and 255 at (i, 1), other values are all -offset. std::vector<std::uint8_t> a_data(m * k, 0); for (int i = 0; i < m; ++i) { a_data[i * k] = lhs_first_el[i / 16]; a_data[i * k + 1] = 255; for (int j = 2; j < k; ++j) { a_data[i * k + j] = std::uint8_t(-lhs_offsets_terse[i / 16]); } } const int lda = k; // Given values at [i / 16]. std::vector<std::int32_t> a_offset(m, 0); for (int i = 0; i < m; ++i) { a_offset[i] = lhs_offsets_terse[i / 16]; } MatrixMap<const std::uint8_t, MapOrder::RowMajor> lhs(&a_data[0], m, k, lda); const OffsetColMap lhs_offset(&a_offset[0], m); // RHS, k x n. // All zeros, except 128 at (0, 0) and 255 at (1, 0). std::vector<std::uint8_t> b_data(k * n, 0); b_data[0] = 128; b_data[1] = 255; const int ldb = k; std::int32_t b_offset = 0; MatrixMap<const std::uint8_t, MapOrder::ColMajor> rhs(&b_data[0], k, n, ldb); const OffsetRowDup rhs_offset(b_offset, rhs.cols()); // Result, m x n. // All zeros, except given values at (i / 16, 0). const std::array<std::uint8_t, 4> expected_c_terse{{ 142, 159, 182, 213, }}; assert(expected_c_terse.size() * 16 == m); std::vector<std::uint8_t> expected_c_data(m * n, 0); for (int i = 0; i < m; ++i) { expected_c_data[i] = expected_c_terse[i / 16]; } const int ldc = m; // All zeros. std::vector<std::int32_t> c_offset(m, 0); // Given values at [i / 16]. const std::array<std::int32_t, 4> c_mult_int_terse{{ 3655, 5140, 7049, 9595, }}; assert(c_mult_int_terse.size() * 16 == m); std::vector<std::int32_t> c_mult_int(m); for (int i = 0; i < m; ++i) { c_mult_int[i] = c_mult_int_terse[i / 16]; } const int c_shift = 21; const int c_count = m * n; std::unique_ptr<std::uint8_t[]> output_data(new std::uint8_t[c_count]); MatrixMap<std::uint8_t, MapOrder::ColMajor> result(output_data.get(), m, n, ldc); const OffsetColMap result_offset(&c_offset[0], m); const OffsetColMap result_mult_int(&c_mult_int[0], m); const int result_shift = c_shift; GemmContext gemm_context; auto output_pipeline = MakeStandardOutputPipeline<VectorShape::Col>( result_offset, result_mult_int, result_shift); GemmWithOutputPipelinePC<std::uint8_t, std::uint8_t, DefaultL8R8BitDepthParams>( &gemm_context, lhs, rhs, &result, lhs_offset, rhs_offset, output_pipeline); ResultStats stats; GetResultStats(output_data.get(), &expected_c_data[0], c_count, &stats); ResultStatsBounds bounds; const bool good = CheckResultStatsBounds(stats, bounds); printf("TestMultithreadedPerChannelQuantization: %s\n", good ? "PASS" : "FAIL"); ReportResultStats(stats, bounds); Check(good); } // Runs a small set of hand-calculated data through the implementation. void TestWithSmallData() { const int m = 4; const int n = 2; const int k = 3; // Matrix A (LHS) is: // | 7 | 10 | 13 | 16 | // | 8 | 11 | 14 | 17 | // | 9 | 12 | 15 | 18 | const std::uint8_t a_data[] = {7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18}; // Matrix B (RHS) is: // | 1 | 3 | 5 | // | 2 | 4 | 6 | const std::uint8_t b_data[] = {1, 2, 3, 4, 5, 6}; // Here are the results we expect, from hand calculations: // (1 * 7) + (3 * 8) + (5 * 9) = 76 // (2 * 7) + (4 * 8) + (6 * 9) = 100 // (1 * 10) + (3 * 11) + (5 * 12) = 103 // (2 * 10) + (4 * 11) + (6 * 12) = 136 // (1 * 13) + (3 * 14) + (5 * 15) = 130 // (2 * 13) + (4 * 14) + (6 * 15) = 172 // (1 * 16) + (3 * 17) + (5 * 18) = 157 // (2 * 16) + (4 * 17) + (6 * 18) = 208 // That means matrix C should be: // | 76 | 103 | 130 | 157 | // | 100 | 136 | 172 | 208 | const std::uint8_t expected_data[] = {76, 100, 103, 136, 130, 172, 157, 208}; const int c_count = m * n; std::unique_ptr<std::uint8_t[]> output_data(new std::uint8_t[c_count]); const bool is_a_transposed = true; const bool is_b_transposed = true; const bool is_c_transposed = true; const int lda = k; const int ldb = n; const int ldc = n; const int a_offset = 0; const int b_offset = 0; const int c_offset = 0; const int c_mult = 1; const int c_shift = 0; gemmlowp::eight_bit_int_gemm::EightBitIntGemm( is_a_transposed, is_b_transposed, is_c_transposed, m, n, k, a_data, a_offset, lda, b_data, b_offset, ldb, output_data.get(), c_offset, c_mult, c_shift, ldc, eight_bit_int_gemm::BitDepthSetting::A8B8); ResultStats stats; GetResultStats(output_data.get(), expected_data, c_count, &stats); ResultStatsBounds bounds; const bool good = CheckResultStatsBounds(stats, bounds); printf("TestWithSmallData: %s\n", good ? "PASS" : "FAIL"); ReportResultStats(stats, bounds); Check(good); } // This is the most realistic test of how we'll be using the low-precision GEMM // function in applications. It takes in large input matrices that have been // captured from an actual neural network run. void TestWithRealData(eight_bit_int_gemm::BitDepthSetting BitDepth, int tolerance_median, int tolerance_max) { std::unique_ptr<std::uint8_t[]> output_data( new std::uint8_t[test_data::c_count]); gemmlowp::eight_bit_int_gemm::EightBitIntGemm( test_data::is_a_transposed, test_data::is_b_transposed, test_data::is_c_transposed, test_data::m, test_data::n, test_data::k, test_data::a_data, test_data::a_offset, test_data::k, test_data::b_data, test_data::b_offset, test_data::k, output_data.get(), test_data::c_offset, test_data::c_mult_int, test_data::c_shift, test_data::m, BitDepth); ResultStats stats; GetResultStats(output_data.get(), test_data::expected_c_data, test_data::c_count, &stats); ResultStatsBounds bounds; if (BitDepth == eight_bit_int_gemm::BitDepthSetting::A5B7) { bounds.med_unsigned_diff = tolerance_median; bounds.max_unsigned_diff = tolerance_max; bounds.med_signed_diff = 0; bounds.mean_signed_diff = 0.2f; } const bool good = CheckResultStatsBounds(stats, bounds); printf("TestWithRealData: %s with %s\n", good ? "PASS" : "FAIL", GetBitDepthName(BitDepth)); ReportResultStats(stats, bounds); Check(good); } template <typename BitDepthParams, MapOrder ResultOrder> void TestOutputStages(int rows, int depth, int cols, int result_offset, int result_mult_int, int result_shift) { Matrix<std::uint8_t, MapOrder::RowMajor> lhs(rows, depth); Matrix<std::uint8_t, MapOrder::ColMajor> rhs(depth, cols); Matrix<std::int32_t, ResultOrder> result_raw_int32(rows, cols); MakeRandom<typename BitDepthParams::LhsRange>(&lhs); MakeRandom<typename BitDepthParams::RhsRange>(&rhs); const int lhs_offset = 12; const int rhs_offset = -34; // Test an empty pipeline, i.e. returning raw int32 accumulators. auto empty_pipeline = std::make_tuple(); GemmContext context; GemmWithOutputPipeline<std::uint8_t, std::int32_t, DefaultL8R8BitDepthParams>( &context, lhs.const_map(), rhs.const_map(), &result_raw_int32, lhs_offset, rhs_offset, empty_pipeline); for (int r = 0; r < rows; r++) { for (int c = 0; c < cols; c++) { std::int32_t expected = 0; for (int d = 0; d < depth; d++) { std::int32_t lhs_val = static_cast<std::int32_t>(lhs(r, d)) + lhs_offset; std::int32_t rhs_val = static_cast<std::int32_t>(rhs(d, c)) + rhs_offset; expected += lhs_val * rhs_val; } Check(expected == result_raw_int32(r, c)); } } // Test a pipeline with only the quantize-down stage, still returning // unclamped (but scaled) int32's OutputStageQuantizeDownInt32ToUint8Scale quantize_down_stage; quantize_down_stage.result_offset = result_offset; quantize_down_stage.result_mult_int = result_mult_int; quantize_down_stage.result_shift = result_shift; auto quantize_down_pipeline = std::make_tuple(quantize_down_stage); Matrix<std::int32_t, ResultOrder> result_quantized_down_int32(rows, cols); GemmWithOutputPipeline<std::uint8_t, std::int32_t, DefaultL8R8BitDepthParams>( &context, lhs.const_map(), rhs.const_map(), &result_quantized_down_int32, lhs_offset, rhs_offset, quantize_down_pipeline); std::int64_t sum = 0; for (int r = 0; r < rows; r++) { for (int c = 0; c < cols; c++) { std::int32_t raw = result_raw_int32(r, c); std::int32_t expected = RoundingDivideByPOT( (raw + result_offset) * result_mult_int, result_shift); Check(expected == result_quantized_down_int32(r, c)); sum += expected; } } std::int64_t avg = sum / (rows * cols); // Test that the average quantized-down value falls reasonably in the // middle of the [0..255] range. Otherwise, the multiplier / shift need to be // adjusted. Check(avg >= 64 && avg <= 192); // Test the familiar default pipeline consisting of quantize-down and // clamp-and-cast-to-uint8. OutputStageSaturatingCastToUint8 saturating_cast_stage; auto quantize_down_and_saturating_cast_pipeline = std::make_tuple(quantize_down_stage, saturating_cast_stage); Matrix<std::uint8_t, ResultOrder> result_quantized_down_saturated_uint8(rows, cols); GemmWithOutputPipeline<std::uint8_t, std::uint8_t, DefaultL8R8BitDepthParams>( &context, lhs.const_map(), rhs.const_map(), &result_quantized_down_saturated_uint8, lhs_offset, rhs_offset, quantize_down_and_saturating_cast_pipeline); for (int r = 0; r < rows; r++) { for (int c = 0; c < cols; c++) { std::int32_t quantized = result_quantized_down_int32(r, c); std::uint8_t expected = std::min(std::max(quantized, 0), 255); Check(expected == result_quantized_down_saturated_uint8(r, c)); } } // Test a bias-addition with row-vector std::vector<std::int32_t> row_vector_data(cols); std::uniform_int_distribution<std::int32_t> uniform_minus_500_plus_500(-500, 500); for (int i = 0; i < cols; i++) { row_vector_data[i] = uniform_minus_500_plus_500(RandomEngine()); } typedef VectorMap<std::int32_t, VectorShape::Row> RowVectorMap; RowVectorMap row_vector_map(row_vector_data.data(), cols); OutputStageBiasAddition<RowVectorMap> row_bias_addition_stage; row_bias_addition_stage.bias_vector = row_vector_map; auto row_bias_addition_pipeline = std::make_tuple(row_bias_addition_stage); Matrix<std::int32_t, ResultOrder> result_of_row_bias_addition(rows, cols); GemmWithOutputPipeline<std::uint8_t, std::int32_t, DefaultL8R8BitDepthParams>( &context, lhs.const_map(), rhs.const_map(), &result_of_row_bias_addition, lhs_offset, rhs_offset, row_bias_addition_pipeline); for (int r = 0; r < rows; r++) { for (int c = 0; c < cols; c++) { std::int32_t expected = result_raw_int32(r, c) + row_vector_data[c]; Check(expected == result_of_row_bias_addition(r, c)); } } // Test a bias-addition with column-vector std::vector<std::int32_t> col_vector_data(rows); for (int i = 0; i < rows; i++) { col_vector_data[i] = uniform_minus_500_plus_500(RandomEngine()); } typedef VectorMap<std::int32_t, VectorShape::Col> ColVectorMap; ColVectorMap col_vector_map(col_vector_data.data(), rows); OutputStageBiasAddition<ColVectorMap> col_bias_addition_stage; col_bias_addition_stage.bias_vector = col_vector_map; auto col_bias_addition_pipeline = std::make_tuple(col_bias_addition_stage); Matrix<std::int32_t, ResultOrder> result_of_col_bias_addition(rows, cols); GemmWithOutputPipeline<std::uint8_t, std::int32_t, DefaultL8R8BitDepthParams>( &context, lhs.const_map(), rhs.const_map(), &result_of_col_bias_addition, lhs_offset, rhs_offset, col_bias_addition_pipeline); for (int r = 0; r < rows; r++) { for (int c = 0; c < cols; c++) { std::int32_t expected = result_raw_int32(r, c) + col_vector_data[r]; Check(expected == result_of_col_bias_addition(r, c)); } } // Test a clamp OutputStageClamp clamp_stage; // Determine min and max of raw int32 accumulators std::int32_t raw_min = std::numeric_limits<std::int32_t>::max(); std::int32_t raw_max = std::numeric_limits<std::int32_t>::min(); for (int r = 0; r < rows; r++) { for (int c = 0; c < cols; c++) { raw_min = std::min(raw_min, result_raw_int32(r, c)); raw_max = std::max(raw_max, result_raw_int32(r, c)); } } // Pick some interesting clamp min/max bounds clamp_stage.min = static_cast<std::int32_t>(raw_min * 0.7 + raw_max * 0.3); clamp_stage.max = static_cast<std::int32_t>(raw_min * 0.3 + raw_max * 0.7); assert(raw_min <= clamp_stage.min && clamp_stage.min <= clamp_stage.max && clamp_stage.max <= raw_max); auto clamp_pipeline = std::make_tuple(clamp_stage); Matrix<std::int32_t, ResultOrder> result_clamped(rows, cols); GemmWithOutputPipeline<std::uint8_t, std::int32_t, DefaultL8R8BitDepthParams>( &context, lhs.const_map(), rhs.const_map(), &result_clamped, lhs_offset, rhs_offset, clamp_pipeline); for (int r = 0; r < rows; r++) { for (int c = 0; c < cols; c++) { std::int32_t raw = result_raw_int32(r, c); std::int32_t expected = std::min(std::max(raw, clamp_stage.min), clamp_stage.max); Check(expected == result_clamped(r, c)); } } // Test tanh OutputStageTanh tanh_stage; const std::int32_t real_zero_as_int32 = (raw_max + raw_min) / 2; const std::int32_t real_amplitude_as_int32 = (raw_max - raw_min) / 16; tanh_stage.real_zero_as_int32 = real_zero_as_int32; tanh_stage.real_amplitude_as_int32 = real_amplitude_as_int32; auto tanh_pipeline = std::make_tuple(tanh_stage); Matrix<std::int32_t, ResultOrder> result_tanh(rows, cols); GemmWithOutputPipeline<std::uint8_t, std::int32_t, DefaultL8R8BitDepthParams>( &context, lhs.const_map(), rhs.const_map(), &result_tanh, lhs_offset, rhs_offset, tanh_pipeline); for (int r = 0; r < rows; r++) { for (int c = 0; c < cols; c++) { std::int32_t raw = result_raw_int32(r, c); double real_input = double(raw - real_zero_as_int32) / real_amplitude_as_int32; double expected = std::tanh(real_input); std::int32_t actual_int32 = result_tanh(r, c); double actual = double(actual_int32 - real_zero_as_int32) / real_amplitude_as_int32; Check(std::abs(expected - actual) < 2e-4); } } // Test a pipeline with bias and clamp auto bias_clamp_pipeline = std::make_tuple(col_bias_addition_stage, clamp_stage); Matrix<std::int32_t, ResultOrder> result_biased_clamped(rows, cols); GemmWithOutputPipeline<std::uint8_t, std::int32_t, DefaultL8R8BitDepthParams>( &context, lhs.const_map(), rhs.const_map(), &result_biased_clamped, lhs_offset, rhs_offset, bias_clamp_pipeline); for (int r = 0; r < rows; r++) { for (int c = 0; c < cols; c++) { std::int32_t raw = result_raw_int32(r, c); std::int32_t biased = raw + col_vector_data[r]; std::int32_t expected = std::min(std::max(biased, clamp_stage.min), clamp_stage.max); Check(expected == result_biased_clamped(r, c)); } } // Test a full pipeline with bias and clamp and quantization down to 8bit // result auto bias_clamp_quantize_cast_pipeline = std::make_tuple(col_bias_addition_stage, clamp_stage, quantize_down_stage, saturating_cast_stage); Matrix<std::uint8_t, ResultOrder> result_biased_clamped_quantized_casted( rows, cols); GemmWithOutputPipeline<std::uint8_t, std::uint8_t, DefaultL8R8BitDepthParams>( &context, lhs.const_map(), rhs.const_map(), &result_biased_clamped_quantized_casted, lhs_offset, rhs_offset, bias_clamp_quantize_cast_pipeline); for (int r = 0; r < rows; r++) { for (int c = 0; c < cols; c++) { std::int32_t quantized = RoundingDivideByPOT( (result_biased_clamped(r, c) + result_offset) * result_mult_int, result_shift); std::uint8_t expected = std::min(std::max(quantized, 0), 255); Check(expected == result_biased_clamped_quantized_casted(r, c)); } } // Test a pipeline with the fixed-point-multiplier variant stage for the // quantizing down of 32bit accumulators. // // First, figure appropriate fixedpoint multiplier and shift values. std::int32_t result_fixedpoint_multiplier = result_mult_int; std::int32_t result_fixedpoint_shift = result_shift; Check(result_mult_int > 0); Check(result_shift > 0); result_fixedpoint_multiplier = result_mult_int; result_fixedpoint_shift = result_shift - 31; while (result_fixedpoint_multiplier < (1 << 30)) { result_fixedpoint_multiplier <<= 1; result_fixedpoint_shift++; } Check(result_fixedpoint_shift >= 0); // Now test OutputStageQuantizeDownInt32ToUint8ScaleByFixedPoint OutputStageQuantizeDownInt32ToUint8ScaleByFixedPoint quantize_down_by_fixedpoint_stage; quantize_down_by_fixedpoint_stage.result_offset_after_shift = static_cast<std::int32_t>( round(static_cast<double>(result_offset * result_mult_int) / (1 << result_shift))); quantize_down_by_fixedpoint_stage.result_fixedpoint_multiplier = result_fixedpoint_multiplier; quantize_down_by_fixedpoint_stage.result_shift = result_fixedpoint_shift; auto quantize_down_by_fixedpoint_pipeline = std::make_tuple(quantize_down_by_fixedpoint_stage); Matrix<std::int32_t, ResultOrder> result_quantized_down_by_fixedpoint_int32( rows, cols); GemmWithOutputPipeline<std::uint8_t, std::int32_t, DefaultL8R8BitDepthParams>( &context, lhs.const_map(), rhs.const_map(), &result_quantized_down_by_fixedpoint_int32, lhs_offset, rhs_offset, quantize_down_by_fixedpoint_pipeline); std::vector<std::int32_t> diffs_caused_by_fixedpoint; for (int r = 0; r < rows; r++) { for (int c = 0; c < cols; c++) { const std::int32_t actual = result_quantized_down_by_fixedpoint_int32(r, c); const std::int32_t raw = result_raw_int32(r, c); const std::int32_t expected = quantize_down_by_fixedpoint_stage.result_offset_after_shift + RoundingDivideByPOT(SaturatingRoundingDoublingHighMul( raw, result_fixedpoint_multiplier), result_fixedpoint_shift); Check(actual == expected); } } // Test the variant of the familiar default pipeline consisting of // quantize-down and // clamp-and-cast-to-uint8, where we used fixedpoint multipliers for the // downscaling. auto quantize_down_by_fixedpoint_and_saturating_cast_pipeline = std::make_tuple(quantize_down_by_fixedpoint_stage, saturating_cast_stage); Matrix<std::uint8_t, ResultOrder> result_quantized_down_by_fixedpoint_saturated_uint8(rows, cols); GemmWithOutputPipeline<std::uint8_t, std::uint8_t, DefaultL8R8BitDepthParams>( &context, lhs.const_map(), rhs.const_map(), &result_quantized_down_by_fixedpoint_saturated_uint8, lhs_offset, rhs_offset, quantize_down_by_fixedpoint_and_saturating_cast_pipeline); for (int r = 0; r < rows; r++) { for (int c = 0; c < cols; c++) { std::int32_t quantized = result_quantized_down_by_fixedpoint_int32(r, c); std::uint8_t expected = std::min(std::max(quantized, 0), 255); Check(expected == result_quantized_down_by_fixedpoint_saturated_uint8(r, c)); } } printf("TestOutputStages: PASS with ResultOrder=%s\n", OrderName(ResultOrder)); } #ifndef GEMMLOWP_SKIP_EXHAUSTIVE_TESTS template <typename BitDepthParams> void TestExhaustively() { GemmContext context; // Test the internal GEMM interfaces test_gemm< SingleThreadGemmWrapper<DefaultKernel<BitDepthParams>, std::uint8_t, BitDepthParams>>(&context); test_gemm< MultiThreadGemmWrapper<DefaultKernel<BitDepthParams>, std::uint8_t, BitDepthParams>>(&context); // Test the public GEMM interfaces test_gemm<PublicGemmWrapper<std::uint8_t, BitDepthParams>>(&context); // Test GEMV cases (internal interfaces) test_gemv< SingleThreadGemmWrapper<DefaultKernel<BitDepthParams>, std::uint8_t, BitDepthParams>>(&context); test_gemv< MultiThreadGemmWrapper<DefaultKernel<BitDepthParams>, std::uint8_t, BitDepthParams>>(&context); // Test GEMV cases (public interfaces) test_gemv<PublicGemmWrapper<std::uint8_t, BitDepthParams>>(&context); } template <eight_bit_int_gemm::BitDepthSetting BitDepthSetting> void TestExhaustivelyEightBitIntGemm() { GemmContext context; test_gemv<EightBitIntGemmWrapper<std::uint8_t, BitDepthSetting>>(&context); test_gemv<EightBitIntGemmWrapper<std::uint8_t, BitDepthSetting>>(&context); test_gemm<EightBitIntGemmWrapper<std::uint8_t, BitDepthSetting>>(&context); } void TestKernels() { GemmContext context; // Test specific kernels with various different formats, // to exercises corner cases especially in the packing code. test_gemm_kernel< ReferenceKernel<KernelFormat<KernelSideFormat<CellFormat<1, 1>, 1>, KernelSideFormat<CellFormat<1, 1>, 1>>>>( &context); test_gemm_kernel< ReferenceKernel<KernelFormat<KernelSideFormat<CellFormat<4, 2>, 1>, KernelSideFormat<CellFormat<4, 2>, 2>>>>( &context); test_gemm_kernel< ReferenceKernel<KernelFormat<KernelSideFormat<CellFormat<4, 2>, 4>, KernelSideFormat<CellFormat<4, 