// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2015 Eugene Brevdo <ebrevdo@gmail.com> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_SPECIAL_FUNCTIONS_H #define EIGEN_SPECIAL_FUNCTIONS_H namespace Eigen { namespace internal { // Parts of this code are based on the Cephes Math Library. // // Cephes Math Library Release 2.8: June, 2000 // Copyright 1984, 1987, 1992, 2000 by Stephen L. Moshier // // Permission has been kindly provided by the original author // to incorporate the Cephes software into the Eigen codebase: // // From: Stephen Moshier // To: Eugene Brevdo // Subject: Re: Permission to wrap several cephes functions in Eigen // // Hello Eugene, // // Thank you for writing. // // If your licensing is similar to BSD, the formal way that has been // handled is simply to add a statement to the effect that you are incorporating // the Cephes software by permission of the author. // // Good luck with your project, // Steve namespace cephes { /* polevl (modified for Eigen) * * Evaluate polynomial * * * * SYNOPSIS: * * int N; * Scalar x, y, coef[N+1]; * * y = polevl<decltype(x), N>( x, coef); * * * * DESCRIPTION: * * Evaluates polynomial of degree N: * * 2 N * y = C + C x + C x +...+ C x * 0 1 2 N * * Coefficients are stored in reverse order: * * coef[0] = C , ..., coef[N] = C . * N 0 * * The function p1evl() assumes that coef[N] = 1.0 and is * omitted from the array. Its calling arguments are * otherwise the same as polevl(). * * * The Eigen implementation is templatized. For best speed, store * coef as a const array (constexpr), e.g. * * const double coef[] = {1.0, 2.0, 3.0, ...}; * */ template <typename Scalar, int N> struct polevl { EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Scalar run(const Scalar x, const Scalar coef[]) { EIGEN_STATIC_ASSERT((N > 0), YOU_MADE_A_PROGRAMMING_MISTAKE); return polevl<Scalar, N - 1>::run(x, coef) * x + coef[N]; } }; template <typename Scalar> struct polevl<Scalar, 0> { EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Scalar run(const Scalar, const Scalar coef[]) { return coef[0]; } }; } // end namespace cephes /**************************************************************************** * Implementation of lgamma, requires C++11/C99 * ****************************************************************************/ template <typename Scalar> struct lgamma_impl { EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Scalar run(const Scalar) { EIGEN_STATIC_ASSERT((internal::is_same<Scalar, Scalar>::value == false), THIS_TYPE_IS_NOT_SUPPORTED); return Scalar(0); } }; template <typename Scalar> struct lgamma_retval { typedef Scalar type; }; #if EIGEN_HAS_C99_MATH template <> struct lgamma_impl<float> { EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE float run(float x) { #if !defined(__CUDA_ARCH__) && (defined(_BSD_SOURCE) || defined(_SVID_SOURCE)) && !defined(__APPLE__) int signgam; return ::lgammaf_r(x, &signgam); #else return ::lgammaf(x); #endif } }; template <> struct lgamma_impl<double> { EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE double run(double x) { #if !defined(__CUDA_ARCH__) && (defined(_BSD_SOURCE) || defined(_SVID_SOURCE)) && !defined(__APPLE__) int signgam; return ::lgamma_r(x, &signgam); #else return ::lgamma(x); #endif } }; #endif /**************************************************************************** * Implementation of digamma (psi), based on Cephes * ****************************************************************************/ template <typename Scalar> struct digamma_retval { typedef Scalar type; }; /* * * Polynomial evaluation helper for the Psi (digamma) function. * * digamma_impl_maybe_poly::run(s) evaluates the asymptotic Psi expansion for * input Scalar s, assuming s is above 10.0. * * If s is above a certain threshold for the given Scalar type, zero * is returned. Otherwise the polynomial is evaluated with enough * coefficients for results matching Scalar machine precision. * * */ template <typename Scalar> struct digamma_impl_maybe_poly { EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Scalar run(const Scalar) { EIGEN_STATIC_ASSERT((internal::is_same<Scalar, Scalar>::value == false), THIS_TYPE_IS_NOT_SUPPORTED); return Scalar(0); } }; template <> struct