// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2011, 2013 Jitse Niesen <jitse@maths.leeds.ac.uk> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_MATRIX_SQUARE_ROOT #define EIGEN_MATRIX_SQUARE_ROOT namespace Eigen { namespace internal { // pre: T.block(i,i,2,2) has complex conjugate eigenvalues // post: sqrtT.block(i,i,2,2) is square root of T.block(i,i,2,2) template <typename MatrixType, typename ResultType> void matrix_sqrt_quasi_triangular_2x2_diagonal_block(const MatrixType& T, typename MatrixType::Index i, ResultType& sqrtT) { // TODO: This case (2-by-2 blocks with complex conjugate eigenvalues) is probably hidden somewhere // in EigenSolver. If we expose it, we could call it directly from here. typedef typename traits<MatrixType>::Scalar Scalar; Matrix<Scalar,2,2> block = T.template block<2,2>(i,i); EigenSolver<Matrix<Scalar,2,2> > es(block); sqrtT.template block<2,2>(i,i) = (es.eigenvectors() * es.eigenvalues().cwiseSqrt().asDiagonal() * es.eigenvectors().inverse()).real(); } // pre: block structure of T is such that (i,j) is a 1x1 block, // all blocks of sqrtT to left of and below (i,j) are correct // post: sqrtT(i,j) has the correct value template <typename MatrixType, typename ResultType> void matrix_sqrt_quasi_triangular_1x1_off_diagonal_block(const MatrixType& T, typename MatrixType::Index i, typename MatrixType::Index j, ResultType& sqrtT) { typedef typename traits<MatrixType>::Scalar Scalar; Scalar tmp = (sqrtT.row(i).segment(i+1,j-i-1) * sqrtT.col(j).segment(i+1,j-i-1)).value(); sqrtT.coeffRef(i,j) = (T.coeff(i,j) - tmp) / (sqrtT.coeff(i,i) + sqrtT.coeff(j,j)); } // similar to compute1x1offDiagonalBlock() template <typename MatrixType, typename ResultType> void matrix_sqrt_quasi_triangular_1x2_off_diagonal_block(const MatrixType& T, typename MatrixType::Index i, typename MatrixType::Index j, ResultType& sqrtT) { typedef typename traits<MatrixType>::Scalar Scalar; Matrix<Scalar,1,2> rhs = T.template block<1,2>(i,j); if (j-i > 1) rhs -= sqrtT.block(i, i+1, 1, j-i-1) * sqrtT.block(i+1, j, j-i-1, 2); Matrix<Scalar,2,2> A = sqrtT.coeff(i,i) * Matrix<Scalar,2,2>::Identity(); A += sqrtT.template block<2,2>(j,j).transpose(); sqrtT.template block<1,2>(i,j).transpose() = A.fullPivLu().solve(rhs.transpose()); } // similar to compute1x1offDiagonalBlock() template <typename MatrixType, typename ResultType> void matrix_sqrt_quasi_triangular_2x1_off_diagonal_block(const MatrixType& T, typename MatrixType::Index i, typename MatrixType::Index j, ResultType& sqrtT) { typedef typename traits<MatrixType>::Scalar Scalar; Matrix<Scalar,2,1> rhs = T.template block<2,1>(i,j); if (j-i > 2) rhs -= sqrtT.block(i, i+2, 2, j-i-2) * sqrtT.block(i+2, j, j-i-2, 1); Matrix<Scalar,2,2> A = sqrtT.coeff(j,j) * Matrix<Scalar,2,2>::Identity(); A += sqrtT.template block<2,2>(i,i); sqrtT.template block<2,1>(i,j) = A.fullPivLu().solve(rhs); } // solves the equation A X + X B = C where all matrices are 2-by-2 template <typename MatrixType> void matrix_sqrt_quasi_triangular_solve_auxiliary_equation(MatrixType& X, const MatrixType& A, const MatrixType& B, const MatrixType& C) { typedef typename traits<MatrixType>::Scalar Scalar; Matrix<Scalar,4,4> coeffMatrix = Matrix<Scalar,4,4>::Zero(); coeffMatrix.coeffRef(0,0) = A.coeff(0,0) + B.coeff(0,0); coeffMatrix.coeffRef(1,1) = A.coeff(0,0) + B.coeff(1,1); coeffMatrix.coeffRef(2,2) = A.coeff(1,1) + B.coeff(0,0); coeffMatrix.coeffRef(3,3) = A.coeff(1,1) + B.coeff(1,1); coeffMatrix.coeffRef(0,1) = B.coeff(1,0); coeffMatrix.coeffRef(0,2) = A.coeff(0,1); coeffMatrix.coeffRef(1,0) = B.coeff(0,1); coeffMatrix.coeffRef(1,3) = A.coeff(0,1); coeffMatrix.coeffRef(2,0) = A.coeff(1,0); coeffMatrix.coeffRef(2,3) = B.coeff(1,0); coeffMatrix.coeffRef(3,1) = A.coeff(1,0); coeffMatrix.coeffRef(3,2) = B.coeff(0,1); Matrix<Scalar,4,1> rhs; rhs.coeffRef(0) = C.coeff(0,0); rhs.coeffRef(1) = C.coeff(0,1); rhs.coeffRef(2) = C.coeff(1,0); rhs.coeffRef(3) = C.coeff(1,1); Matrix<Scalar,4,1> result; result = coeffMatrix.fullPivLu().solve(rhs); X.coeffRef(0,0) = result.coeff(0); X.coeffRef(0,1) = result.coeff(1); X.coeffRef(1,0) = result.coeff(2); X.coeffRef(1,1) = result.coeff(3); } // similar to compute1x1offDiagonalBlock() template <typename MatrixType, typename ResultType> void matrix_sqrt_quasi_triangular_2x2_off_diagonal_block(const MatrixType& T, typename MatrixType::Index i, typename MatrixType::Index j, ResultType& sqrtT) { typedef typename traits<MatrixType>::Scalar Scalar; Matrix<Scalar,2,2> A = sqrtT.template block<2,2>(i,i); Matrix<Scalar,2,2> B = sqrtT.template block<2,2>(j,j); Matrix<Scalar,2,2> C = T.template block<2,2>(i,j); if (j-i > 2) C -= sqrtT.block(i, i+2, 2, j-i-2) * sqrtT.block(i+2, j, j-i-2, 2); Matrix<Scalar,2,2> X; matrix_sqrt_quasi_triangular_solve_auxiliary_equation(X, A, B, C); sqrtT.template block<2,2>(i,j) = X; } // pre: T is quasi-upper-triangular and sqrtT is a zero matrix of the same size // post: the diagonal blocks of sqrtT are the square roots of the diagonal blocks of T template <typename MatrixType, typename ResultType> void matrix_sqrt_quasi_triangular_diagonal(const MatrixType& T, ResultType& sqrtT) { using std::sqrt; typedef typename MatrixType::Index Index; const Index size = T.rows(); for (Index i = 0; i < size; i++) { if (i == size - 1 || T.coeff(i+1, i) == 0) { eigen_assert(T(i,i) >= 0); sqrtT.coeffRef(i,i) = sqrt(T.coeff(i,i)); } else { matrix_sqrt_quasi_triangular_2x2_diagonal_block(T, i, sqrtT); ++i; } } } // pre: T is quasi-upper-triangular and diagonal blocks of sqrtT are square root of diagonal blocks of T. // post: sqrtT is the square root of T. template <typename MatrixType, typename ResultType> void matrix_sqrt_quasi_triangular_off_diagonal(const MatrixType& T, ResultType& sqrtT) { typedef typename MatrixType::Index Index; const Index size = T.rows(); for (Index j = 1; j < size; j++) { if (T.coeff(j, j-1) != 0) // if T(j-1:j, j-1:j) is a 2-by-2 block continue; for (Index i = j-1; i >= 0; i--) { if (i > 0 && T.coeff(i, i-1) != 0) // if T(i-1:i, i-1:i) is a 2-by-2 block continue; bool iBlockIs2x2 = (i < size - 1) && (T.coeff(i+1, i) != 0); bool jBlockIs2x2 = (j < size - 1) && (T.coeff(j+1, j) != 0); if (iBlockIs2x2 && jBlockIs2x2) matrix_sqrt_quasi_triangular_2x2_off_diagonal_block(T, i, j, sqrtT); else if (iBlockIs2x2 && !jBlockIs2x2) matrix_sqrt_quasi_triangular_2x1_off_diagonal_block(T, i, j, sqrtT); else if (!iBlockIs2x2 && jBlockIs2x2) matrix_sqrt_quasi_triangular_1x2_off_diagonal_block(T, i, j, sqrtT); else if (!iBlockIs2x2 && !jBlockIs2x2) matrix_sqrt_quasi_triangular_1x1_off_diagonal_block(T, i, j, sqrtT); } } } } // end of namespace internal /** \ingroup MatrixFunctions_Module * \brief Compute matrix