// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2012, 2013 Chen-Pang He <jdh8@ms63.hinet.net> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_MATRIX_POWER #define EIGEN_MATRIX_POWER namespace Eigen { template<typename MatrixType> class MatrixPower; /** * \ingroup MatrixFunctions_Module * * \brief Proxy for the matrix power of some matrix. * * \tparam MatrixType type of the base, a matrix. * * This class holds the arguments to the matrix power until it is * assigned or evaluated for some other reason (so the argument * should not be changed in the meantime). It is the return type of * MatrixPower::operator() and related functions and most of the * time this is the only way it is used. */ /* TODO This class is only used by MatrixPower, so it should be nested * into MatrixPower, like MatrixPower::ReturnValue. However, my * compiler complained about unused template parameter in the * following declaration in namespace internal. * * template<typename MatrixType> * struct traits<MatrixPower<MatrixType>::ReturnValue>; */ template<typename MatrixType> class MatrixPowerParenthesesReturnValue : public ReturnByValue< MatrixPowerParenthesesReturnValue<MatrixType> > { public: typedef typename MatrixType::RealScalar RealScalar; typedef typename MatrixType::Index Index; /** * \brief Constructor. * * \param[in] pow %MatrixPower storing the base. * \param[in] p scalar, the exponent of the matrix power. */ MatrixPowerParenthesesReturnValue(MatrixPower<MatrixType>& pow, RealScalar p) : m_pow(pow), m_p(p) { } /** * \brief Compute the matrix power. * * \param[out] result */ template<typename ResultType> inline void evalTo(ResultType& res) const { m_pow.compute(res, m_p); } Index rows() const { return m_pow.rows(); } Index cols() const { return m_pow.cols(); } private: MatrixPower<MatrixType>& m_pow; const RealScalar m_p; }; /** * \ingroup MatrixFunctions_Module * * \brief Class for computing matrix powers. * * \tparam MatrixType type of the base, expected to be an instantiation * of the Matrix class template. * * This class is capable of computing triangular real/complex matrices * raised to a power in the interval \f$ (-1, 1) \f$. * * \note Currently this class is only used by MatrixPower. One may * insist that this be nested into MatrixPower. This class is here to * faciliate future development of triangular matrix functions. */ template<typename MatrixType> class MatrixPowerAtomic : internal::noncopyable { private: enum { RowsAtCompileTime = MatrixType::RowsAtCompileTime, MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime }; typedef typename MatrixType::Scalar Scalar; typedef typename MatrixType::RealScalar RealScalar; typedef std::complex<RealScalar> ComplexScalar; typedef typename MatrixType::Index Index; typedef Block<MatrixType,Dynamic,Dynamic> ResultType; const MatrixType& m_A; RealScalar m_p; void computePade(int degree, const MatrixType& IminusT, ResultType& res) const; void compute2x2(ResultType& res, RealScalar p) const; void computeBig(ResultType& res) const; static int getPadeDegree(float normIminusT); static int getPadeDegree(double normIminusT); static int getPadeDegree(long double normIminusT); static ComplexScalar computeSuperDiag(const ComplexScalar&, const ComplexScalar&, RealScalar p); static RealScalar computeSuperDiag(RealScalar, RealScalar, RealScalar p); public: /** * \brief Constructor. * * \param[in] T the base of the matrix power. * \param[in] p the exponent of the matrix power, should be in * \f$ (-1, 1) \f$. * * The class stores a reference