digamma_impl_maybe_poly<float> { EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE float run(const float s) { const float A[] = { -4.16666666666666666667E-3f, 3.96825396825396825397E-3f, -8.33333333333333333333E-3f, 8.33333333333333333333E-2f }; float z; if (s < 1.0e8f) { z = 1.0f / (s * s); return z * cephes::polevl<float, 3>::run(z, A); } else return 0.0f; } }; template <> struct digamma_impl_maybe_poly<double> { EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE double run(const double s) { const double A[] = { 8.33333333333333333333E-2, -2.10927960927960927961E-2, 7.57575757575757575758E-3, -4.16666666666666666667E-3, 3.96825396825396825397E-3, -8.33333333333333333333E-3, 8.33333333333333333333E-2 }; double z; if (s < 1.0e17) { z = 1.0 / (s * s); return z * cephes::polevl<double, 6>::run(z, A); } else return 0.0; } }; template <typename Scalar> struct digamma_impl { EIGEN_DEVICE_FUNC static Scalar run(Scalar x) { /* * * Psi (digamma) function (modified for Eigen) * * * SYNOPSIS: * * double x, y, psi(); * * y = psi( x ); * * * DESCRIPTION: * * d - * psi(x) = -- ln | (x) * dx * * is the logarithmic derivative of the gamma function. * For integer x, * n-1 * - * psi(n) = -EUL + > 1/k. * - * k=1 * * If x is negative, it is transformed to a positive argument by the * reflection formula psi(1-x) = psi(x) + pi cot(pi x). * For general positive x, the argument is made greater than 10 * using the recurrence psi(x+1) = psi(x) + 1/x. * Then the following asymptotic expansion is applied: * * inf. B * - 2k * psi(x) = log(x) - 1/2x - > ------- * - 2k * k=1 2k x * * where the B2k are Bernoulli numbers. * * ACCURACY (float): * Relative error (except absolute when |psi| < 1): * arithmetic domain # trials peak rms * IEEE 0,30 30000 1.3e-15 1.4e-16 * IEEE -30,0 40000 1.5e-15 2.2e-16 * * ACCURACY (double): * Absolute error, relative when |psi| > 1 : * arithmetic domain # trials peak rms * IEEE -33,0 30000 8.2e-7 1.2e-7 * IEEE 0,33 100000 7.3e-7 7.7e-8 * * ERROR MESSAGES: * message condition value returned * psi singularity x integer <=0 INFINITY */ Scalar p, q, nz, s, w, y; bool negative = false; const Scalar maxnum = NumTraits<Scalar>::infinity(); const Scalar m_pi = Scalar(EIGEN_PI); const Scalar zero = Scalar(0); const Scalar one = Scalar(1); const Scalar half = Scalar(0.5); nz = zero; if (x <= zero) { negative = true; q = x; p = numext::floor(q); if (p == q) { return maxnum; } /* Remove the zeros of tan(m_pi x) * by subtracting the nearest integer from x */ nz = q - p; if (nz != half) { if (nz > half) { p += one; nz = q - p; } nz = m_pi / numext::tan(m_pi * nz); } else { nz = zero; } x = one - x; } /* use the recurrence psi(x+1) = psi(x) + 1/x. */ s = x; w = zero; while (s < Scalar(10)) { w += one / s; s += one; } y = digamma_impl_maybe_poly<Scalar>::run(s); y = numext::log(s) - (half / s) - y - w; return (negative) ? y - nz : y; } }; /**************************************************************************** * Implementation of erf, requires C++11/C99 * ****************************************************************************/ template <typename Scalar> struct erf_impl { EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Scalar run(const Scalar) { EIGEN_STATIC_ASSERT((internal::is_same<Scalar, Scalar>::value == false), THIS_TYPE_IS_NOT_SUPPORTED); return Scalar(0); } }; template <typename Scalar> struct erf_retval { typedef Scalar type; }; #if EIGEN_HAS_C99_MATH template <> struct erf_impl<float> { EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE float run(float x) { return ::erff(x); } }; template <> struct erf_impl<double> { EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE double run(double x) { return ::erf(x); } }; #endif // EIGEN_HAS_C99_MATH /*************************************************************************** * Implementation of erfc, requires C++11/C99 * ****************************************************************************/ template <typename Scalar> struct erfc_impl { EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Scalar run(const Scalar) { EIGEN_STATIC_ASSERT((internal::is_same<Scalar, Scalar>::value == false), THIS_TYPE_IS_NOT_SUPPORTED); return Scalar(0); } }; template <typename Scalar> struct erfc_retval { typedef Scalar type; }; #if EIGEN_HAS_C99_MATH template <> struct