// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2009 Thomas Capricelli <orzel@freehackers.org> // Copyright (C) 2012 Desire Nuentsa <desire.nuentsa_wakam@inria.fr> // // The algorithm of this class initially comes from MINPACK whose original authors are: // Copyright Jorge More - Argonne National Laboratory // Copyright Burt Garbow - Argonne National Laboratory // Copyright Ken Hillstrom - Argonne National Laboratory // // This Source Code Form is subject to the terms of the Minpack license // (a BSD-like license) described in the campaigned CopyrightMINPACK.txt file. // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_LEVENBERGMARQUARDT_H #define EIGEN_LEVENBERGMARQUARDT_H namespace Eigen { namespace LevenbergMarquardtSpace { enum Status { NotStarted = -2, Running = -1, ImproperInputParameters = 0, RelativeReductionTooSmall = 1, RelativeErrorTooSmall = 2, RelativeErrorAndReductionTooSmall = 3, CosinusTooSmall = 4, TooManyFunctionEvaluation = 5, FtolTooSmall = 6, XtolTooSmall = 7, GtolTooSmall = 8, UserAsked = 9 }; } template <typename _Scalar, int NX=Dynamic, int NY=Dynamic> struct DenseFunctor { typedef _Scalar Scalar; enum { InputsAtCompileTime = NX, ValuesAtCompileTime = NY }; typedef Matrix<Scalar,InputsAtCompileTime,1> InputType; typedef Matrix<Scalar,ValuesAtCompileTime,1> ValueType; typedef Matrix<Scalar,ValuesAtCompileTime,InputsAtCompileTime> JacobianType; typedef ColPivHouseholderQR<JacobianType> QRSolver; const int m_inputs, m_values; DenseFunctor() : m_inputs(InputsAtCompileTime), m_values(ValuesAtCompileTime) {} DenseFunctor(int inputs, int values) : m_inputs(inputs), m_values(values) {} int inputs() const { return m_inputs; } int values() const { return m_values; } //int operator()(const InputType &x, ValueType& fvec) { } // should be defined in derived classes //int df(const InputType &x, JacobianType& fjac) { } // should be defined in derived classes }; template <typename _Scalar, typename _Index> struct SparseFunctor { typedef _Scalar Scalar; typedef _Index Index; typedef Matrix<Scalar,Dynamic,1> InputType; typedef Matrix<Scalar,Dynamic,1> ValueType; typedef SparseMatrix<Scalar, ColMajor, Index> JacobianType; typedef SparseQR<JacobianType, COLAMDOrdering<int> > QRSolver; enum { InputsAtCompileTime = Dynamic, ValuesAtCompileTime = Dynamic }; SparseFunctor(int inputs, int values) : m_inputs(inputs), m_values(values) {} int inputs() const { return m_inputs; } int values() const { return m_values; } const int m_inputs, m_values; //int operator()(const InputType &x, ValueType& fvec) { } // to be defined in the functor //int df(const InputType &x, JacobianType& fjac) { } // to be defined in the functor if no automatic differentiation }; namespace internal { template <typename QRSolver, typename VectorType> void lmpar2(const QRSolver &qr, const VectorType &diag, const VectorType &qtb, typename VectorType::Scalar m_delta, typename VectorType::Scalar &par, VectorType &x); } /** * \ingroup NonLinearOptimization_Module * \brief Performs non linear optimization over a non-linear function, * using a variant of the Levenberg Marquardt algorithm. * * Check wikipedia for more information. * http://en.wikipedia.org/wiki/Levenberg%E2%80%93Marquardt_algorithm */ template<typename _FunctorType> class LevenbergMarquardt : internal::no_assignment_operator { public: typedef _FunctorType FunctorType; typedef typename FunctorType::QRSolver QRSolver; typedef typename FunctorType::JacobianType JacobianType; typedef typename JacobianType::Scalar Scalar; typedef typename JacobianType::RealScalar RealScalar; typedef typename QRSolver::StorageIndex PermIndex; typedef Matrix<Scalar,Dynamic,1> FVectorType; typedef PermutationMatrix<Dynamic,Dynamic> PermutationType; public: LevenbergMarquardt(FunctorType& functor) : m_functor(functor),m_nfev(0),m_njev(0),m_fnorm(0.0),m_gnorm(0), m_isInitialized(false),m_info(InvalidInput) { resetParameters(); m_useExternalScaling=false; } LevenbergMarquardtSpace::Status minimize(FVectorType &x); LevenbergMarquardtSpace::Status minimizeInit(FVectorType &x); LevenbergMarquardtSpace::Status minimizeOneStep(FVectorType &x); LevenbergMarquardtSpace::Status lmder1( FVectorType &x, const Scalar tol = std::sqrt(NumTraits<Scalar>::epsilon()) ); static LevenbergMarquardtSpace::Status lmdif1( FunctorType &functor, FVectorType &x, Index *nfev, const Scalar tol = std::sqrt(NumTraits<Scalar>::epsilon()) ); /** Sets the default parameters */ void resetParameters() { using std::sqrt; m_factor = 100.; m_maxfev = 400; m_ftol = sqrt(NumTraits<RealScalar>::epsilon()); m_xtol = sqrt(NumTraits<RealScalar>::epsilon()); m_gtol = 0. ; m_epsfcn = 0. ; } /** Sets the tolerance for the norm of the solution vector*/ void setXtol(RealScalar xtol) { m_xtol = xtol; } /** Sets the tolerance for the norm of the vector function*/ void setFtol(RealScalar ftol) { m_ftol = ftol; } /** Sets the tolerance for the norm of the gradient of the error vector*/ void setGtol(RealScalar gtol) { m_gtol = gtol; } /** Sets the step bound for the diagonal shift */ void setFactor(RealScalar factor) { m_factor = factor; } /** Sets the error precision */ void setEpsilon (RealScalar epsfcn) { m_epsfcn = epsfcn; } /** Sets the maximum number of function evaluation */ void setMaxfev(Index maxfev) {m_maxfev = maxfev; } /** Use an external Scaling. If set to true, pass a nonzero diagonal to diag() */ void setExternalScaling(bool value) {m_useExternalScaling = value; } /** \returns the tolerance for the norm of the solution vector */ RealScalar xtol() const {return m_xtol; } /** \returns the tolerance for the norm of the vector function */ RealScalar ftol() const {return m_ftol; } /** \returns the tolerance for the norm of the gradient of the error vector */ RealScalar gtol() const {return m_gtol; } /** \returns the step bound for the diagonal shift */ RealScalar factor() const {return m_factor; } /** \returns the error precision */ RealScalar epsilon() const {return m_epsfcn; } /** \returns the maximum number of function evaluation */ Index maxfev() const {return m_maxfev; } /** \returns a reference to the diagonal of the jacobian */ FVectorType& diag() {return m_diag; } /** \returns the number of iterations performed */ Index iterations() { return m_iter; } /** \returns the number of functions evaluation */ Index nfev() { return m_nfev; } /** \returns the number of jacobian evaluation */ Index njev() { return m_njev; } /** \returns the norm of current vector function */ RealScalar fnorm() {return m_fnorm; } /** \returns the norm of the gradient of the error */ RealScalar gnorm() {return m_gnorm; } /** \returns the LevenbergMarquardt parameter */ RealScalar lm_param(void) { return m_par; } /** \returns a reference to the current vector function */ FVectorType& fvec() {return m_fvec; } /** \returns a reference to the matrix where the current Jacobian matrix is stored */ JacobianType& jacobian() {return m_fjac; } /** \returns a reference to the triangular matrix R from the QR of the jacobian matrix. * \sa jacobian() */ JacobianType& matrixR() {return m_rfactor; } /** the permutation used in the QR factorization */ PermutationType permutation() {return m_permutation; } /** * \brief Reports whether the minimization was successful * \returns \c Success if the minimization was succesful, * \c NumericalIssue if a numerical problem arises during the * minimization process, for exemple during the QR factorization * \c NoConvergence if the minimization did not converge after * the maximum number of function evaluation allowed * \c InvalidInput if the input matrix is invalid */ ComputationInfo info() const { return m_info; } private: JacobianType m_fjac; JacobianType m_rfactor; // The