2>, 5>>>>( &context); test_gemm_kernel<ReferenceKernel<KernelFormat< KernelSideFormat<CellFormat<3, 4, CellOrder::DepthMajor>, 2>, KernelSideFormat<CellFormat<5, 4, CellOrder::DepthMajor>, 3>>>>(&context); test_gemm_kernel<ReferenceKernel<KernelFormat< KernelSideFormat<CellFormat<3, 4, CellOrder::WidthMajor>, 2>, KernelSideFormat<CellFormat<5, 4, CellOrder::WidthMajor>, 3>>>>(&context); test_gemm_kernel<ReferenceKernel<KernelFormat< KernelSideFormat<CellFormat<5, 2, CellOrder::WidthMajor>, 3>, KernelSideFormat<CellFormat<4, 2, CellOrder::DepthMajor>, 2>>>>(&context); test_gemm_kernel<ReferenceKernel<KernelFormat< KernelSideFormat<CellFormat<5, 2, CellOrder::DepthMajor>, 3>, KernelSideFormat<CellFormat<4, 2, CellOrder::WidthMajor>, 2>>>>(&context); test_gemm_kernel<ReferenceKernel<KernelFormat< KernelSideFormat<CellFormat<8, 8, CellOrder::Diagonal>, 2>, KernelSideFormat<CellFormat<3, 8, CellOrder::WidthMajor>, 1>>>>(&context); test_gemm_kernel<ReferenceKernel<KernelFormat< KernelSideFormat<CellFormat<1, 4, CellOrder::DepthMajor>, 1>, KernelSideFormat<CellFormat<4, 4, CellOrder::Diagonal>, 1>>>>(&context); } #endif // not GEMMLOWP_SKIP_EXHAUSTIVE_TESTS template <typename BitDepthParams> void TestOutputStages() { // Test non-default output pipelines with various combinations of // output stages. TestOutputStages<BitDepthParams, MapOrder::RowMajor>(63, 10, 127, 5, 17, 14); TestOutputStages<BitDepthParams, MapOrder::ColMajor>(63, 10, 127, 5, 17, 14); TestOutputStages<BitDepthParams, MapOrder::RowMajor>(630, 10, 1270, 5, 17, 14); TestOutputStages<BitDepthParams, MapOrder::ColMajor>(630, 10, 1270, 5, 17, 14); } void test() { #ifdef GEMMLOWP_TEST_PROFILE RegisterCurrentThreadForProfiling(); StartProfiling(); #endif // Run a first quick test against hand-calculated data. TestWithSmallData(); #ifndef GEMMLOWP_SKIP_EXHAUSTIVE_TESTS TestExhaustively<DefaultL8R8BitDepthParams>(); TestExhaustively<L8R8WithLhsNonzeroBitDepthParams>(); TestExhaustively<DefaultL7R5BitDepthParams>(); // legacy, same as L8R8 TestExhaustivelyEightBitIntGemm<eight_bit_int_gemm::BitDepthSetting::A8B8>(); TestExhaustivelyEightBitIntGemm<eight_bit_int_gemm::BitDepthSetting::A5B7>(); TestKernels(); #endif // Run against actual data from a network evaluation. TestWithRealData(eight_bit_int_gemm::BitDepthSetting::A8B8, 0, 0); TestWithRealData(eight_bit_int_gemm::BitDepthSetting::A5B7, 2, 10); // Test non-default output pipelines with various combinations of // output stages. TestOutputStages<DefaultL8R8BitDepthParams>(); TestOutputStages<L8R8WithLhsNonzeroBitDepthParams>(); // Test per channel quantization. TestWithSmallDataPerChannelQuantization(); TestWithLargeDataPerChannelQuantization(); TestMultithreadedPerChannelQuantization(); #ifdef GEMMLOWP_TEST_PROFILE FinishProfiling(); #endif std::cerr << "All tests passed." << std::endl; // We have been testing the eight_bit_int_gemm, so we should free its // persistent // resources now to avoid having leak-checking tools report leaks. eight_bit_int_gemm::FreePersistentResources(); } } // end namespace gemmlowp // For iOS, we need to define our own main(), so skip it here. #if !(defined(__APPLE__) && (TARGET_OS_IPHONE || TARGET_IPHONE_SIMULATOR)) int main() { gemmlowp::test(); } #endif