erfc_impl<float> { EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE float run(const float x) { return ::erfcf(x); } }; template <> struct erfc_impl<double> { EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE double run(const double x) { return ::erfc(x); } }; #endif // EIGEN_HAS_C99_MATH /************************************************************************************************************** * Implementation of igammac (complemented incomplete gamma integral), based on Cephes but requires C++11/C99 * **************************************************************************************************************/ template <typename Scalar> struct igammac_retval { typedef Scalar type; }; // NOTE: cephes_helper is also used to implement zeta template <typename Scalar> struct cephes_helper { EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Scalar machep() { assert(false && "machep not supported for this type"); return 0.0; } EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Scalar big() { assert(false && "big not supported for this type"); return 0.0; } EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Scalar biginv() { assert(false && "biginv not supported for this type"); return 0.0; } }; template <> struct cephes_helper<float> { EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE float machep() { return NumTraits<float>::epsilon() / 2; // 1.0 - machep == 1.0 } EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE float big() { // use epsneg (1.0 - epsneg == 1.0) return 1.0f / (NumTraits<float>::epsilon() / 2); } EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE float biginv() { // epsneg return machep(); } }; template <> struct cephes_helper<double> { EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE double machep() { return NumTraits<double>::epsilon() / 2; // 1.0 - machep == 1.0 } EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE double big() { return 1.0 / NumTraits<double>::epsilon(); } EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE double biginv() { // inverse of eps return NumTraits<double>::epsilon(); } }; #if !EIGEN_HAS_C99_MATH template <typename Scalar> struct igammac_impl { EIGEN_DEVICE_FUNC static Scalar run(Scalar a, Scalar x) { EIGEN_STATIC_ASSERT((internal::is_same<Scalar, Scalar>::value == false), THIS_TYPE_IS_NOT_SUPPORTED); return Scalar(0); } }; #else template <typename Scalar> struct igamma_impl; // predeclare igamma_impl template <typename Scalar> struct igammac_impl { EIGEN_DEVICE_FUNC static Scalar run(Scalar a, Scalar x) { /* igamc() * * Incomplete gamma integral (modified for Eigen) * * * * SYNOPSIS: * * double a, x, y, igamc(); * * y = igamc( a, x ); * * DESCRIPTION: * * The function is defined by * * * igamc(a,x) = 1 - igam(a,x) * * inf. * - * 1 | | -t a-1 * = ----- | e t dt. * - | | * | (a) - * x * * * In this implementation both arguments must be positive. * The integral is evaluated by either a power series or * continued fraction expansion, depending on the relative * values of a and x. * * ACCURACY (float): * * Relative error: * arithmetic domain # trials peak rms * IEEE 0,30 30000 7.8e-6 5.9e-7 * * * ACCURACY (double): * * Tested at random a, x. * a x Relative error: * arithmetic domain domain # trials peak rms * IEEE 0.5,100 0,100 200000 1.9e-14 1.7e-15 * IEEE 0.01,0.5 0,100 200000 1.4e-13 1.6e-15 * */ /* Cephes Math Library Release 2.2: June, 1992 Copyright 1985, 1987, 1992 by Stephen L. Moshier Direct inquiries to 30 Frost Street, Cambridge, MA 02140 */ const Scalar zero = 0; const Scalar one = 1; const Scalar nan = NumTraits<Scalar>::quiet_NaN(); if ((x < zero) || (a <= zero)) { // domain error return nan; } if ((x < one) || (x < a)) { /* The checks above ensure that we meet the preconditions for * igamma_impl::Impl(), so call it, rather than igamma_impl::Run(). * Calling Run() would also work, but in that case the compiler may not be * able to prove that igammac_impl::Run and igamma_impl::Run are not * mutually recursive. This leads to worse code, particularly on * platforms like nvptx, where recursion is allowed only begrudgingly. */ return (one - igamma_impl<Scalar>::Impl(a, x)); } return Impl(a, x); } private: /* igamma_impl calls igammac_impl::Impl. */ friend struct igamma_impl<Scalar>; /* Actually computes