square root of quasi-triangular matrix. * * \tparam MatrixType type of \p arg, the argument of matrix square root, * expected to be an instantiation of the Matrix class template. * \tparam ResultType type of \p result, where result is to be stored. * \param[in] arg argument of matrix square root. * \param[out] result matrix square root of upper Hessenberg part of \p arg. * * This function computes the square root of the upper quasi-triangular matrix stored in the upper * Hessenberg part of \p arg. Only the upper Hessenberg part of \p result is updated, the rest is * not touched. See MatrixBase::sqrt() for details on how this computation is implemented. * * \sa MatrixSquareRoot, MatrixSquareRootQuasiTriangular */ template <typename MatrixType, typename ResultType> void matrix_sqrt_quasi_triangular(const MatrixType &arg, ResultType &result) { eigen_assert(arg.rows() == arg.cols()); result.resize(arg.rows(), arg.cols()); internal::matrix_sqrt_quasi_triangular_diagonal(arg, result); internal::matrix_sqrt_quasi_triangular_off_diagonal(arg, result); } /** \ingroup MatrixFunctions_Module * \brief Compute matrix square root of triangular matrix. * * \tparam MatrixType type of \p arg, the argument of matrix square root, * expected to be an instantiation of the Matrix class template. * \tparam ResultType type of \p result, where result is to be stored. * \param[in] arg argument of matrix square root. * \param[out] result matrix square root of upper triangular part of \p arg. * * Only the upper triangular part (including the diagonal) of \p result is updated, the rest is not * touched. See MatrixBase::sqrt() for details on how this computation is implemented. * * \sa MatrixSquareRoot, MatrixSquareRootQuasiTriangular */ template <typename MatrixType, typename ResultType> void matrix_sqrt_triangular(const MatrixType &arg, ResultType &result) { using std::sqrt; typedef typename MatrixType::Index Index; typedef typename MatrixType::Scalar Scalar; eigen_assert(arg.rows() == arg.cols()); // Compute square root of arg and store it in upper triangular part of result // This uses that the square root of triangular matrices can be computed directly. result.resize(arg.rows(), arg.cols()); for (Index i = 0; i < arg.rows(); i++) { result.coeffRef(i,i) = sqrt(arg.coeff(i,i)); } for (Index j = 1; j < arg.cols(); j++) { for (Index i = j-1; i >= 0; i--) { // if i = j-1, then segment has length 0 so tmp = 0 Scalar tmp = (result.row(i).segment(i+1,j-i-1) * result.col(j).segment(i+1,j-i-1)).value(); // denominator may be zero if original matrix is singular result.coeffRef(i,j) = (arg.coeff(i,j) - tmp) / (result.coeff(i,i) + result.coeff(j,j)); } } } namespace internal { /** \ingroup MatrixFunctions_Module * \brief Helper struct for computing matrix square roots of general matrices. * \tparam MatrixType type of the argument of the matrix square root, * expected to be an instantiation of the Matrix class template. * * \sa MatrixSquareRootTriangular, MatrixSquareRootQuasiTriangular, MatrixBase::sqrt() */ template <typename MatrixType, int IsComplex = NumTraits<typename internal::traits<MatrixType>::Scalar>::IsComplex> struct matrix_sqrt_compute { /** \brief Compute the matrix square root * * \param[in] arg matrix whose square root is to be computed. * \param[out] result square root of \p arg. * * See MatrixBase::sqrt() for