// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2012 Giacomo Po <gpo@ucla.edu> // Copyright (C) 2011-2014 Gael Guennebaud <gael.guennebaud@inria.fr> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_MINRES_H_ #define EIGEN_MINRES_H_ namespace Eigen { namespace internal { /** \internal Low-level MINRES algorithm * \param mat The matrix A * \param rhs The right hand side vector b * \param x On input and initial solution, on output the computed solution. * \param precond A right preconditioner being able to efficiently solve for an * approximation of Ax=b (regardless of b) * \param iters On input the max number of iteration, on output the number of performed iterations. * \param tol_error On input the tolerance error, on output an estimation of the relative error. */ template<typename MatrixType, typename Rhs, typename Dest, typename Preconditioner> EIGEN_DONT_INLINE void minres(const MatrixType& mat, const Rhs& rhs, Dest& x, const Preconditioner& precond, Index& iters, typename Dest::RealScalar& tol_error) { using std::sqrt; typedef typename Dest::RealScalar RealScalar; typedef typename Dest::Scalar Scalar; typedef Matrix<Scalar,Dynamic,1> VectorType; // Check for zero rhs const RealScalar rhsNorm2(rhs.squaredNorm()); if(rhsNorm2 == 0) { x.setZero(); iters = 0; tol_error = 0; return; } // initialize const Index maxIters(iters); // initialize maxIters to iters const Index N(mat.cols()); // the size of the matrix const RealScalar threshold2(tol_error*tol_error*rhsNorm2); // convergence threshold (compared to residualNorm2) // Initialize preconditioned Lanczos VectorType v_old(N); // will be initialized inside loop VectorType v( VectorType::Zero(N) ); //initialize v VectorType v_new(rhs-mat*x); //initialize v_new RealScalar residualNorm2(v_new.squaredNorm()); VectorType w(N); // will be initialized inside loop VectorType w_new(precond.solve(v_new)); // initialize w_new // RealScalar beta; // will be initialized inside loop RealScalar beta_new2(v_new.dot(w_new)); eigen_assert(beta_new2 >= 0.0 && "PRECONDITIONER IS NOT POSITIVE DEFINITE"); RealScalar beta_new(sqrt(beta_new2)); const RealScalar beta_one(beta_new); v_new /= beta_new; w_new /= beta_new; // Initialize other variables RealScalar c(1.0); // the cosine of the Givens rotation RealScalar c_old(1.0); RealScalar s(0.0); // the sine of the Givens rotation RealScalar s_old(0.0); // the sine of the Givens rotation VectorType p_oold(N); // will be initialized in loop VectorType p_old(VectorType::Zero(N)); // initialize p_old=0 VectorType p(p_old); // initialize p=0 RealScalar eta(1.0); iters = 0; // reset iters while ( iters < maxIters ) { // Preconditioned Lanczos /* Note that there are 4 variants on the Lanczos algorithm. These are * described in Paige, C. C. (1972). Computational variants of * the Lanczos method for the eigenproblem. IMA Journal of Applied * Mathematics, 10(3), 373–381. The current implementation corresponds * to the case A(2,7) in the paper. It also corresponds to * algorithm 6.14 in Y. Saad, Iterative Methods for Sparse Linear * Systems, 2003 p.173. For the preconditioned version see * A. Greenbaum, Iterative Methods for Solving Linear Systems, SIAM (1987). */ const RealScalar beta(beta_new); v_old = v; // update: at first time step, this makes v_old = 0 so value of beta doesn't matter // const VectorType v_old(v); // NOT SURE IF CREATING v_old EVERY ITERATION IS EFFICIENT v = v_new; // update w = w_new; // update // const VectorType w(w_new); // NOT SURE IF CREATING w EVERY ITERATION IS EFFICIENT v_new.noalias() = mat*w - beta*v_old; // compute v_new const RealScalar alpha = v_new.dot(w); v_new -= alpha*v; // overwrite v_new w_new = precond.solve(v_new); // overwrite w_new beta_new2 = v_new.dot(w_new); // compute beta_new eigen_assert(beta_new2 >= 0.0 && "PRECONDITIONER IS NOT POSITIVE DEFINITE"); beta_new = sqrt(beta_new2); // compute beta_new v_new /= beta_new; // overwrite v_new for next iteration w_new /= beta_new; // overwrite w_new for next iteration // Givens rotation const RealScalar r2 =s*alpha+c*c_old*beta; // s, s_old, c and c_old are still from previous iteration const RealScalar r3 =s_old*beta; // s, s_old, c and c_old are still from previous iteration const RealScalar r1_hat=c*alpha-c_old*s*beta; const RealScalar r1 =sqrt( std::pow(r1_hat,2) + std::pow(beta_new,2) ); c_old = c; // store for next iteration s_old = s; // store for next iteration c=r1_hat/r1; // new cosine s=beta_new/r1; // new sine // Update solution p_oold = p_old; // const VectorType p_oold(p_old); // NOT SURE IF CREATING p_oold EVERY ITERATION IS EFFICIENT p_old = p; p.noalias()=(w-r2*p_old-r3*p_oold) /r1; // IS NOALIAS REQUIRED? x += beta_one*c*eta*p; /* Update the squared residual. Note that this is the estimated residual. The real residual |Ax-b|^2 may be slightly larger */ residualNorm2 *= s*s; if ( residualNorm2 < threshold2) { break; } eta=-s*eta; // update eta iters++; // increment iteration number (for output