to T, so it should not be changed * (or destroyed) before evaluation. Only the upper triangular * part of T is read. */ MatrixPowerAtomic(const MatrixType& T, RealScalar p); /** * \brief Compute the matrix power. * * \param[out] res \f$ A^p \f$ where A and p are specified in the * constructor. */ void compute(ResultType& res) const; }; template<typename MatrixType> MatrixPowerAtomic<MatrixType>::MatrixPowerAtomic(const MatrixType& T, RealScalar p) : m_A(T), m_p(p) { eigen_assert(T.rows() == T.cols()); eigen_assert(p > -1 && p < 1); } template<typename MatrixType> void MatrixPowerAtomic<MatrixType>::compute(ResultType& res) const { using std::pow; switch (m_A.rows()) { case 0: break; case 1: res(0,0) = pow(m_A(0,0), m_p); break; case 2: compute2x2(res, m_p); break; default: computeBig(res); } } template<typename MatrixType> void MatrixPowerAtomic<MatrixType>::computePade(int degree, const MatrixType& IminusT, ResultType& res) const { int i = 2*degree; res = (m_p-degree) / (2*i-2) * IminusT; for (--i; i; --i) { res = (MatrixType::Identity(IminusT.rows(), IminusT.cols()) + res).template triangularView<Upper>() .solve((i==1 ? -m_p : i&1 ? (-m_p-i/2)/(2*i) : (m_p-i/2)/(2*i-2)) * IminusT).eval(); } res += MatrixType::Identity(IminusT.rows(), IminusT.cols()); } // This function assumes that res has the correct size (see bug 614) template<typename MatrixType> void MatrixPowerAtomic<MatrixType>::compute2x2(ResultType& res, RealScalar p) const { using std::abs; using std::pow; res.coeffRef(0,0) = pow(m_A.coeff(0,0), p); for (Index i=1; i < m_A.cols(); ++i) { res.coeffRef(i,i) = pow(m_A.coeff(i,i), p); if (m_A.coeff(i-1,i-1) == m_A.coeff(i,i)) res.coeffRef(i-1,i) = p * pow(m_A.coeff(i,i), p-1); else if (2*abs(m_A.coeff(i-1,i-1)) < abs(m_A.coeff(i,i)) || 2*abs(m_A.coeff(i,i)) < abs(m_A.coeff(i-1,i-1))) res.coeffRef(i-1,i) = (res.coeff(i,i)-res.coeff(i-1,i-1)) / (m_A.coeff(i,i)-m_A.coeff(i-1,i-1)); else res.coeffRef(i-1,i) = computeSuperDiag(m_A.coeff(i,i), m_A.coeff(i-1,i-1), p); res.coeffRef(i-1,i) *= m_A.coeff(i-1,i); } } template<typename MatrixType> void MatrixPowerAtomic<MatrixType>::computeBig(ResultType& res) const { using std::ldexp; const int digits = std::numeric_limits<RealScalar>::digits; const RealScalar maxNormForPade = digits <= 24? 4.3386528e-1L // single precision : digits <= 53? 2.789358995219730e-1L // double precision : digits <= 64? 2.4471944416607995472e-1L // extended precision : digits <= 106? 1.1016843812851143391275867258512e-1L // double-double : 9.134603732914548552537150753385375e-2L; // quadruple precision MatrixType IminusT, sqrtT, T = m_A.template triangularView<Upper>(); RealScalar normIminusT; int degree, degree2, numberOfSquareRoots = 0; bool hasExtraSquareRoot = false; for (Index i=0; i < m_A.cols(); ++i) eigen_assert(m_A(i,i) != RealScalar(0)); while (true) { IminusT = MatrixType::Identity(m_A.rows(), m_A.cols()) - T; normIminusT = IminusT.cwiseAbs().colwise().sum().maxCoeff(); if (normIminusT < maxNormForPade) { degree = getPadeDegree(normIminusT); degree2 = getPadeDegree(normIminusT/2); if (degree - degree2 <= 1 || hasExtraSquareRoot) break; hasExtraSquareRoot = true; } matrix_sqrt_triangular(T, sqrtT); T = sqrtT.template triangularView<Upper>(); ++numberOfSquareRoots; } computePade(degree, IminusT, res); for (; numberOfSquareRoots; --numberOfSquareRoots) { compute2x2(res, ldexp(m_p, -numberOfSquareRoots)); res = res.template triangularView<Upper>() * res; } compute2x2(res, m_p); } template<typename MatrixType> inline int