triangular matrix R from the QR of the jacobian matrix m_fjac FunctorType &m_functor; FVectorType m_fvec, m_qtf, m_diag; Index n; Index m; Index m_nfev; Index m_njev; RealScalar m_fnorm; // Norm of the current vector function RealScalar m_gnorm; //Norm of the gradient of the error RealScalar m_factor; // Index m_maxfev; // Maximum number of function evaluation RealScalar m_ftol; //Tolerance in the norm of the vector function RealScalar m_xtol; // RealScalar m_gtol; //tolerance of the norm of the error gradient RealScalar m_epsfcn; // Index m_iter; // Number of iterations performed RealScalar m_delta; bool m_useExternalScaling; PermutationType m_permutation; FVectorType m_wa1, m_wa2, m_wa3, m_wa4; //Temporary vectors RealScalar m_par; bool m_isInitialized; // Check whether the minimization step has been called ComputationInfo m_info; }; template<typename FunctorType> LevenbergMarquardtSpace::Status LevenbergMarquardt<FunctorType>::minimize(FVectorType &x) { LevenbergMarquardtSpace::Status status = minimizeInit(x); if (status==LevenbergMarquardtSpace::ImproperInputParameters) { m_isInitialized = true; return status; } do { // std::cout << " uv " << x.transpose() << "\n"; status = minimizeOneStep(x); } while (status==LevenbergMarquardtSpace::Running); m_isInitialized = true; return status; } template<typename FunctorType> LevenbergMarquardtSpace::Status LevenbergMarquardt<FunctorType>::minimizeInit(FVectorType &x) { n = x.size(); m = m_functor.values(); m_wa1.resize(n); m_wa2.resize(n); m_wa3.resize(n); m_wa4.resize(m); m_fvec.resize(m); //FIXME Sparse Case : Allocate space for the jacobian m_fjac.resize(m, n); // m_fjac.reserve(VectorXi::Constant(n,5)); // FIXME Find a better alternative if (!m_useExternalScaling) m_diag.resize(n); eigen_assert( (!m_useExternalScaling || m_diag.size()==n) && "When m_useExternalScaling is set, the caller must provide a valid 'm_diag'"); m_qtf.resize(n); /* Function Body */ m_nfev = 0; m_njev = 0; /* check the input parameters for errors. */ if (n <= 0 || m < n || m_ftol < 0. || m_xtol < 0. || m_gtol < 0. || m_maxfev <= 0 || m_factor <= 0.){ m_info = InvalidInput; return LevenbergMarquardtSpace::ImproperInputParameters; } if (m_useExternalScaling) for (Index j = 0; j < n; ++j) if (m_diag[j] <= 0.) { m_info = InvalidInput; return LevenbergMarquardtSpace::ImproperInputParameters; } /* evaluate the function at the starting point */ /* and calculate its norm. */ m_nfev = 1; if ( m_functor(x, m_fvec) < 0) return LevenbergMarquardtSpace::UserAsked; m_fnorm = m_fvec.stableNorm(); /* initialize levenberg-marquardt parameter and iteration counter. */ m_par = 0.; m_iter = 1; return LevenbergMarquardtSpace::NotStarted; } template<typename FunctorType> LevenbergMarquardtSpace::Status LevenbergMarquardt<FunctorType>::lmder1( FVectorType &x, const Scalar tol ) { n = x.size(); m = m_functor.values(); /* check the input parameters for errors. */ if (n <= 0 || m < n || tol < 0.) return LevenbergMarquardtSpace::ImproperInputParameters; resetParameters(); m_ftol = tol; m_xtol = tol; m_maxfev = 100*(n+1); return minimize(x); } template<typename FunctorType> LevenbergMarquardtSpace::Status LevenbergMarquardt<FunctorType>::lmdif1( FunctorType &functor, FVectorType &x, Index *nfev, const Scalar tol ) { Index n = x.size(); Index m = functor.values(); /* check the input parameters for errors. */ if (n <= 0 || m < n || tol < 0.) return LevenbergMarquardtSpace::ImproperInputParameters; NumericalDiff<FunctorType> numDiff(functor); // embedded LevenbergMarquardt LevenbergMarquardt<NumericalDiff<FunctorType> > lm(numDiff); lm.setFtol(tol); lm.setXtol(tol); lm.setMaxfev(200*(n+1)); LevenbergMarquardtSpace::Status info = LevenbergMarquardtSpace::Status(lm.minimize(x)); if (nfev) * nfev = lm.nfev(); return info; } } // end namespace Eigen #endif // EIGEN_LEVENBERGMARQUARDT_H