// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2011 Gael Guennebaud <gael.guennebaud@inria.fr> // Copyright (C) 2012, 2014 Kolja Brix <brix@igpm.rwth-aaachen.de> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_GMRES_H #define EIGEN_GMRES_H namespace Eigen { namespace internal { /** * Generalized Minimal Residual Algorithm based on the * Arnoldi algorithm implemented with Householder reflections. * * Parameters: * \param mat matrix of linear system of equations * \param Rhs right hand side vector of linear system of equations * \param x on input: initial guess, on output: solution * \param precond preconditioner used * \param iters on input: maximum number of iterations to perform * on output: number of iterations performed * \param restart number of iterations for a restart * \param tol_error on input: relative residual tolerance * on output: residuum achieved * * \sa IterativeMethods::bicgstab() * * * For references, please see: * * Saad, Y. and Schultz, M. H. * GMRES: A Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear Systems. * SIAM J.Sci.Stat.Comp. 7, 1986, pp. 856 - 869. * * Saad, Y. * Iterative Methods for Sparse Linear Systems. * Society for Industrial and Applied Mathematics, Philadelphia, 2003. * * Walker, H. F. * Implementations of the GMRES method. * Comput.Phys.Comm. 53, 1989, pp. 311 - 320. * * Walker, H. F. * Implementation of the GMRES Method using Householder Transformations. * SIAM J.Sci.Stat.Comp. 9, 1988, pp. 152 - 163. * */ template<typename MatrixType, typename Rhs, typename Dest, typename Preconditioner> bool gmres(const MatrixType & mat, const Rhs & rhs, Dest & x, const Preconditioner & precond, Index &iters, const Index &restart, typename Dest::RealScalar & tol_error) { using std::sqrt; using std::abs; typedef typename Dest::RealScalar RealScalar; typedef typename Dest::Scalar Scalar; typedef Matrix < Scalar, Dynamic, 1 > VectorType; typedef Matrix < Scalar, Dynamic, Dynamic, ColMajor> FMatrixType; RealScalar tol = tol_error; const Index maxIters = iters; iters = 0; const Index m = mat.rows(); // residual and preconditioned residual VectorType p0 = rhs - mat*x; VectorType r0 = precond.solve(p0); const RealScalar r0Norm = r0.norm(); // is initial guess already good enough? if(r0Norm == 0) { tol_error = 0; return true; } // storage for Hessenberg matrix and Householder data FMatrixType H = FMatrixType::Zero(m, restart + 1); VectorType w = VectorType::Zero(restart + 1); VectorType tau = VectorType::Zero(restart + 1); // storage for Jacobi rotations std::vector < JacobiRotation < Scalar > > G(restart); // storage for temporaries VectorType t(m), v(m), workspace(m), x_new(m); // generate first Householder vector Ref<VectorType> H0_tail = H.col(0).tail(m - 1); RealScalar beta; r0.makeHouseholder(H0_tail, tau.coeffRef(0), beta); w(0) = Scalar(beta); for (Index k = 1; k <= restart; ++k) { ++iters; v = VectorType::Unit(m, k - 1); // apply Householder reflections H_{1} ... H_{k-1} to v // TODO: use a HouseholderSequence for (Index i = k - 1; i >= 0; --i) { v.tail(m - i).applyHouseholderOnTheLeft(H.col(i).tail(m - i - 1), tau.coeffRef(i), workspace.data()); } // apply matrix M to v: v = mat * v; t.noalias() = mat * v; v = precond.solve(t); // apply Householder reflections H_{k-1} ... H_{1} to v // TODO: use a HouseholderSequence for (Index i = 0; i < k; ++i) { v.tail(m - i).applyHouseholderOnTheLeft(H.col(i).tail(m - i - 1), tau.coeffRef(i), workspace.data()); } if (v.tail(m - k).norm() != 0.0) { if (k <= restart) { // generate new Householder vector Ref<VectorType> Hk_tail = H.col(k).tail(m - k - 1); v.tail(m - k).makeHouseholder(Hk_tail, tau.coeffRef(k), beta); // apply Householder reflection H_{k} to v v.tail(m - k).applyHouseholderOnTheLeft(Hk_tail, tau.coeffRef(k), workspace.data()); } } if (k > 1) { for (Index i = 0; i < k - 1; ++i) { // apply old Givens rotations to v v.applyOnTheLeft(i, i + 1, G[i].adjoint()); } } if (k<m && v(k) != (Scalar) 0) { // determine next Givens rotation G[k - 1].makeGivens(v(k - 1), v(k)); // apply Givens rotation to v and w v.applyOnTheLeft(k - 1, k, G[k - 1].adjoint()); w.applyOnTheLeft(k - 1, k, G[k - 1].adjoint()); } // insert coefficients into upper matrix triangle H.col(k-1).head(k) = v.head(k); tol_error = abs(w(k)) / r0Norm; bool stop = (k==m || tol_error < tol || iters == maxIters); if (stop || k == restart) { // solve upper triangular system Ref<VectorType> y = w.head(k); H.topLeftCorner(k, k).template triangularView <Upper>().solveInPlace(y); // use Horner-like scheme to calculate solution vector x_new.setZero(); for (Index i = k - 1; i >= 