// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2009 Thomas Capricelli <orzel@freehackers.org> // // This code initially comes from MINPACK whose original authors are: // Copyright Jorge More - Argonne National Laboratory // Copyright Burt Garbow - Argonne National Laboratory // Copyright Ken Hillstrom - Argonne National Laboratory // // This Source Code Form is subject to the terms of the Minpack license // (a BSD-like license) described in the campaigned CopyrightMINPACK.txt file. #ifndef EIGEN_LMONESTEP_H #define EIGEN_LMONESTEP_H namespace Eigen { template<typename FunctorType> LevenbergMarquardtSpace::Status LevenbergMarquardt<FunctorType>::minimizeOneStep(FVectorType &x) { using std::abs; using std::sqrt; RealScalar temp, temp1,temp2; RealScalar ratio; RealScalar pnorm, xnorm, fnorm1, actred, dirder, prered; eigen_assert(x.size()==n); // check the caller is not cheating us temp = 0.0; xnorm = 0.0; /* calculate the jacobian matrix. */ Index df_ret = m_functor.df(x, m_fjac); if (df_ret<0) return LevenbergMarquardtSpace::UserAsked; if (df_ret>0) // numerical diff, we evaluated the function df_ret times m_nfev += df_ret; else m_njev++; /* compute the qr factorization of the jacobian. */ for (int j = 0; j < x.size(); ++j) m_wa2(j) = m_fjac.col(j).blueNorm(); QRSolver qrfac(m_fjac); if(qrfac.info() != Success) { m_info = NumericalIssue; return LevenbergMarquardtSpace::ImproperInputParameters; } // Make a copy of the first factor with the associated permutation m_rfactor = qrfac.matrixR(); m_permutation = (qrfac.colsPermutation()); /* on the first iteration and if external scaling is not used, scale according */ /* to the norms of the columns of the initial jacobian. */ if (m_iter == 1) { if (!m_useExternalScaling) for (Index j = 0; j < n; ++j) m_diag[j] = (m_wa2[j]==0.)? 1. : m_wa2[j]; /* on the first iteration, calculate the norm of the scaled x */ /* and initialize the step bound m_delta. */ xnorm = m_diag.cwiseProduct(x).stableNorm(); m_delta = m_factor * xnorm; if (m_delta == 0.) m_delta = m_factor; } /* form (q transpose)*m_fvec and store the first n components in */ /* m_qtf. */ m_wa4 = m_fvec; m_wa4 = qrfac.matrixQ().adjoint() * m_fvec; m_qtf = m_wa4.head(n); /* compute the norm of the scaled gradient. */ m_gnorm = 0.; if (m_fnorm != 0.) for (Index j = 0; j < n; ++j) if (m_wa2[m_permutation.indices()[j]] != 0.) m_gnorm = (std::max)(m_gnorm, abs( m_rfactor.col(j).head(j+1).dot(m_qtf.head(j+1)/m_fnorm) / m_wa2[m_permutation.indices()[j]])); /* test for convergence of the gradient norm. */ if (m_gnorm <= m_gtol) { m_info = Success; return LevenbergMarquardtSpace::CosinusTooSmall; } /* rescale if necessary. */ if (!m_useExternalScaling) m_diag = m_diag.cwiseMax(m_wa2); do { /* determine the levenberg-marquardt parameter. */ internal::lmpar2(qrfac, m_diag, m_qtf, m_delta, m_par, m_wa1); /* store the direction p and x + p. calculate the norm of p. */ m_wa1 = -m_wa1; m_wa2 = x + m_wa1; pnorm = m_diag.cwiseProduct(m_wa1).stableNorm(); /* on the first iteration, adjust the initial step bound. */ if (m_iter == 1) m_delta = (std::min)(m_delta,pnorm); /* evaluate the function at x + p and calculate its norm. */ if ( m_functor(m_wa2, m_wa4) < 0) return LevenbergMarquardtSpace::UserAsked; ++m_nfev; fnorm1 = m_wa4.stableNorm(); /* compute the scaled actual reduction. */ actred = -1.; if (Scalar(.1) * fnorm1 < m_fnorm) actred = 1. - numext::abs2(fnorm1 / m_fnorm); /* compute the scaled predicted reduction and */ /* the scaled directional derivative. */ m_wa3 = m_rfactor.template triangularView<Upper>() * (m_permutation.inverse() *m_wa1); temp1 = numext::abs2(m_wa3.stableNorm() / m_fnorm); temp2 = numext::abs2(sqrt(m_par) * pnorm / m_fnorm); prered = temp1 + temp2 / Scalar(.5); dirder = -(temp1 + temp2); /* compute the ratio of the actual to the predicted */ /* reduction. */ ratio = 0.; if (prered != 0.) ratio = actred / prered; /* update the step bound. */ if (ratio <= Scalar(.25)) { if (actred >= 0.) temp = RealScalar(.5); if (actred < 0.) temp = RealScalar(.5) * dirder / (dirder + RealScalar(.5) * actred); if (RealScalar(.1) * fnorm1 >= m_fnorm || temp < RealScalar(.1)) temp = Scalar(.1); /* Computing MIN */ m_delta = temp * (std::min)(m_delta, pnorm / RealScalar(.1)); m_par /= temp; } else if (!(m_par != 0. && ratio < RealScalar(.75))) { m_delta = pnorm / RealScalar(.5); m_par = RealScalar(.5) * m_par; } /* test for successful iteration. */ if (ratio >= RealScalar(1e-4)) { /* successful iteration. update x, m_fvec, and their norms. */ x = m_wa2; m_wa2 = m_diag.cwiseProduct(x); m_fvec = m_wa4; xnorm = m_wa2.stableNorm(); m_fnorm = fnorm1; ++m_iter; } /* tests for convergence. */ if (abs(actred) <= m_ftol && prered <= m_ftol && Scalar(.5) * ratio <= 1. && m_delta <= m_xtol * xnorm) { m_info = Success; return LevenbergMarquardtSpace::RelativeErrorAndReductionTooSmall; } if (abs(actred) <= m_ftol && prered <= m_ftol && Scalar(.5) * ratio <= 1.) { m_info = Success; return LevenbergMarquardtSpace::RelativeReductionTooSmall; } if (m_delta <= m_xtol * xnorm) { m_info = Success; return LevenbergMarquardtSpace::RelativeErrorTooSmall; } /* tests for termination and stringent tolerances. */ if (m_nfev >= m_maxfev) { m_info = NoConvergence; return LevenbergMarquardtSpace::TooManyFunctionEvaluation; } if (abs(actred) <= NumTraits<Scalar>::epsilon() && prered <= NumTraits<Scalar>::epsilon() && Scalar(.5) * ratio <= 1.) { m_info = Success; return LevenbergMarquardtSpace::FtolTooSmall; } if (m_delta <= NumTraits<Scalar>::epsilon() * xnorm) { m_info = Success; return LevenbergMarquardtSpace::XtolTooSmall; } if (m_gnorm <= NumTraits<Scalar>::epsilon()) { m_info = Success; return LevenbergMarquardtSpace::GtolTooSmall; } } while (ratio < Scalar(1e-4)); return LevenbergMarquardtSpace::Running; } } // end namespace Eigen #endif // EIGEN_LMONESTEP_H