purposes) } /* Compute error. Note that this is the estimated error. The real error |Ax-b|/|b| may be slightly larger */ tol_error = std::sqrt(residualNorm2 / rhsNorm2); } } template< typename _MatrixType, int _UpLo=Lower, typename _Preconditioner = IdentityPreconditioner> class MINRES; namespace internal { template< typename _MatrixType, int _UpLo, typename _Preconditioner> struct traits<MINRES<_MatrixType,_UpLo,_Preconditioner> > { typedef _MatrixType MatrixType; typedef _Preconditioner Preconditioner; }; } /** \ingroup IterativeLinearSolvers_Module * \brief A minimal residual solver for sparse symmetric problems * * This class allows to solve for A.x = b sparse linear problems using the MINRES algorithm * of Paige and Saunders (1975). The sparse matrix A must be symmetric (possibly indefinite). * The vectors x and b can be either dense or sparse. * * \tparam _MatrixType the type of the sparse matrix A, can be a dense or a sparse matrix. * \tparam _UpLo the triangular part that will be used for the computations. It can be Lower, * Upper, or Lower|Upper in which the full matrix entries will be considered. Default is Lower. * \tparam _Preconditioner the type of the preconditioner. Default is DiagonalPreconditioner * * The maximal number of iterations and tolerance value can be controlled via the setMaxIterations() * and setTolerance() methods. The defaults are the size of the problem for the maximal number of iterations * and NumTraits<Scalar>::epsilon() for the tolerance. * * This class can be used as the direct solver classes. Here is a typical usage example: * \code * int n = 10000; * VectorXd x(n), b(n); * SparseMatrix<double> A(n,n); * // fill A and b * MINRES<SparseMatrix<double> > mr; * mr.compute(A); * x = mr.solve(b); * std::cout << "#iterations: " << mr.iterations() << std::endl; * std::cout << "estimated error: " << mr.error() << std::endl; * // update b, and solve again * x = mr.solve(b); * \endcode * * By default the iterations start with x=0 as an initial guess of the solution. * One can control the start using the solveWithGuess() method. * * MINRES can also be used in a matrix-free context, see the following \link MatrixfreeSolverExample example \endlink. * * \sa class ConjugateGradient, BiCGSTAB, SimplicialCholesky, DiagonalPreconditioner, IdentityPreconditioner */ template< typename _MatrixType, int _UpLo, typename _Preconditioner> class MINRES : public IterativeSolverBase<MINRES<_MatrixType,_UpLo,_Preconditioner> > { typedef IterativeSolverBase<MINRES> Base; using Base::matrix; using Base::m_error; using Base::m_iterations; using Base::m_info; using Base::m_isInitialized; public: using Base::_solve_impl; typedef _MatrixType MatrixType; typedef typename MatrixType::Scalar Scalar; typedef typename MatrixType::RealScalar RealScalar; typedef _Preconditioner Preconditioner; enum {UpLo = _UpLo}; public: /** Default constructor. */ MINRES() : Base() {} /** Initialize the solver with matrix \a A for further \c Ax=b solving. * * This constructor is a shortcut for the default constructor followed * by a call to compute(). * * \warning this class stores a reference to the matrix A as well as some * precomputed values that depend on it. Therefore, if \a A is changed * this class becomes invalid. Call compute() to update it with the new * matrix A, or modify a copy of A. */ template<typename MatrixDerived> explicit MINRES(const EigenBase<MatrixDerived>& A) : Base(A.derived()) {} /** Destructor. */ ~MINRES(){} /** \internal */ template<typename Rhs,typename Dest> void _solve_with_guess_impl(const Rhs& b, Dest& x) const { typedef typename Base::MatrixWrapper MatrixWrapper; typedef typename Base::ActualMatrixType ActualMatrixType; enum { TransposeInput = (!MatrixWrapper::MatrixFree) && (UpLo==(Lower|Upper)) && (!MatrixType::IsRowMajor) && (!NumTraits<Scalar>::IsComplex) }; typedef typename internal::conditional<TransposeInput,Transpose<const ActualMatrixType>, ActualMatrixType const&>::type RowMajorWrapper; EIGEN_STATIC_ASSERT(EIGEN_IMPLIES(MatrixWrapper::MatrixFree,UpLo==(Lower|Upper)),MATRIX_FREE_CONJUGATE_GRADIENT_IS_COMPATIBLE_WITH_UPPER_UNION_LOWER_MODE_ONLY); typedef typename internal::conditional<UpLo==(Lower|Upper), RowMajorWrapper, typename MatrixWrapper::template ConstSelfAdjointViewReturnType<UpLo>::Type >::type SelfAdjointWrapper; m_iterations = Base::maxIterations(); m_error = Base::m_tolerance; RowMajorWrapper row_mat(matrix()); for(int j=0; j<b.cols(); ++j) { m_iterations = Base::maxIterations(); m_error = Base::m_tolerance; typename Dest::ColXpr xj(x,j); internal::minres(SelfAdjointWrapper(row_mat), b.col(j), xj, Base::m_preconditioner, m_iterations, m_error); } m_isInitialized = true; m_info = m_error <= Base::m_tolerance ? Success : NoConvergence; } /** \internal */ template<typename Rhs,typename Dest> void _solve_impl(const Rhs& b, MatrixBase<Dest> &x) const { x.setZero(); _solve_with_guess_impl(b,x.derived()); } protected: }; } // end namespace Eigen #endif // EIGEN_MINRES_H