0; --i) { x_new(i) += y(i); // apply Householder reflection H_{i} to x_new x_new.tail(m - i).applyHouseholderOnTheLeft(H.col(i).tail(m - i - 1), tau.coeffRef(i), workspace.data()); } x += x_new; if(stop) { return true; } else { k=0; // reset data for restart p0.noalias() = rhs - mat*x; r0 = precond.solve(p0); // clear Hessenberg matrix and Householder data H.setZero(); w.setZero(); tau.setZero(); // generate first Householder vector r0.makeHouseholder(H0_tail, tau.coeffRef(0), beta); w(0) = Scalar(beta); } } } return false; } } template< typename _MatrixType, typename _Preconditioner = DiagonalPreconditioner<typename _MatrixType::Scalar> > class GMRES; namespace internal { template< typename _MatrixType, typename _Preconditioner> struct traits<GMRES<_MatrixType,_Preconditioner> > { typedef _MatrixType MatrixType; typedef _Preconditioner Preconditioner; }; } /** \ingroup IterativeLinearSolvers_Module * \brief A GMRES solver for sparse square problems * * This class allows to solve for A.x = b sparse linear problems using a generalized minimal * residual method. The vectors x and b can be either dense or sparse. * * \tparam _MatrixType the type of the sparse matrix A, can be a dense or a sparse matrix. * \tparam _Preconditioner the type of the preconditioner. Default is DiagonalPreconditioner * * The maximal number of iterations and tolerance value can be controlled via the setMaxIterations() * and setTolerance() methods. The defaults are the size of the problem for the maximal number of iterations * and NumTraits<Scalar>::epsilon() for the tolerance. * * This class can be used as the direct solver classes. Here is a typical usage example: * \code * int n = 10000; * VectorXd x(n), b(n); * SparseMatrix<double> A(n,n); * // fill A and b * GMRES<SparseMatrix<double> > solver(A); * x = solver.solve(b); * std::cout << "#iterations: " << solver.iterations() << std::endl; * std::cout << "estimated error: " << solver.error() << std::endl; * // update b, and solve again * x = solver.solve(b); * \endcode * * By default the iterations start with x=0 as an initial guess of the solution. * One can control the start using the solveWithGuess() method. * * GMRES can also be used in a matrix-free context, see the following \link MatrixfreeSolverExample example \endlink. * * \sa class SimplicialCholesky, DiagonalPreconditioner, IdentityPreconditioner */ template< typename _MatrixType, typename _Preconditioner> class GMRES : public IterativeSolverBase<GMRES<_MatrixType,_Preconditioner> > { typedef IterativeSolverBase<GMRES> Base; using Base::matrix; using Base::m_error; using Base::m_iterations; using Base::m_info; using Base::m_isInitialized; private: Index m_restart; public: using Base::_solve_impl; typedef _MatrixType MatrixType; typedef typename MatrixType::Scalar Scalar; typedef typename MatrixType::RealScalar RealScalar; typedef _Preconditioner Preconditioner; public: /** Default constructor. */ GMRES() : Base(), m_restart(30) {} /** Initialize the solver with matrix \a A for further \c Ax=b solving. * * This constructor is a shortcut for the default constructor followed * by a call to compute(). * * \warning this class stores a reference to the matrix A as well as some * precomputed values that depend on it. Therefore, if \a A is changed * this class becomes invalid. Call compute() to update it with the new * matrix A, or modify a copy of A. */ template<typename MatrixDerived> explicit GMRES(const EigenBase<MatrixDerived>& A) : Base(A.derived()), m_restart(30) {} ~GMRES() {} /** Get the number of iterations after that a restart is performed. */ Index get_restart() { return m_restart; } /** Set the number of iterations after that a restart is performed. * \param restart number of iterations for a restarti, default is 30. */ void set_restart(const Index restart) { m_restart=restart; } /** \internal */ template<typename Rhs,typename Dest> void _solve_with_guess_impl(const Rhs& b, Dest& x) const { bool failed = false; for(Index j=0; j<b.cols(); ++j) { m_iterations = Base::maxIterations(); m_error = Base::m_tolerance; typename Dest::ColXpr xj(x,j); if(!internal::gmres(matrix(), b.col(j), xj, Base::m_preconditioner, m_iterations, m_restart, m_error)) failed = true; } m_info = failed ? NumericalIssue : m_error <= Base::m_tolerance ? Success : NoConvergence; m_isInitialized = true; } /** \internal */ template<typename Rhs,typename Dest> void _solve_impl(const Rhs& b, MatrixBase<Dest> &x) const { x = b; if(x.squaredNorm() == 0) return; // Check Zero right hand side _solve_with_guess_impl(b,x.derived()); } protected: }; } // end namespace Eigen #endif // EIGEN_GMRES_H