// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2009-2011, 2013 Jitse Niesen <jitse@maths.leeds.ac.uk> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_MATRIX_FUNCTION #define EIGEN_MATRIX_FUNCTION #include "StemFunction.h" namespace Eigen { namespace internal { /** \brief Maximum distance allowed between eigenvalues to be considered "close". */ static const float matrix_function_separation = 0.1f; /** \ingroup MatrixFunctions_Module * \class MatrixFunctionAtomic * \brief Helper class for computing matrix functions of atomic matrices. * * Here, an atomic matrix is a triangular matrix whose diagonal entries are close to each other. */ template <typename MatrixType> class MatrixFunctionAtomic { public: typedef typename MatrixType::Scalar Scalar; typedef typename stem_function<Scalar>::type StemFunction; /** \brief Constructor * \param[in] f matrix function to compute. */ MatrixFunctionAtomic(StemFunction f) : m_f(f) { } /** \brief Compute matrix function of atomic matrix * \param[in] A argument of matrix function, should be upper triangular and atomic * \returns f(A), the matrix function evaluated at the given matrix */ MatrixType compute(const MatrixType& A); private: StemFunction* m_f; }; template <typename MatrixType> typename NumTraits<typename MatrixType::Scalar>::Real matrix_function_compute_mu(const MatrixType& A) { typedef typename plain_col_type<MatrixType>::type VectorType; typename MatrixType::Index rows = A.rows(); const MatrixType N = MatrixType::Identity(rows, rows) - A; VectorType e = VectorType::Ones(rows); N.template triangularView<Upper>().solveInPlace(e); return e.cwiseAbs().maxCoeff(); } template <typename MatrixType> MatrixType MatrixFunctionAtomic<MatrixType>::compute(const MatrixType& A) { // TODO: Use that A is upper triangular typedef typename NumTraits<Scalar>::Real RealScalar; typedef typename MatrixType::Index Index; Index rows = A.rows(); Scalar avgEival = A.trace() / Scalar(RealScalar(rows)); MatrixType Ashifted = A - avgEival * MatrixType::Identity(rows, rows); RealScalar mu = matrix_function_compute_mu(Ashifted); MatrixType F = m_f(avgEival, 0) * MatrixType::Identity(rows, rows); MatrixType P = Ashifted; MatrixType Fincr; for (Index s = 1; s < 1.1 * rows + 10; s++) { // upper limit is fairly arbitrary Fincr = m_f(avgEival, static_cast<int>(s)) * P; F += Fincr; P = Scalar(RealScalar(1.0/(s + 1))) * P * Ashifted; // test whether Taylor series converged const RealScalar F_norm = F.cwiseAbs().rowwise().sum().maxCoeff(); const RealScalar Fincr_norm = Fincr.cwiseAbs().rowwise().sum().maxCoeff(); if (Fincr_norm < NumTraits<Scalar>::epsilon() * F_norm) { RealScalar delta = 0; RealScalar rfactorial = 1; for (Index r = 0; r < rows; r++) { RealScalar mx = 0; for (Index i = 0; i < rows; i++) mx = (std::max)(mx, std::abs(m_f(Ashifted(i, i) + avgEival, static_cast<int>(s+r)))); if (r != 0) rfactorial *= RealScalar(r); delta = (std::max)(delta, mx / rfactorial); } const RealScalar P_norm = P.cwiseAbs().rowwise().sum().maxCoeff(); if (mu * delta * P_norm < NumTraits<Scalar>::epsilon() * F_norm) // series converged break; } } return F; } /** \brief Find cluster in \p clusters containing some value * \param[in] key Value to find * \returns Iterator to cluster containing \p key, or \c clusters.end() if no cluster in \p m_clusters * contains \p key. */ template <typename Index, typename ListOfClusters> typename ListOfClusters::iterator matrix_function_find_cluster(Index key, ListOfClusters& clusters) { typename std::list<Index>::iterator j; for (typename ListOfClusters::iterator i = clusters.begin(); i != clusters.end(); ++i) { j = std::find(i->begin(), i->end(), key); if (j != i->end()) return i; } return clusters.end(); } /** \brief Partition eigenvalues in clusters of ei'vals close to each other * * \param[in] eivals Eigenvalues * \param[out] clusters Resulting partition of eigenvalues * * The partition satisfies the following two properties: * # Any eigenvalue in a certain cluster is at most matrix_function_separation() away from another eigenvalue * in the same cluster. * # The distance between two eigenvalues in different clusters is more than matrix_function_separation(). * The implementation follows Algorithm 4.1 in the paper of Davies and Higham. */ template <typename