// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2015 Tal Hadad <tal_hd@hotmail.com> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_EULERSYSTEM_H #define EIGEN_EULERSYSTEM_H namespace Eigen { // Forward declerations template <typename _Scalar, class _System> class EulerAngles; namespace internal { // TODO: Check if already exists on the rest API template <int Num, bool IsPositive = (Num > 0)> struct Abs { enum { value = Num }; }; template <int Num> struct Abs<Num, false> { enum { value = -Num }; }; template <int Axis> struct IsValidAxis { enum { value = Axis != 0 && Abs<Axis>::value <= 3 }; }; } #define EIGEN_EULER_ANGLES_CLASS_STATIC_ASSERT(COND,MSG) typedef char static_assertion_##MSG[(COND)?1:-1] /** \brief Representation of a fixed signed rotation axis for EulerSystem. * * \ingroup EulerAngles_Module * * Values here represent: * - The axis of the rotation: X, Y or Z. * - The sign (i.e. direction of the rotation along the axis): positive(+) or negative(-) * * Therefore, this could express all the axes {+X,+Y,+Z,-X,-Y,-Z} * * For positive axis, use +EULER_{axis}, and for negative axis use -EULER_{axis}. */ enum EulerAxis { EULER_X = 1, /*!< the X axis */ EULER_Y = 2, /*!< the Y axis */ EULER_Z = 3 /*!< the Z axis */ }; /** \class EulerSystem * * \ingroup EulerAngles_Module * * \brief Represents a fixed Euler rotation system. * * This meta-class goal is to represent the Euler system in compilation time, for EulerAngles. * * You can use this class to get two things: * - Build an Euler system, and then pass it as a template parameter to EulerAngles. * - Query some compile time data about an Euler system. (e.g. Whether it's tait bryan) * * Euler rotation is a set of three rotation on fixed axes. (see \ref EulerAngles) * This meta-class store constantly those signed axes. (see \ref EulerAxis) * * ### Types of Euler systems ### * * All and only valid 3 dimension Euler rotation over standard * signed axes{+X,+Y,+Z,-X,-Y,-Z} are supported: * - all axes X, Y, Z in each valid order (see below what order is valid) * - rotation over the axis is supported both over the positive and negative directions. * - both tait bryan and proper/classic Euler angles (i.e. the opposite). * * Since EulerSystem support both positive and negative directions, * you may call this rotation distinction in other names: * - _right handed_ or _left handed_ * - _counterclockwise_ or _clockwise_ * * Notice all axed combination are valid, and would trigger a static assertion. * Same unsigned axes can't be neighbors, e.g. {X,X,Y} is invalid. * This yield two and only two classes: * - _tait bryan_ - all unsigned axes are distinct, e.g. {X,Y,Z} * - _proper/classic Euler angles_ - The first and the third unsigned axes is equal, * and the second is different, e.g. {X,Y,X} * * ### Intrinsic vs extrinsic Euler systems ### * * Only intrinsic Euler systems are supported for simplicity. * If you want to use extrinsic Euler systems, * just use the equal intrinsic opposite order for axes and angles. * I.e axes (A,B,C) becomes (C,B,A), and angles (a,b,c) becomes (c,b,a). * * ### Convenient user typedefs ### * * Convenient typedefs for EulerSystem exist (only for positive axes Euler systems), * in a form of