igamc(a, x). * * Preconditions: * a > 0 * x >= 1 * x >= a */ EIGEN_DEVICE_FUNC static Scalar Impl(Scalar a, Scalar x) { const Scalar zero = 0; const Scalar one = 1; const Scalar two = 2; const Scalar machep = cephes_helper<Scalar>::machep(); const Scalar maxlog = numext::log(NumTraits<Scalar>::highest()); const Scalar big = cephes_helper<Scalar>::big(); const Scalar biginv = cephes_helper<Scalar>::biginv(); const Scalar inf = NumTraits<Scalar>::infinity(); Scalar ans, ax, c, yc, r, t, y, z; Scalar pk, pkm1, pkm2, qk, qkm1, qkm2; if (x == inf) return zero; // std::isinf crashes on CUDA /* Compute x**a * exp(-x) / gamma(a) */ ax = a * numext::log(x) - x - lgamma_impl<Scalar>::run(a); if (ax < -maxlog) { // underflow return zero; } ax = numext::exp(ax); // continued fraction y = one - a; z = x + y + one; c = zero; pkm2 = one; qkm2 = x; pkm1 = x + one; qkm1 = z * x; ans = pkm1 / qkm1; while (true) { c += one; y += one; z += two; yc = y * c; pk = pkm1 * z - pkm2 * yc; qk = qkm1 * z - qkm2 * yc; if (qk != zero) { r = pk / qk; t = numext::abs((ans - r) / r); ans = r; } else { t = one; } pkm2 = pkm1; pkm1 = pk; qkm2 = qkm1; qkm1 = qk; if (numext::abs(pk) > big) { pkm2 *= biginv; pkm1 *= biginv; qkm2 *= biginv; qkm1 *= biginv; } if (t <= machep) { break; } } return (ans * ax); } }; #endif // EIGEN_HAS_C99_MATH /************************************************************************************************ * Implementation of igamma (incomplete gamma integral), based on Cephes but requires C++11/C99 * ************************************************************************************************/ template <typename Scalar> struct igamma_retval { typedef Scalar type; }; #if !EIGEN_HAS_C99_MATH template <typename Scalar> struct igamma_impl { EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Scalar run(Scalar a, Scalar x) { EIGEN_STATIC_ASSERT((internal::is_same<Scalar, Scalar>::value == false), THIS_TYPE_IS_NOT_SUPPORTED); return Scalar(0); } }; #else template <typename Scalar> struct igamma_impl { EIGEN_DEVICE_FUNC static Scalar run(Scalar a, Scalar x) { /* igam() * Incomplete gamma integral * * * * SYNOPSIS: * * double a, x, y, igam(); * * y = igam( a, x ); * * DESCRIPTION: * * The function is defined by * * x * - * 1 | | -t a-1 * igam(a,x) = ----- | e t dt. * - | | * | (a) - * 0 * * * In this implementation both arguments must be positive. * The integral is evaluated by either a power series or * continued fraction expansion, depending on the relative * values of a and x. * * ACCURACY (double): * * Relative error: * arithmetic domain # trials peak rms * IEEE 0,30 200000 3.6e-14 2.9e-15 * IEEE 0,100 300000 9.9e-14 1.5e-14 * * * ACCURACY (float): * * Relative error: * arithmetic domain # trials peak rms * IEEE 0,30 20000 7.8e-6 5.9e-7 * */ /* Cephes Math Library Release 2.2: June, 1992 Copyright 1985, 1987, 1992 by Stephen L. Moshier Direct inquiries to 30 Frost Street, Cambridge, MA 02140 */ /* left tail of incomplete gamma function: * * inf. k * a -x - x * x e > ---------- * - - * k=0 | (a+k+1) * */ const Scalar zero = 0; const Scalar one = 1; const Scalar nan = NumTraits<Scalar>::quiet_NaN(); if (x == zero) return zero; if ((x < zero) || (a <= zero)) { // domain error return nan; } if ((x > one) && (x > a)) { /* The checks above ensure that we meet the preconditions for * igammac_impl::Impl(), so call it, rather than igammac_impl::Run(). * Calling Run() would also work, but in that case the compiler may not be * able to prove that igammac_impl::Run and igamma_impl::Run are not * mutually recursive. This leads to worse code, particularly on * platforms like nvptx, where recursion is allowed only begrudgingly. */ return (one - igammac_impl<Scalar>::Impl(a, x)); } return Impl(a, x); } private: /* igammac_impl calls igamma_impl::Impl. */ friend struct igammac_impl<Scalar>; /* Actually computes igam(a, x). * * Preconditions: * x > 0 * a > 0 * !