EivalsType, typename Cluster> void matrix_function_partition_eigenvalues(const EivalsType& eivals, std::list<Cluster>& clusters) { typedef typename EivalsType::Index Index; typedef typename EivalsType::RealScalar RealScalar; for (Index i=0; i<eivals.rows(); ++i) { // Find cluster containing i-th ei'val, adding a new cluster if necessary typename std::list<Cluster>::iterator qi = matrix_function_find_cluster(i, clusters); if (qi == clusters.end()) { Cluster l; l.push_back(i); clusters.push_back(l); qi = clusters.end(); --qi; } // Look for other element to add to the set for (Index j=i+1; j<eivals.rows(); ++j) { if (abs(eivals(j) - eivals(i)) <= RealScalar(matrix_function_separation) && std::find(qi->begin(), qi->end(), j) == qi->end()) { typename std::list<Cluster>::iterator qj = matrix_function_find_cluster(j, clusters); if (qj == clusters.end()) { qi->push_back(j); } else { qi->insert(qi->end(), qj->begin(), qj->end()); clusters.erase(qj); } } } } } /** \brief Compute size of each cluster given a partitioning */ template <typename ListOfClusters, typename Index> void matrix_function_compute_cluster_size(const ListOfClusters& clusters, Matrix<Index, Dynamic, 1>& clusterSize) { const Index numClusters = static_cast<Index>(clusters.size()); clusterSize.setZero(numClusters); Index clusterIndex = 0; for (typename ListOfClusters::const_iterator cluster = clusters.begin(); cluster != clusters.end(); ++cluster) { clusterSize[clusterIndex] = cluster->size(); ++clusterIndex; } } /** \brief Compute start of each block using clusterSize */ template <typename VectorType> void matrix_function_compute_block_start(const VectorType& clusterSize, VectorType& blockStart) { blockStart.resize(clusterSize.rows()); blockStart(0) = 0; for (typename VectorType::Index i = 1; i < clusterSize.rows(); i++) { blockStart(i) = blockStart(i-1) + clusterSize(i-1); } } /** \brief Compute mapping of eigenvalue indices to cluster indices */ template <typename EivalsType, typename ListOfClusters, typename VectorType> void matrix_function_compute_map(const EivalsType& eivals, const ListOfClusters& clusters, VectorType& eivalToCluster) { typedef typename EivalsType::Index Index; eivalToCluster.resize(eivals.rows()); Index clusterIndex = 0; for (typename ListOfClusters::const_iterator cluster = clusters.begin(); cluster != clusters.end(); ++cluster) { for (Index i = 0; i < eivals.rows(); ++i) { if (std::find(cluster->begin(), cluster->end(), i) != cluster->end()) { eivalToCluster[i] = clusterIndex; } } ++clusterIndex; } } /** \brief Compute permutation which groups ei'vals in same cluster together */ template <typename DynVectorType, typename VectorType> void matrix_function_compute_permutation(const DynVectorType& blockStart, const DynVectorType& eivalToCluster, VectorType& permutation) { typedef typename VectorType::Index Index; DynVectorType indexNextEntry = blockStart; permutation.resize(eivalToCluster.rows()); for (Index i = 0; i < eivalToCluster.rows(); i++) { Index cluster = eivalToCluster[i]; permutation[i] = indexNextEntry[cluster]; ++indexNextEntry[cluster]; } } /** \brief Permute Schur decomposition in U and T according to permutation */ template <typename VectorType, typename MatrixType> void matrix_function_permute_schur(VectorType& permutation, MatrixType& U, MatrixType& T) { typedef typename VectorType::Index Index; for (Index i = 0; i < permutation.rows() - 1; i++) { Index j; for (j = i; j < permutation.rows(); j++) { if (permutation(j) == i) break; } eigen_assert(permutation(j) == i); for (Index k = j-1; k >= i; k--) { JacobiRotation<typename MatrixType::Scalar> rotation; rotation.makeGivens(T(k, k+1), T(k+1, k+1) - T(k, k)); T.applyOnTheLeft(k, k+1, rotation.adjoint()); T.applyOnTheRight(k, k+1, rotation); U.applyOnTheRight(k, k+1, rotation); std::swap(permutation.coeffRef(k), permutation.coeffRef(k+1)); } } } /** \brief Compute block diagonal part of matrix function. * * This routine computes the matrix function applied to the block diagonal part of \p T (which should be * upper triangular), with the blocking given by \p blockStart and \p clusterSize. The matrix function of * each diagonal block is computed by \p atomic. The off-diagonal parts of \p fT are set to zero. */ template <typename MatrixType, typename AtomicType, typename