MatrixPowerAtomic<MatrixType>::getPadeDegree(float normIminusT) { const float maxNormForPade[] = { 2.8064004e-1f /* degree = 3 */ , 4.3386528e-1f }; int degree = 3; for (; degree <= 4; ++degree) if (normIminusT <= maxNormForPade[degree - 3]) break; return degree; } template<typename MatrixType> inline int MatrixPowerAtomic<MatrixType>::getPadeDegree(double normIminusT) { const double maxNormForPade[] = { 1.884160592658218e-2 /* degree = 3 */ , 6.038881904059573e-2, 1.239917516308172e-1, 1.999045567181744e-1, 2.789358995219730e-1 }; int degree = 3; for (; degree <= 7; ++degree) if (normIminusT <= maxNormForPade[degree - 3]) break; return degree; } template<typename MatrixType> inline int MatrixPowerAtomic<MatrixType>::getPadeDegree(long double normIminusT) { #if LDBL_MANT_DIG == 53 const int maxPadeDegree = 7; const double maxNormForPade[] = { 1.884160592658218e-2L /* degree = 3 */ , 6.038881904059573e-2L, 1.239917516308172e-1L, 1.999045567181744e-1L, 2.789358995219730e-1L }; #elif LDBL_MANT_DIG <= 64 const int maxPadeDegree = 8; const long double maxNormForPade[] = { 6.3854693117491799460e-3L /* degree = 3 */ , 2.6394893435456973676e-2L, 6.4216043030404063729e-2L, 1.1701165502926694307e-1L, 1.7904284231268670284e-1L, 2.4471944416607995472e-1L }; #elif LDBL_MANT_DIG <= 106 const int maxPadeDegree = 10; const double maxNormForPade[] = { 1.0007161601787493236741409687186e-4L /* degree = 3 */ , 1.0007161601787493236741409687186e-3L, 4.7069769360887572939882574746264e-3L, 1.3220386624169159689406653101695e-2L, 2.8063482381631737920612944054906e-2L, 4.9625993951953473052385361085058e-2L, 7.7367040706027886224557538328171e-2L, 1.1016843812851143391275867258512e-1L }; #else const int maxPadeDegree = 10; const double maxNormForPade[] = { 5.524506147036624377378713555116378e-5L /* degree = 3 */ , 6.640600568157479679823602193345995e-4L, 3.227716520106894279249709728084626e-3L, 9.619593944683432960546978734646284e-3L, 2.134595382433742403911124458161147e-2L, 3.908166513900489428442993794761185e-2L, 6.266780814639442865832535460550138e-2L, 9.134603732914548552537150753385375e-2L }; #endif int degree = 3; for (; degree <= maxPadeDegree; ++degree) if (normIminusT <= maxNormForPade[degree - 3]) break; return degree; } template<typename MatrixType> inline typename MatrixPowerAtomic<MatrixType>::ComplexScalar MatrixPowerAtomic<MatrixType>::computeSuperDiag(const ComplexScalar& curr, const ComplexScalar& prev, RealScalar p) { using std::ceil; using std::exp; using std::log; using std::sinh; ComplexScalar logCurr = log(curr); ComplexScalar logPrev = log(prev); int unwindingNumber = ceil((numext::imag(logCurr - logPrev) - RealScalar(EIGEN_PI)) / RealScalar(2*EIGEN_PI)); ComplexScalar w = numext::log1p((curr-prev)/prev)/RealScalar(2) + ComplexScalar(0, EIGEN_PI*unwindingNumber); return RealScalar(2) * exp(RealScalar(0.5) * p * (logCurr + logPrev)) * sinh(p * w) / (curr - prev); } template<typename MatrixType> inline typename MatrixPowerAtomic<MatrixType>::RealScalar MatrixPowerAtomic<MatrixType>::computeSuperDiag(RealScalar curr, RealScalar prev, RealScalar p) { using std::exp; using std::log; using std::sinh; RealScalar w = numext::log1p((curr-prev)/prev)/RealScalar(2); return 2 * exp(p * (log(curr) + log(prev)) / 2) * sinh(p * w) / (curr - prev); } /** * \ingroup MatrixFunctions_Module * * \brief Class for computing matrix powers. * * \tparam MatrixType type of the base, expected to be an instantiation * of the Matrix class template. * * This class is capable of computing real/complex matrices raised