(x > 1 && x > a) */ EIGEN_DEVICE_FUNC static Scalar Impl(Scalar a, Scalar x) { const Scalar zero = 0; const Scalar one = 1; const Scalar machep = cephes_helper<Scalar>::machep(); const Scalar maxlog = numext::log(NumTraits<Scalar>::highest()); Scalar ans, ax, c, r; /* Compute x**a * exp(-x) / gamma(a) */ ax = a * numext::log(x) - x - lgamma_impl<Scalar>::run(a); if (ax < -maxlog) { // underflow return zero; } ax = numext::exp(ax); /* power series */ r = a; c = one; ans = one; while (true) { r += one; c *= x/r; ans += c; if (c/ans <= machep) { break; } } return (ans * ax / a); } }; #endif // EIGEN_HAS_C99_MATH /***************************************************************************** * Implementation of Riemann zeta function of two arguments, based on Cephes * *****************************************************************************/ template <typename Scalar> struct zeta_retval { typedef Scalar type; }; template <typename Scalar> struct zeta_impl_series { EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Scalar run(const Scalar) { EIGEN_STATIC_ASSERT((internal::is_same<Scalar, Scalar>::value == false), THIS_TYPE_IS_NOT_SUPPORTED); return Scalar(0); } }; template <> struct zeta_impl_series<float> { EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE bool run(float& a, float& b, float& s, const float x, const float machep) { int i = 0; while(i < 9) { i += 1; a += 1.0f; b = numext::pow( a, -x ); s += b; if( numext::abs(b/s) < machep ) return true; } //Return whether we are done return false; } }; template <> struct zeta_impl_series<double> { EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE bool run(double& a, double& b, double& s, const double x, const double machep) { int i = 0; while( (i < 9) || (a <= 9.0) ) { i += 1; a += 1.0; b = numext::pow( a, -x ); s += b; if( numext::abs(b/s) < machep ) return true; } //Return whether we are done return false; } }; template <typename Scalar> struct zeta_impl { EIGEN_DEVICE_FUNC static Scalar run(Scalar x, Scalar q) { /* zeta.c * * Riemann zeta function of two arguments * * * * SYNOPSIS: * * double x, q, y, zeta(); * * y = zeta( x, q ); * * * * DESCRIPTION: * * * * inf. * - -x * zeta(x,q) = > (k+q) * - * k=0 * * where x > 1 and q is not a negative integer or zero. * The Euler-Maclaurin summation formula is used to obtain * the expansion * * n * - -x * zeta(x,q) = > (k+q) * - * k=1 * * 1-x inf. B x(x+1)...(x+2j) * (n+q) 1 - 2j * + --------- - ------- + > -------------------- * x-1 x - x+2j+1 * 2(n+q) j=1 (2j)! (n+q) * * where the B2j are Bernoulli numbers. Note that (see zetac.c) * zeta(x,1) = zetac(x) + 1. * * * * ACCURACY: * * Relative error for single precision: * arithmetic domain # trials peak rms * IEEE 0,25 10000 6.9e-7 1.0e-7 * * Large arguments may produce underflow in powf(), in which * case the results are inaccurate. * * REFERENCE: * * Gradshteyn, I. S., and I. M. Ryzhik, Tables of Integrals, * Series, and Products, p. 1073; Academic Press, 1980. * */ int i; Scalar p, r, a, b, k, s, t, w; const Scalar A[] = { Scalar(12.0), Scalar(-720.0), Scalar(30240.0), Scalar(-1209600.0), Scalar(47900160.0), Scalar(-1.8924375803183791606e9), /*1.307674368e12/691*/ Scalar(7.47242496e10), Scalar(-2.950130727918164224e12), /*1.067062284288e16/3617*/ Scalar(1.1646782814350067249e14), /*5.109094217170944e18/43867*/ Scalar(-4.5979787224074726105e15), /*8.028576626982912e20/174611*/ Scalar(1.8152105401943546773e17), /*1.5511210043330985984e23/854513*/ Scalar(-7.1661652561756670113e18) /*1.6938241367317436694528e27/236364091*/ }; const Scalar maxnum = NumTraits<Scalar>::infinity(); const Scalar zero = 0.0, half = 0.5, one = 1.0; const Scalar machep = cephes_helper<Scalar>::machep(); const Scalar nan = NumTraits<Scalar>::quiet_NaN(); if( x == one ) return maxnum; if( x < one ) { return nan; } if( q <= zero ) { if(q == numext::floor(q)) { return maxnum; } p = x; r = numext::floor(p); if (p != r) return nan; } /* Permit negative q but continue sum until n+q > +9 . * This case should be handled by a reflection formula. * If q<0 and x is an integer, there is a relation to * the polygamma function. */ s = numext::pow( q, -x ); a = q; b = zero; // Run the summation in a helper function that is specific to the floating precision if (zeta_impl_series<Scalar>::run(a, b, s, x, machep)) { return s; } w = a; s += b*w/(x-one); s -= half * b; a = one; k = zero; for( i=0; i<12; i++ ) { a *= x + k; b /= w; t = a*b/A[i]; s = s + t; t = numext::abs(t/s); if( t < machep ) { break; } k += one; a *= x + k; b /= w; k += one; } return s; } }; /**************************************************************************** * Implementation of polygamma