VectorType> void matrix_function_compute_block_atomic(const MatrixType& T, AtomicType& atomic, const VectorType& blockStart, const VectorType& clusterSize, MatrixType& fT) { fT.setZero(T.rows(), T.cols()); for (typename VectorType::Index i = 0; i < clusterSize.rows(); ++i) { fT.block(blockStart(i), blockStart(i), clusterSize(i), clusterSize(i)) = atomic.compute(T.block(blockStart(i), blockStart(i), clusterSize(i), clusterSize(i))); } } /** \brief Solve a triangular Sylvester equation AX + XB = C * * \param[in] A the matrix A; should be square and upper triangular * \param[in] B the matrix B; should be square and upper triangular * \param[in] C the matrix C; should have correct size. * * \returns the solution X. * * If A is m-by-m and B is n-by-n, then both C and X are m-by-n. The (i,j)-th component of the Sylvester * equation is * \f[ * \sum_{k=i}^m A_{ik} X_{kj} + \sum_{k=1}^j X_{ik} B_{kj} = C_{ij}. * \f] * This can be re-arranged to yield: * \f[ * X_{ij} = \frac{1}{A_{ii} + B_{jj}} \Bigl( C_{ij} * - \sum_{k=i+1}^m A_{ik} X_{kj} - \sum_{k=1}^{j-1} X_{ik} B_{kj} \Bigr). * \f] * It is assumed that A and B are such that the numerator is never zero (otherwise the Sylvester equation * does not have a unique solution). In that case, these equations can be evaluated in the order * \f$ i=m,\ldots,1 \f$ and \f$ j=1,\ldots,n \f$. */ template <typename MatrixType> MatrixType matrix_function_solve_triangular_sylvester(const MatrixType& A, const MatrixType& B, const MatrixType& C) { eigen_assert(A.rows() == A.cols()); eigen_assert(A.isUpperTriangular()); eigen_assert(B.rows() == B.cols()); eigen_assert(B.isUpperTriangular()); eigen_assert(C.rows() == A.rows()); eigen_assert(C.cols() == B.rows()); typedef typename MatrixType::Index Index; typedef typename MatrixType::Scalar Scalar; Index m = A.rows(); Index n = B.rows(); MatrixType X(m, n); for (Index i = m - 1; i >= 0; --i) { for (Index j = 0; j < n; ++j) { // Compute AX = \sum_{k=i+1}^m A_{ik} X_{kj} Scalar AX; if (i == m - 1) { AX = 0; } else { Matrix<Scalar,1,1> AXmatrix = A.row(i).tail(m-1-i) * X.col(j).tail(m-1-i); AX = AXmatrix(0,0); } // Compute XB = \sum_{k=1}^{j-1} X_{ik} B_{kj} Scalar XB; if (j == 0) { XB = 0; } else { Matrix<Scalar,1,1> XBmatrix = X.row(i).head(j) * B.col(j).head(j); XB = XBmatrix(0,0); } X(i,j) = (C(i,j) - AX - XB) / (A(i,i) + B(j,j)); } } return X; } /** \brief Compute part of matrix function above block diagonal. * * This routine completes the computation of \p fT, denoting a matrix function applied to the triangular * matrix \p T. It assumes that the block diagonal part of \p fT has already been computed. The part below * the diagonal is zero, because \p T is upper triangular. */ template <typename MatrixType, typename VectorType> void matrix_function_compute_above_diagonal(const MatrixType& T, const VectorType& blockStart, const VectorType& clusterSize, MatrixType& fT) { typedef internal::traits<MatrixType> Traits; typedef typename MatrixType::Scalar Scalar; typedef typename MatrixType::Index Index; static const int RowsAtCompileTime = Traits::RowsAtCompileTime; static const int ColsAtCompileTime = Traits::ColsAtCompileTime; static const int Options = MatrixType::Options; typedef Matrix<Scalar, Dynamic, Dynamic, Options, RowsAtCompileTime, ColsAtCompileTime> DynMatrixType; for (Index k = 1; k < clusterSize.rows(); k++) { for (Index i = 0; i < clusterSize.rows() - k; i++) { // compute (i, i+k) block DynMatrixType A = T.block(blockStart(i), blockStart(i), clusterSize(i), clusterSize(i)); DynMatrixType B = -T.block(blockStart(i+k), blockStart(i+k), clusterSize(i+k), clusterSize(i+k)); DynMatrixType C = fT.block(blockStart(i), blockStart(i), clusterSize(i), clusterSize(i)) * T.block(blockStart(i), blockStart(i+k), clusterSize(i), clusterSize(i+k)); C -= T.block(blockStart(i), blockStart(i+k), clusterSize(i), clusterSize(i+k)) * fT.block(blockStart(i+k), blockStart(i+k), clusterSize(i+k), clusterSize(i+k)); for (Index m = i + 1; m < i + k; m++) { C += fT.block(blockStart(i), blockStart(m), clusterSize(i), clusterSize(m)) * T.block(blockStart(m), blockStart(i+k), clusterSize(m), clusterSize(i+k)); C -= T.block(blockStart(i), blockStart(m), clusterSize(i), clusterSize(m)) * fT.block(blockStart(m), blockStart(i+k), clusterSize(m), clusterSize(i+k)); } fT.block(blockStart(i), blockStart(i+k), clusterSize(i), clusterSize(i+k)) = matrix_function_solve_triangular_sylvester(A, B, C); } } } /** \ingroup MatrixFunctions_Module * \brief Class for computing matrix functions. * \tparam MatrixType type of the argument of the matrix function, * expected to be an instantiation of the Matrix class template. * \tparam AtomicType type for computing matrix function of atomic blocks. * \tparam IsComplex used internally to select correct specialization. * * This class implements the Schur-Parlett algorithm for computing matrix functions. The spectrum of the * matrix is divided in clustered of eigenvalues that lies close together. This class delegates the * computation of the matrix function on every block corresponding to these clusters to an object of type * \p AtomicType and uses these results to compute the matrix function of the whole matrix. The class * \p AtomicType should have a \p compute() member function for computing the matrix function of a block. * * \sa class MatrixFunctionAtomic, class MatrixLogarithmAtomic */ template <typename MatrixType, int IsComplex = NumTraits<typename internal::traits<MatrixType>::Scalar>::IsComplex> struct matrix_function_compute { /** \brief Compute the matrix function. * * \param[in] A argument of matrix function, should be a square matrix. * \param[in] atomic class for computing matrix function of atomic blocks. * \param[out] result the function \p f applied to \p A, as * specified in the constructor. * * See MatrixBase::matrixFunction() for details on how this computation * is implemented. */ template <typename AtomicType, typename ResultType> static void run(const MatrixType& A, AtomicType& atomic, ResultType &result); }; /** \internal \ingroup MatrixFunctions_Module * \brief Partial specialization of MatrixFunction for real matrices * * This converts the real matrix to a complex matrix, compute the matrix function of that matrix, and then * converts the result back to a real matrix. */ template <typename MatrixType> struct matrix_function_compute<MatrixType, 0> { template <typename MatA, typename AtomicType, typename ResultType> static void run(const MatA& A, AtomicType& atomic, ResultType &result) { typedef internal::traits<MatrixType> Traits; typedef typename Traits::Scalar Scalar; static const int Rows = Traits::RowsAtCompileTime, Cols = Traits::ColsAtCompileTime; static const int MaxRows = Traits::MaxRowsAtCompileTime, MaxCols = Traits::MaxColsAtCompileTime; typedef std::complex<Scalar> ComplexScalar; typedef Matrix<ComplexScalar, Rows, Cols, 0, MaxRows, MaxCols> ComplexMatrix; ComplexMatrix CA = A.template cast<ComplexScalar>(); ComplexMatrix Cresult; matrix_function_compute<ComplexMatrix>::run(CA, atomic, Cresult); result = Cresult.real(); } }; /** \internal \ingroup MatrixFunctions_Module * \brief Partial specialization of MatrixFunction for complex matrices */ template <typename MatrixType> struct matrix_function_compute<MatrixType, 1> { template <typename MatA, typename AtomicType, typename ResultType> static void run(const MatA& A, AtomicType& atomic, ResultType &result) { typedef internal::traits<MatrixType> Traits; // compute Schur decomposition of A const ComplexSchur<MatrixType> schurOfA(A); MatrixType T = schurOfA.matrixT(); MatrixType U = schurOfA.matrixU(); // partition eigenvalues into clusters of ei'vals "close" to each other std::list<std::list<Index> > clusters; matrix_function_partition_eigenvalues(T.diagonal(), clusters); // compute size of each cluster Matrix<Index, Dynamic, 1> clusterSize; matrix_function_compute_cluster_size(clusters, clusterSize); // blockStart[i] is row index at which block corresponding to i-th cluster starts Matrix<Index, Dynamic, 1> blockStart; matrix_function_compute_block_start(clusterSize, blockStart); // compute map so that eivalToCluster[i] = j means that i-th ei'val is in j-th cluster Matrix<Index, Dynamic, 1> eivalToCluster; matrix_function_compute_map(T.diagonal(), clusters, eivalToCluster); // compute permutation which groups ei'vals in same cluster together Matrix<Index, Traits::RowsAtCompileTime, 1> permutation; matrix_function_compute_permutation(blockStart, eivalToCluster, permutation); // permute Schur decomposition matrix_function_permute_schur(permutation, U, T); // compute