to * an arbitrary real power. Meanwhile, it saves the result of Schur * decomposition if an non-integral power has even been calculated. * Therefore, if you want to compute multiple (>= 2) matrix powers * for the same matrix, using the class directly is more efficient than * calling MatrixBase::pow(). * * Example: * \include MatrixPower_optimal.cpp * Output: \verbinclude MatrixPower_optimal.out */ template<typename MatrixType> class MatrixPower : internal::noncopyable { private: typedef typename MatrixType::Scalar Scalar; typedef typename MatrixType::RealScalar RealScalar; typedef typename MatrixType::Index Index; public: /** * \brief Constructor. * * \param[in] A the base of the matrix power. * * The class stores a reference to A, so it should not be changed * (or destroyed) before evaluation. */ explicit MatrixPower(const MatrixType& A) : m_A(A), m_conditionNumber(0), m_rank(A.cols()), m_nulls(0) { eigen_assert(A.rows() == A.cols()); } /** * \brief Returns the matrix power. * * \param[in] p exponent, a real scalar. * \return The expression \f$ A^p \f$, where A is specified in the * constructor. */ const MatrixPowerParenthesesReturnValue<MatrixType> operator()(RealScalar p) { return MatrixPowerParenthesesReturnValue<MatrixType>(*this, p); } /** * \brief Compute the matrix power. * * \param[in] p exponent, a real scalar. * \param[out] res \f$ A^p \f$ where A is specified in the * constructor. */ template<typename ResultType> void compute(ResultType& res, RealScalar p); Index rows() const { return m_A.rows(); } Index cols() const { return m_A.cols(); } private: typedef std::complex<RealScalar> ComplexScalar; typedef Matrix<ComplexScalar, Dynamic, Dynamic, 0, MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime> ComplexMatrix; /** \brief Reference to the base of matrix power. */ typename MatrixType::Nested m_A; /** \brief Temporary storage. */ MatrixType m_tmp; /** \brief Store the result of Schur decomposition. */ ComplexMatrix m_T, m_U; /** \brief Store fractional power of m_T. */ ComplexMatrix m_fT; /** * \brief Condition number of m_A. * * It is initialized as 0 to avoid performing unnecessary Schur * decomposition, which is the bottleneck. */ RealScalar m_conditionNumber; /** \brief Rank of m_A. */ Index m_rank; /** \brief Rank deficiency of m_A. */ Index m_nulls; /** * \brief Split p into integral part and fractional part. * * \param[in] p The exponent. * \param[out] p The fractional part ranging in \f$ (-1, 1) \f$. * \param[out] intpart The integral part. * * Only if the fractional part is nonzero, it calls initialize(). */ void split(RealScalar& p, RealScalar& intpart); /** \brief Perform Schur decomposition for fractional power. */ void initialize(); template<typename ResultType> void computeIntPower(ResultType& res, RealScalar p); template<typename ResultType> void computeFracPower(ResultType& res, RealScalar p); template<int Rows, int Cols, int Options, int MaxRows, int MaxCols> static void revertSchur( Matrix<ComplexScalar, Rows, Cols, Options, MaxRows, MaxCols>& res, const ComplexMatrix& T, const ComplexMatrix& U); template<int Rows, int Cols, int Options, int MaxRows, int MaxCols> static void revertSchur( Matrix<RealScalar, Rows, Cols, Options, MaxRows, MaxCols>& res, const ComplexMatrix& T, const ComplexMatrix& U); }; template<typename MatrixType> template<typename ResultType> void MatrixPower<MatrixType>::compute(ResultType& res, RealScalar p) { using std::pow; switch (cols()) { case 0: break; case 1: res(0,0) = pow(m_A.coeff(0,0), p); break; default: RealScalar intpart; split(p, intpart); res = MatrixType::Identity(rows(), cols()); computeIntPower(res, intpart); if (p) computeFracPower(res, p); } } template<typename MatrixType> void MatrixPower<MatrixType>::split(RealScalar& p, RealScalar& intpart) { using std::floor; using std::pow; intpart = floor(p); p -= intpart; // Perform Schur decomposition if it is not yet performed and the power is // not an integer. if (!m_conditionNumber && p) initialize(); // Choose the more stable of intpart = floor(p) and intpart = ceil(p). if (p > RealScalar(0.5) && p > (1-p) * pow(m_conditionNumber, p)) { --p; ++intpart; } } template<typename MatrixType> void MatrixPower<MatrixType>::initialize() { const ComplexSchur<MatrixType> schurOfA(m_A); JacobiRotation<ComplexScalar> rot; ComplexScalar eigenvalue; m_fT.resizeLike(m_A); m_T = schurOfA.matrixT(); m_U = schurOfA.matrixU(); m_conditionNumber = m_T.diagonal().array().abs().maxCoeff() / m_T.diagonal().array().abs().minCoeff(); // Move zero eigenvalues to the bottom right corner. for (Index i = cols()-1; i>=0; --i) { if (m_rank <= 2) return; if (m_T.coeff(i,i) == RealScalar(0)) { for (Index j=i+1; j < m_rank; ++j) { eigenvalue = m_T.coeff(j,j); rot.makeGivens(m_T.coeff(j-1,j), eigenvalue); m_T.applyOnTheRight(j-1, j, rot); m_T.applyOnTheLeft(j-1, j, rot.adjoint()); m_T.coeffRef(j-1,j-1) = eigenvalue; m_T.coeffRef(j,j) = RealScalar(0); m_U.applyOnTheRight(j-1, j, rot); } --m_rank; } } m_nulls = rows() - m_rank; if (m_nulls) { eigen_assert(m_T.bottomRightCorner(m_nulls, m_nulls).isZero() && "Base of matrix power should be invertible or with a semisimple zero eigenvalue."); m_fT.bottomRows(m_nulls).fill(RealScalar(0)); } } template<typename MatrixType> template<typename ResultType> void MatrixPower<MatrixType>::computeIntPower(ResultType& res, RealScalar p) { using std::abs; using std::fmod; RealScalar pp = abs(p); if (p<0) m_tmp = m_A.inverse(); else m_tmp = m_A; while (true) { if (fmod(pp, 2) >= 1) res = m_tmp * res; pp /= 2; if (pp < 1) break; m_tmp *= m_tmp; } } template<typename MatrixType> template<typename ResultType> void MatrixPower<MatrixType>::computeFracPower(ResultType& res, RealScalar p) { Block<ComplexMatrix,Dynamic,Dynamic> blockTp(m_fT, 0, 0, m_rank, m_rank); eigen_assert(m_conditionNumber); eigen_assert(m_rank + m_nulls == rows()); MatrixPowerAtomic<ComplexMatrix>(m_T.topLeftCorner(m_rank, m_rank), p).compute(blockTp); if (m_nulls) { m_fT.topRightCorner(m_rank, m_nulls) = m_T.topLeftCorner(m_rank, m_rank).template triangularView<Upper>() .solve(blockTp * m_T.topRightCorner(m_rank, m_nulls)); } revertSchur(m_tmp, m_fT, m_U); res = m_tmp * res; } template<typename MatrixType> template<int Rows, int Cols, int Options, int MaxRows, int MaxCols> inline void MatrixPower<MatrixType>::revertSchur( Matrix<ComplexScalar, Rows, Cols, Options, MaxRows, MaxCols>& res, const ComplexMatrix& T, const ComplexMatrix& U) { res.noalias() = U * (T.template triangularView<Upper>() * U.adjoint()); } template<typename MatrixType> template<int Rows, int Cols, int Options, int MaxRows, int MaxCols> inline void MatrixPower<MatrixType>::revertSchur( Matrix<RealScalar, Rows, Cols, Options, MaxRows, MaxCols>& res, const ComplexMatrix& T, const ComplexMatrix& U) { res.noalias() = (U * (T.template triangularView<Upper>() * U.adjoint())).real(); } /** * \ingroup MatrixFunctions_Module * * \brief Proxy for the matrix power of some matrix (expression). * * \tparam Derived type of the base, a matrix (expression). * * This class holds the arguments