details on how this computation is implemented. */ template <typename ResultType> static void run(const MatrixType &arg, ResultType &result); }; // ********** Partial specialization for real matrices ********** template <typename MatrixType> struct matrix_sqrt_compute<MatrixType, 0> { template <typename ResultType> static void run(const MatrixType &arg, ResultType &result) { eigen_assert(arg.rows() == arg.cols()); // Compute Schur decomposition of arg const RealSchur<MatrixType> schurOfA(arg); const MatrixType& T = schurOfA.matrixT(); const MatrixType& U = schurOfA.matrixU(); // Compute square root of T MatrixType sqrtT = MatrixType::Zero(arg.rows(), arg.cols()); matrix_sqrt_quasi_triangular(T, sqrtT); // Compute square root of arg result = U * sqrtT * U.adjoint(); } }; // ********** Partial specialization for complex matrices ********** template <typename MatrixType> struct matrix_sqrt_compute<MatrixType, 1> { template <typename ResultType> static void run(const MatrixType &arg, ResultType &result) { eigen_assert(arg.rows() == arg.cols()); // Compute Schur decomposition of arg const ComplexSchur<MatrixType> schurOfA(arg); const MatrixType& T = schurOfA.matrixT(); const MatrixType& U = schurOfA.matrixU(); // Compute square root of T MatrixType sqrtT; matrix_sqrt_triangular(T, sqrtT); // Compute square root of arg result = U * (sqrtT.template triangularView<Upper>() * U.adjoint()); } }; } // end namespace internal /** \ingroup MatrixFunctions_Module * * \brief Proxy for the matrix square root of some matrix (expression). * * \tparam Derived Type of the argument to the matrix square root. * * This class holds the argument to the matrix square root until it * is assigned or evaluated for some other reason (so the argument * should not be changed in the meantime). It is the return type of * MatrixBase::sqrt() and most of the time this is the only way it is * used. */ template<typename Derived> class MatrixSquareRootReturnValue : public ReturnByValue<MatrixSquareRootReturnValue<Derived> > { protected: typedef typename Derived::Index Index; typedef typename internal::ref_selector<Derived>::type DerivedNested; public: /** \brief Constructor. * * \param[in] src %Matrix (expression) forming the argument of the * matrix square root. */ explicit MatrixSquareRootReturnValue(const Derived& src) : m_src(src) { } /** \brief Compute the matrix square root. * * \param[out] result the matrix square root of \p src in the * constructor. */ template <typename ResultType> inline void evalTo(ResultType& result) const { typedef typename internal::nested_eval<Derived, 10>::type DerivedEvalType; typedef typename internal::remove_all<DerivedEvalType>::type DerivedEvalTypeClean; DerivedEvalType tmp(m_src); internal::matrix_sqrt_compute<DerivedEvalTypeClean>::run(tmp, result); } Index rows() const { return m_src.rows(); } Index cols() const { return m_src.cols(); } protected: const DerivedNested m_src; }; namespace internal { template<typename Derived> struct traits<MatrixSquareRootReturnValue<Derived> > { typedef typename Derived::PlainObject ReturnType; }; } template <typename Derived> const MatrixSquareRootReturnValue<Derived> MatrixBase<Derived>::sqrt() const { eigen_assert(rows() == cols()); return MatrixSquareRootReturnValue<Derived>(derived()); } } // end namespace Eigen #endif // EIGEN_MATRIX_FUNCTION