function, requires C++11/C99 * ****************************************************************************/ template <typename Scalar> struct polygamma_retval { typedef Scalar type; }; #if !EIGEN_HAS_C99_MATH template <typename Scalar> struct polygamma_impl { EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Scalar run(Scalar n, Scalar x) { EIGEN_STATIC_ASSERT((internal::is_same<Scalar, Scalar>::value == false), THIS_TYPE_IS_NOT_SUPPORTED); return Scalar(0); } }; #else template <typename Scalar> struct polygamma_impl { EIGEN_DEVICE_FUNC static Scalar run(Scalar n, Scalar x) { Scalar zero = 0.0, one = 1.0; Scalar nplus = n + one; const Scalar nan = NumTraits<Scalar>::quiet_NaN(); // Check that n is an integer if (numext::floor(n) != n) { return nan; } // Just return the digamma function for n = 1 else if (n == zero) { return digamma_impl<Scalar>::run(x); } // Use the same implementation as scipy else { Scalar factorial = numext::exp(lgamma_impl<Scalar>::run(nplus)); return numext::pow(-one, nplus) * factorial * zeta_impl<Scalar>::run(nplus, x); } } }; #endif // EIGEN_HAS_C99_MATH /************************************************************************************************ * Implementation of betainc (incomplete beta integral), based on Cephes but requires C++11/C99 * ************************************************************************************************/ template <typename Scalar> struct betainc_retval { typedef Scalar type; }; #if !EIGEN_HAS_C99_MATH template <typename Scalar> struct betainc_impl { EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Scalar run(Scalar a, Scalar b, Scalar x) { EIGEN_STATIC_ASSERT((internal::is_same<Scalar, Scalar>::value == false), THIS_TYPE_IS_NOT_SUPPORTED); return Scalar(0); } }; #else template <typename Scalar> struct betainc_impl { EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Scalar run(Scalar, Scalar, Scalar) { /* betaincf.c * * Incomplete beta integral * * * SYNOPSIS: * * float a, b, x, y, betaincf(); * * y = betaincf( a, b, x ); * * * DESCRIPTION: * * Returns incomplete beta integral of the arguments, evaluated * from zero to x. The function is defined as * * x * - - * | (a+b) | | a-1 b-1 * ----------- | t (1-t) dt. * - - | | * | (a) | (b) - * 0 * * The domain of definition is 0 <= x <= 1. In this * implementation a and b are restricted to positive values. * The integral from x to 1 may be obtained by the symmetry * relation * * 1 - betainc( a, b, x ) = betainc( b, a, 1-x ). * * The integral is evaluated by a continued fraction expansion. * If a < 1, the function calls itself recursively after a * transformation to increase a to a+1. * * ACCURACY (float): * * Tested at random points (a,b,x) with a and b in the indicated * interval and x between 0 and 1. * * arithmetic domain # trials peak rms * Relative error: * IEEE 0,30 10000 3.7e-5 5.1e-6 * IEEE 0,100 10000 1.7e-4 2.5e-5 * The useful domain for relative error is limited by underflow * of the single precision exponential function. * Absolute error: * IEEE 0,30 100000 2.2e-5 9.6e-7 * IEEE 0,100 10000 6.5e-5 3.7e-6 * * Larger errors may occur for extreme ratios of a and b. * * ACCURACY (double): * arithmetic domain # trials peak rms * IEEE 0,5 10000 6.9e-15 4.5e-16 * IEEE 0,85 250000 2.2e-13 1.7e-14 * IEEE 0,1000 30000 5.3e-12 6.3e-13 * IEEE 0,10000 250000 9.3e-11 7.1e-12 * IEEE 0,100000 10000 8.7e-10 4.8e-11 * Outputs smaller than the IEEE gradual underflow threshold * were excluded from these statistics. * * ERROR MESSAGES: * message condition value returned * incbet domain x<0, x>1 nan * incbet underflow nan */ EIGEN_STATIC_ASSERT((internal::is_same<Scalar, Scalar>::value == false), THIS_TYPE_IS_NOT_SUPPORTED); return Scalar(0); } }; /* Continued fraction expansion #1 for incomplete beta integral (small_branch = True) * Continued fraction expansion #2 for incomplete beta integral (small_branch = False) */ template <typename Scalar> struct incbeta_cfe { EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Scalar run(Scalar a, Scalar b, Scalar x, bool small_branch) { EIGEN_STATIC_ASSERT((internal::is_same<Scalar, float>::value || internal::is_same<Scalar, double>::value), THIS_TYPE_IS_NOT_SUPPORTED); const Scalar big = cephes_helper<Scalar>::big(); const Scalar machep = cephes_helper<Scalar>::machep(); const Scalar biginv = cephes_helper<Scalar>::biginv(); const Scalar zero = 0; const Scalar one = 1; const Scalar two = 2; Scalar xk, pk, pkm1, pkm2, qk, qkm1, qkm2; Scalar k1, k2, k3, k4, k5, k6, k7, k8, k26update; Scalar ans; int n; const int num_iters = (internal::is_same<Scalar, float>::value) ? 