to the matrix power until it is * assigned or evaluated for some other reason (so the argument * should not be changed in the meantime). It is the return type of * MatrixBase::pow() and related functions and most of the * time this is the only way it is used. */ template<typename Derived> class MatrixPowerReturnValue : public ReturnByValue< MatrixPowerReturnValue<Derived> > { public: typedef typename Derived::PlainObject PlainObject; typedef typename Derived::RealScalar RealScalar; typedef typename Derived::Index Index; /** * \brief Constructor. * * \param[in] A %Matrix (expression), the base of the matrix power. * \param[in] p real scalar, the exponent of the matrix power. */ MatrixPowerReturnValue(const Derived& A, RealScalar p) : m_A(A), m_p(p) { } /** * \brief Compute the matrix power. * * \param[out] result \f$ A^p \f$ where \p A and \p p are as in the * constructor. */ template<typename ResultType> inline void evalTo(ResultType& res) const { MatrixPower<PlainObject>(m_A.eval()).compute(res, m_p); } Index rows() const { return m_A.rows(); } Index cols() const { return m_A.cols(); } private: const Derived& m_A; const RealScalar m_p; }; /** * \ingroup MatrixFunctions_Module * * \brief Proxy for the matrix power of some matrix (expression). * * \tparam Derived type of the base, a matrix (expression). * * This class holds the arguments to the matrix power until it is * assigned or evaluated for some other reason (so the argument * should not be changed in the meantime). It is the return type of * MatrixBase::pow() and related functions and most of the * time this is the only way it is used. */ template<typename Derived> class MatrixComplexPowerReturnValue : public ReturnByValue< MatrixComplexPowerReturnValue<Derived> > { public: typedef typename Derived::PlainObject PlainObject; typedef typename std::complex<typename Derived::RealScalar> ComplexScalar; typedef typename Derived::Index Index; /** * \brief Constructor. * * \param[in] A %Matrix (expression), the base of the matrix power. * \param[in] p complex scalar, the exponent of the matrix power. */ MatrixComplexPowerReturnValue(const Derived& A, const ComplexScalar& p) : m_A(A), m_p(p) { } /** * \brief Compute the matrix power. * * Because \p p is complex, \f$ A^p \f$ is simply evaluated as \f$ * \exp(p \log(A)) \f$. * * \param[out] result \f$ A^p \f$ where \p A and \p p are as in the * constructor. */ template<typename ResultType> inline void evalTo(ResultType& res) const { res = (m_p * m_A.log()).exp(); } Index rows() const { return m_A.rows(); } Index cols() const { return m_A.cols(); } private: const Derived& m_A; const ComplexScalar m_p; }; namespace internal { template<typename MatrixPowerType> struct traits< MatrixPowerParenthesesReturnValue<MatrixPowerType> > { typedef typename MatrixPowerType::PlainObject ReturnType; }; template<typename Derived> struct traits< MatrixPowerReturnValue<Derived> > { typedef typename Derived::PlainObject ReturnType; }; template<typename Derived> struct traits< MatrixComplexPowerReturnValue<Derived> > { typedef typename Derived::PlainObject ReturnType; }; } template<typename Derived> const MatrixPowerReturnValue<Derived> MatrixBase<Derived>::pow(const RealScalar& p) const { return MatrixPowerReturnValue<Derived>(derived(), p); } template<typename Derived> const MatrixComplexPowerReturnValue<Derived> MatrixBase<Derived>::pow(const std::complex<RealScalar>& p) const { return MatrixComplexPowerReturnValue<Derived>(derived(), p); } } // namespace Eigen #endif // EIGEN_MATRIX_POWER