EulerSystem{A}{B}{C}, e.g. \ref EulerSystemXYZ. * * ### Additional reading ### * * More information about Euler angles: https://en.wikipedia.org/wiki/Euler_angles * * \tparam _AlphaAxis the first fixed EulerAxis * * \tparam _AlphaAxis the second fixed EulerAxis * * \tparam _AlphaAxis the third fixed EulerAxis */ template <int _AlphaAxis, int _BetaAxis, int _GammaAxis> class EulerSystem { public: // It's defined this way and not as enum, because I think // that enum is not guerantee to support negative numbers /** The first rotation axis */ static const int AlphaAxis = _AlphaAxis; /** The second rotation axis */ static const int BetaAxis = _BetaAxis; /** The third rotation axis */ static const int GammaAxis = _GammaAxis; enum { AlphaAxisAbs = internal::Abs<AlphaAxis>::value, /*!< the first rotation axis unsigned */ BetaAxisAbs = internal::Abs<BetaAxis>::value, /*!< the second rotation axis unsigned */ GammaAxisAbs = internal::Abs<GammaAxis>::value, /*!< the third rotation axis unsigned */ IsAlphaOpposite = (AlphaAxis < 0) ? 1 : 0, /*!< weather alpha axis is negative */ IsBetaOpposite = (BetaAxis < 0) ? 1 : 0, /*!< weather beta axis is negative */ IsGammaOpposite = (GammaAxis < 0) ? 1 : 0, /*!< weather gamma axis is negative */ IsOdd = ((AlphaAxisAbs)%3 == (BetaAxisAbs - 1)%3) ? 0 : 1, /*!< weather the Euler system is odd */ IsEven = IsOdd ? 0 : 1, /*!< weather the Euler system is even */ IsTaitBryan = ((unsigned)AlphaAxisAbs != (unsigned)GammaAxisAbs) ? 1 : 0 /*!< weather the Euler system is tait bryan */ }; private: EIGEN_EULER_ANGLES_CLASS_STATIC_ASSERT(internal::IsValidAxis<AlphaAxis>::value, ALPHA_AXIS_IS_INVALID); EIGEN_EULER_ANGLES_CLASS_STATIC_ASSERT(internal::IsValidAxis<BetaAxis>::value, BETA_AXIS_IS_INVALID); EIGEN_EULER_ANGLES_CLASS_STATIC_ASSERT(internal::IsValidAxis<GammaAxis>::value, GAMMA_AXIS_IS_INVALID); EIGEN_EULER_ANGLES_CLASS_STATIC_ASSERT((unsigned)AlphaAxisAbs != (unsigned)BetaAxisAbs, ALPHA_AXIS_CANT_BE_EQUAL_TO_BETA_AXIS); EIGEN_EULER_ANGLES_CLASS_STATIC_ASSERT((unsigned)BetaAxisAbs != (unsigned)GammaAxisAbs, BETA_AXIS_CANT_BE_EQUAL_TO_GAMMA_AXIS); enum { // I, J, K are the pivot indexes permutation for the rotation matrix, that match this Euler system. // They are used in this class converters. // They are always different from each other, and their possible values are: 0, 1, or 2. I = AlphaAxisAbs - 1, J = (AlphaAxisAbs - 1 + 1 + IsOdd)%3, K = (AlphaAxisAbs - 1 + 2 - IsOdd)%3 }; // TODO: Get @mat parameter in form that avoids double evaluation. template <typename Derived> static void CalcEulerAngles_imp(Matrix<typename MatrixBase<Derived>::Scalar, 3, 1>& res, const MatrixBase<Derived>& mat, internal::true_type /*isTaitBryan*/) { using std::atan2; using std::sin; using std::cos; typedef typename Derived::Scalar Scalar; typedef Matrix<Scalar,2,1> Vector2; res[0] = atan2(mat(J,K), mat(K,K)); Scalar c2 = Vector2(mat(I,I), mat(I,J)).norm(); if((IsOdd && res[0]<Scalar(0)) || ((!IsOdd) && res[0]>Scalar(0))) { if(res[0] > Scalar(0)) { res[0] -= Scalar(EIGEN_PI); } else { res[0] += Scalar(EIGEN_PI); } res[1] = atan2(-mat(I,K), -c2); } else res[1] = atan2(-mat(I,K), c2); Scalar s1 = sin(res[0]); Scalar c1 = cos(res[0]); res[2] = atan2(s1*mat(K,I)-c1*mat(J,I), c1*mat(J,J) - s1 * mat(K,J)); } template <typename Derived> static void CalcEulerAngles_imp(Matrix<typename MatrixBase<Derived>::Scalar,3,1>& res, const MatrixBase<Derived>& mat, internal::false_type /*isTaitBryan*/) { using std::atan2; using std::sin; using std::cos; typedef typename Derived::Scalar Scalar; typedef Matrix<Scalar,2,1> Vector2; res[0] = atan2(mat(J,I), mat(K,I)); if((IsOdd && res[0]<Scalar(0)) || ((!IsOdd) && res[0]>Scalar(0))) { if(res[0] > Scalar(0)) { res[0] -= Scalar(EIGEN_PI); } else { res[0] += Scalar(EIGEN_PI); } Scalar s2 = Vector2(mat(J,I), mat(K,I)).norm(); res[1] = -atan2(s2, mat(I,I)); } else { Scalar s2 = Vector2(mat(J,I), mat(K,I)).norm(); res[1] = atan2(s2, mat(I,I)); } // With a=(0,1,0), we have i=0; j=1; k=2, and after computing the first two angles, // we can compute their respective rotation, and apply its inverse to M. Since the result must // be a rotation around x, we have: // // c2 s1.s2 c1.s2 1 0 0 // 0 c1 -s1 * M = 0 c3 s3 // -s2 s1.c2 c1.c2 0 -s3 c3 // // Thus: m11.c1 - m21.s1 = c3 & m12.c1 - m22.s1 = s3 Scalar s1 = sin(res[0]); Scalar c1 = cos(res[0]); res[2] = atan2(c1*mat(J,K)-s1*mat(K,K), c1*mat(J,J) - s1 * mat(K,J)); } template<typename Scalar> static void CalcEulerAngles( EulerAngles<Scalar, EulerSystem>& res, const typename EulerAngles<Scalar, EulerSystem>::Matrix3& mat) { CalcEulerAngles(res, mat, false, false, false); } template< bool PositiveRangeAlpha, bool PositiveRangeBeta, bool PositiveRangeGamma, typename Scalar> static void CalcEulerAngles( EulerAngles<Scalar, EulerSystem>& res, const typename EulerAngles<Scalar, EulerSystem>::Matrix3& mat) { CalcEulerAngles(res, mat, PositiveRangeAlpha, PositiveRangeBeta, PositiveRangeGamma); } template<typename Scalar> static void CalcEulerAngles( EulerAngles<Scalar, EulerSystem>& res, const typename EulerAngles<Scalar, EulerSystem>::Matrix3& mat, bool PositiveRangeAlpha, bool PositiveRangeBeta, bool PositiveRangeGamma) { CalcEulerAngles_imp( res.angles(), mat, typename internal::conditional<IsTaitBryan, internal::true_type, internal::false_type>::type()); if (IsAlphaOpposite == IsOdd) res.alpha() = -res.alpha(); if (IsBetaOpposite == IsOdd) res.beta() = -res.beta(); if (IsGammaOpposite == IsOdd) res.gamma() = -res.gamma(); // Saturate results to the requested range if (PositiveRangeAlpha && (res.alpha() < 0)) res.alpha() += Scalar(2 * EIGEN_PI); if (PositiveRangeBeta && (res.beta() < 0)) res.beta() += Scalar(2 * EIGEN_PI); if (PositiveRangeGamma && (res.gamma() < 0)) res.gamma() += Scalar(2 * EIGEN_PI); } template <typename _Scalar, class _System> friend class Eigen::EulerAngles; }; #define EIGEN_EULER_SYSTEM_TYPEDEF(A, B, C) \ /** \ingroup EulerAngles_Module */ \ typedef EulerSystem<EULER_##A, EULER_##B, EULER_##C> EulerSystem##A##B##C; EIGEN_EULER_SYSTEM_TYPEDEF(X,Y,Z) EIGEN_EULER_SYSTEM_TYPEDEF(X,Y,X) EIGEN_EULER_SYSTEM_TYPEDEF(X,Z,Y) EIGEN_EULER_SYSTEM_TYPEDEF(X,Z,X) EIGEN_EULER_SYSTEM_TYPEDEF(Y,Z,X) EIGEN_EULER_SYSTEM_TYPEDEF(Y,Z,Y) EIGEN_EULER_SYSTEM_TYPEDEF(Y,X,Z) EIGEN_EULER_SYSTEM_TYPEDEF(Y,X,Y) EIGEN_EULER_SYSTEM_TYPEDEF(Z,X,Y) EIGEN_EULER_SYSTEM_TYPEDEF(Z,X,Z) EIGEN_EULER_SYSTEM_TYPEDEF(Z,Y,X) EIGEN_EULER_SYSTEM_TYPEDEF(Z,Y,Z) } #endif // EIGEN_EULERSYSTEM_H