100 : 300; const Scalar thresh = (internal::is_same<Scalar, float>::value) ? machep : Scalar(3) * machep; Scalar r = (internal::is_same<Scalar, float>::value) ? zero : one; if (small_branch) { k1 = a; k2 = a + b; k3 = a; k4 = a + one; k5 = one; k6 = b - one; k7 = k4; k8 = a + two; k26update = one; } else { k1 = a; k2 = b - one; k3 = a; k4 = a + one; k5 = one; k6 = a + b; k7 = a + one; k8 = a + two; k26update = -one; x = x / (one - x); } pkm2 = zero; qkm2 = one; pkm1 = one; qkm1 = one; ans = one; n = 0; do { xk = -(x * k1 * k2) / (k3 * k4); pk = pkm1 + pkm2 * xk; qk = qkm1 + qkm2 * xk; pkm2 = pkm1; pkm1 = pk; qkm2 = qkm1; qkm1 = qk; xk = (x * k5 * k6) / (k7 * k8); pk = pkm1 + pkm2 * xk; qk = qkm1 + qkm2 * xk; pkm2 = pkm1; pkm1 = pk; qkm2 = qkm1; qkm1 = qk; if (qk != zero) { r = pk / qk; if (numext::abs(ans - r) < numext::abs(r) * thresh) { return r; } ans = r; } k1 += one; k2 += k26update; k3 += two; k4 += two; k5 += one; k6 -= k26update; k7 += two; k8 += two; if ((numext::abs(qk) + numext::abs(pk)) > big) { pkm2 *= biginv; pkm1 *= biginv; qkm2 *= biginv; qkm1 *= biginv; } if ((numext::abs(qk) < biginv) || (numext::abs(pk) < biginv)) { pkm2 *= big; pkm1 *= big; qkm2 *= big; qkm1 *= big; } } while (++n < num_iters); return ans; } }; /* Helper functions depending on the Scalar type */ template <typename Scalar> struct betainc_helper {}; template <> struct betainc_helper<float> { /* Core implementation, assumes a large (> 1.0) */ EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE float incbsa(float aa, float bb, float xx) { float ans, a, b, t, x, onemx; bool reversed_a_b = false; onemx = 1.0f - xx; /* see if x is greater than the mean */ if (xx > (aa / (aa + bb))) { reversed_a_b = true; a = bb; b = aa; t = xx; x = onemx; } else { a = aa; b = bb; t = onemx; x = xx; } /* Choose expansion for optimal convergence */ if (b > 10.0f) { if (numext::abs(b * x / a) < 0.3f) { t = betainc_helper<float>::incbps(a, b, x); if (reversed_a_b) t = 1.0f - t; return t; } } ans = x * (a + b - 2.0f) / (a - 1.0f); if (ans < 1.0f) { ans = incbeta_cfe<float>::run(a, b, x, true /* small_branch */); t = b * numext::log(t); } else { ans = incbeta_cfe<float>::run(a, b, x, false /* small_branch */); t = (b - 1.0f) * numext::log(t); } t += a * numext::log(x) + lgamma_impl<float>::run(a + b) - lgamma_impl<float>::run(a) - lgamma_impl<float>::run(b); t += numext::log(ans / a); t = numext::exp(t); if (reversed_a_b) t = 1.0f - t; return t; } EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE float incbps(float a, float b, float x) { float t, u, y, s; const float machep = cephes_helper<float>::machep(); y = a * numext::log(x) + (b - 1.0f) * numext::log1p(-x) - numext::log(a); y -= lgamma_impl<float>::run(a) + lgamma_impl<float>::run(b); y += lgamma_impl<float>::run(a + b); t = x / (1.0f - x); s = 0.0f; u = 1.0f; do { b -= 1.0f; if (b == 0.0f) { break; } a += 1.0f; u *= t * b / a; s += u; } while (numext::abs(u) > machep); return numext::exp(y) * (1.0f + s); } }; template <> struct betainc_impl<float> { EIGEN_DEVICE_FUNC static float run(float a, float b, float x) { const float nan = NumTraits<float>::quiet_NaN(); float ans, t; if (a <= 0.0f) return nan; if (b <= 0.0f) return nan; if ((x <= 0.0f) || (x >= 1.0f)) { if (x == 0.0f) return 0.0f; if (x == 1.0f) return 1.0f; // mtherr("betaincf", DOMAIN); return nan; } /* transformation for small aa */ if (a <= 1.0f) { ans = betainc_helper<float>::incbsa(a + 1.0f, b, x); t = a * numext::log(x) + b * numext::log1p(-x) + lgamma_impl<float>::run(a + b) - lgamma_impl<float>::run(a + 1.0f) - lgamma_impl<float>::run(b); return (ans + numext::exp(t)); } else { return betainc_helper<float>::incbsa(a, b, x); } } }; template <> struct betainc_helper<double> { EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE double incbps(double a, double b, double x) { const double machep = cephes_helper<double>::machep(); double s, t, u, v, n, t1, z, ai; ai = 1.0 / a; u = (1.0 - b) * x; v = u / (a + 1.0); t1 = v; t = u; n = 2.0; s = 0.0; z = machep * ai; while (numext::abs(v) > z) { u = (n - b) * x / n; t *= u; v = t / (a + n); s += v; n += 1.0; } s += t1; s += ai; u = a * numext::log(x); // TODO: gamma() is not directly implemented in Eigen. /* if ((a + b) < maxgam && numext::abs(u) < maxlog) { t = gamma(a + b) / (gamma(a) * gamma(b)); s = s * t * pow(x, a); } else { */ t = lgamma_impl<double>::run(a + b) - lgamma_impl<double>::run(a) - lgamma_impl<double>::run(b) + u + numext::log(s); return s = numext::exp(t); } }; template <> struct betainc_impl<double> { EIGEN_DEVICE_FUNC static double run(double aa, double bb, double xx) { const double nan = NumTraits<double>::quiet_NaN(); const double machep = cephes_helper<double>::machep(); // const double maxgam = 171.624376956302725; double a, b, t, x, xc, w, y; bool reversed_a_b = false; if (aa <= 0.0 || bb <= 0.0) { return nan; // goto domerr; } if ((xx <= 0.0) || (xx >= 1.0)) { if (xx == 0.0) return (0.0); if (xx == 1.0) return (1.0); // mtherr("incbet", DOMAIN); return nan; } if ((bb * xx) <= 1.0 && xx <= 0.95) { return betainc_helper<double>::incbps(aa, bb, xx); } w = 1.0 - xx; /* Reverse a and b if x is greater than the mean. */ if (xx > (aa / (aa + bb))) { reversed_a_b = true; a = bb; b = aa; xc = xx; x = w; } else { a = aa; b = bb; xc = w; x = xx; } if (reversed_a_b && (b * x) <= 1.0 && x <= 0.95) { t = betainc_helper<double>::incbps(a, b, x); if (t <= machep) { t = 1.0 - machep; } else { t = 1.0 - t; } return t; } /* Choose expansion for better convergence. */ y = x * (a + b - 2.0) - (a - 1.0); if (y < 0.0) { w = incbeta_cfe<double>::run(a, b, x, true /* small_branch */); } else { w = incbeta_cfe<double>::run(a, b, x, false /* small_branch */) / xc; } /* Multiply w by the factor a b _ _ _ x (1-x) | (a+b) / ( a | (a) | (b) ) . */ y = a * numext::log(x); t = b * numext::log(xc); // TODO: gamma is not directly implemented in Eigen. /* if ((a + b) < maxgam && numext::abs(y) < maxlog && numext::abs(t) < maxlog) { t = pow(xc, b); t *= pow(x, a); t /= a; t *= w; t *= gamma(a + b) / (gamma(a) * gamma(b)); } else { */ /* Resort to logarithms. */ y += t + lgamma_impl<double>::run(a + b) - lgamma_impl<double>::run(a) - lgamma_impl<double>::run(b); y += numext::log(w / a); t = numext::exp(y); /* } */ // done: if (reversed_a_b) { if (t <= machep) { t = 1.0 - machep; } else { t = 1.0 - t; } } return t; } }; #endif // EIGEN_HAS_C99_MATH } // end namespace internal namespace numext { template <typename Scalar> EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(lgamma, Scalar) lgamma(const Scalar& x) { return EIGEN_MATHFUNC_IMPL(lgamma, Scalar)::run(x); } template <typename Scalar> EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(digamma, Scalar) digamma(const Scalar& x) { return EIGEN_MATHFUNC_IMPL(digamma, Scalar)::run(x); } template <typename Scalar> EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(zeta, Scalar) zeta(const Scalar& x, const Scalar& q) { return EIGEN_MATHFUNC_IMPL(zeta, Scalar)::run(x, q); } template <typename Scalar> EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(polygamma, Scalar) polygamma(const Scalar& n, const Scalar& x) { return EIGEN_MATHFUNC_IMPL(polygamma, Scalar)::run(n, x); } template <typename Scalar> EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(erf, Scalar) erf(const Scalar& x) { return EIGEN_MATHFUNC_IMPL(erf, Scalar)::run(x); } template <typename Scalar> EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(erfc, Scalar) erfc(const Scalar& x) { return EIGEN_MATHFUNC_IMPL(erfc, Scalar)::run(x); } template <typename Scalar> EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(igamma, Scalar) igamma(const Scalar& a, const Scalar& x) { return EIGEN_MATHFUNC_IMPL(igamma, Scalar)::run(a, x); } template <typename Scalar> EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(igammac, Scalar) igammac(const Scalar& a, const Scalar& x) { return EIGEN_MATHFUNC_IMPL(igammac, Scalar)::run(a, x); } template <typename Scalar> EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(betainc, Scalar) betainc(const Scalar& a, const Scalar& b, const Scalar& x) { return EIGEN_MATHFUNC_IMPL(betainc, Scalar)::run(a, b, x); } } // end namespace numext } // end namespace Eigen #endif // EIGEN_SPECIAL_FUNCTIONS_H