result MatrixType fT; // matrix function applied to T matrix_function_compute_block_atomic(T, atomic, blockStart, clusterSize, fT); matrix_function_compute_above_diagonal(T, blockStart, clusterSize, fT); result = U * (fT.template triangularView<Upper>() * U.adjoint()); } }; } // end of namespace internal /** \ingroup MatrixFunctions_Module * * \brief Proxy for the matrix function of some matrix (expression). * * \tparam Derived Type of the argument to the matrix function. * * This class holds the argument to the matrix function until it is assigned or evaluated for some other * reason (so the argument should not be changed in the meantime). It is the return type of * matrixBase::matrixFunction() and related functions and most of the time this is the only way it is used. */ template<typename Derived> class MatrixFunctionReturnValue : public ReturnByValue<MatrixFunctionReturnValue<Derived> > { public: typedef typename Derived::Scalar Scalar; typedef typename Derived::Index Index; typedef typename internal::stem_function<Scalar>::type StemFunction; protected: typedef typename internal::ref_selector<Derived>::type DerivedNested; public: /** \brief Constructor. * * \param[in] A %Matrix (expression) forming the argument of the matrix function. * \param[in] f Stem function for matrix function under consideration. */ MatrixFunctionReturnValue(const Derived& A, StemFunction f) : m_A(A), m_f(f) { } /** \brief Compute the matrix function. * * \param[out] result \p f applied to \p A, where \p f and \p A are as in the constructor. */ template <typename ResultType> inline void evalTo(ResultType& result) const { typedef typename internal::nested_eval<Derived, 10>::type NestedEvalType; typedef typename internal::remove_all<NestedEvalType>::type NestedEvalTypeClean; typedef internal::traits<NestedEvalTypeClean> Traits; static const int RowsAtCompileTime = Traits::RowsAtCompileTime; static const int ColsAtCompileTime = Traits::ColsAtCompileTime; typedef std::complex<typename NumTraits<Scalar>::Real> ComplexScalar; typedef Matrix<ComplexScalar, Dynamic, Dynamic, 0, RowsAtCompileTime, ColsAtCompileTime> DynMatrixType; typedef internal::MatrixFunctionAtomic<DynMatrixType> AtomicType; AtomicType atomic(m_f); internal::matrix_function_compute<typename NestedEvalTypeClean::PlainObject>::run(m_A, atomic, result); } Index rows() const { return m_A.rows(); } Index cols() const { return m_A.cols(); } private: const DerivedNested m_A; StemFunction *m_f; }; namespace internal { template<typename Derived> struct traits<MatrixFunctionReturnValue<Derived> > { typedef typename Derived::PlainObject ReturnType; }; } /********** MatrixBase methods **********/ template <typename Derived> const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::matrixFunction(typename internal::stem_function<typename internal::traits<Derived>::Scalar>::type f) const { eigen_assert(rows() == cols()); return MatrixFunctionReturnValue<Derived>(derived(), f); } template <typename Derived> const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::sin() const { eigen_assert(rows() == cols()); typedef typename internal::stem_function<Scalar>::ComplexScalar ComplexScalar; return MatrixFunctionReturnValue<Derived>(derived(), internal::stem_function_sin<ComplexScalar>); } template <typename Derived> const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::cos() const { eigen_assert(rows() == cols()); typedef typename internal::stem_function<Scalar>::ComplexScalar ComplexScalar; return MatrixFunctionReturnValue<Derived>(derived(), internal::stem_function_cos<ComplexScalar>); } template <typename Derived> const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::sinh() const { eigen_assert(rows() == cols()); typedef typename internal::stem_function<Scalar>::ComplexScalar ComplexScalar; return MatrixFunctionReturnValue<Derived>(derived(), internal::stem_function_sinh<ComplexScalar>); } template <typename Derived> const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::cosh() const { eigen_assert(rows() == cols()); typedef typename internal::stem_function<Scalar>::ComplexScalar ComplexScalar; return MatrixFunctionReturnValue<Derived>(derived(), internal::stem_function_cosh<ComplexScalar>); } } // end namespace Eigen #endif // EIGEN_MATRIX_FUNCTION