// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2015 Tal Hadad <tal_hd@hotmail.com> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_EULERANGLESCLASS_H// TODO: Fix previous "EIGEN_EULERANGLES_H" definition? #define EIGEN_EULERANGLESCLASS_H namespace Eigen { /*template<typename Other, int OtherRows=Other::RowsAtCompileTime, int OtherCols=Other::ColsAtCompileTime> struct ei_eulerangles_assign_impl;*/ /** \class EulerAngles * * \ingroup EulerAngles_Module * * \brief Represents a rotation in a 3 dimensional space as three Euler angles. * * Euler rotation is a set of three rotation of three angles over three fixed axes, defined by the EulerSystem given as a template parameter. * * Here is how intrinsic Euler angles works: * - first, rotate the axes system over the alpha axis in angle alpha * - then, rotate the axes system over the beta axis(which was rotated in the first stage) in angle beta * - then, rotate the axes system over the gamma axis(which was rotated in the two stages above) in angle gamma * * \note This class support only intrinsic Euler angles for simplicity, * see EulerSystem how to easily overcome this for extrinsic systems. * * ### Rotation representation and conversions ### * * It has been proved(see Wikipedia link below) that every rotation can be represented * by Euler angles, but there is no singular representation (e.g. unlike rotation matrices). * Therefore, you can convert from Eigen rotation and to them * (including rotation matrices, which is not called "rotations" by Eigen design). * * Euler angles usually used for: * - convenient human representation of rotation, especially in interactive GUI. * - gimbal systems and robotics * - efficient encoding(i.e. 3 floats only) of rotation for network protocols. * * However, Euler angles are slow comparing to quaternion or matrices, * because their unnatural math definition, although it's simple for human. * To overcome this, this class provide easy movement from the math friendly representation * to the human friendly representation, and vise-versa. * * All the user need to do is a safe simple C++ type conversion, * and this class take care for the math. * Additionally, some axes related computation is done in compile time. * * #### Euler angles ranges in conversions #### * * When converting some rotation to Euler angles, there are some ways you can guarantee * the Euler angles ranges. * * #### implicit ranges #### * When using implicit ranges, all angles are guarantee to be in the range [-PI, +PI], * unless you convert from some other Euler angles. * In this case, the range is __undefined__ (might be even less than -PI or greater than +2*PI). * \sa EulerAngles(const MatrixBase<Derived>&) * \sa EulerAngles(const RotationBase<Derived, 3>&) * * #### explicit ranges #### * When using explicit ranges, all angles are guarantee to be in the range you choose. * In the range Boolean parameter, you're been ask whether you prefer the positive range or not: * - _true_ - force the range between [0, +2*PI] * - _false_ - force the range between [-PI, +PI] * * ##### compile time ranges ##### * This is when you have compile time ranges and you prefer to * use template parameter. (e.g. for performance) * \sa FromRotation() * * ##### run-time time ranges ##### * Run-time ranges are also supported. * \sa EulerAngles(const MatrixBase<Derived>&, bool, bool, bool) * \sa EulerAngles(const RotationBase<Derived, 3>&, bool, bool, bool) * * ### Convenient user typedefs ### * * Convenient typedefs for EulerAngles exist for float and double scalar, * in a form of EulerAngles{A}{B}{C}{scalar}, * e.g. \ref EulerAnglesXYZd, \ref EulerAnglesZYZf. * * Only for positive axes{+x,+y,+z} Euler systems are have convenient typedef. * If you need negative axes{-x,-y,-z}, it is recommended to create you own typedef with * a word that represent what you need. * * ### Example ### * * \include EulerAngles.cpp * Output: \verbinclude EulerAngles.out * * ### Additional reading ### * * If you're want to get more idea about how Euler system work in Eigen see EulerSystem. * * More information about Euler angles: https://en.wikipedia.org/wiki/Euler_angles * * \tparam _Scalar the scalar type, i.e., the type of the angles. * * \tparam _System the EulerSystem to use, which represents the axes of rotation. */ template <typename _Scalar, class _System> class EulerAngles : public RotationBase<EulerAngles<_Scalar, _System>, 3> { public: /** the scalar type of the angles */ typedef _Scalar Scalar; /** the EulerSystem to use, which represents the axes of rotation. */ typedef _System System; typedef Matrix<Scalar,3,3> Matrix3; /*!< the equivalent rotation matrix type */ typedef Matrix<Scalar,3,1> Vector3; /*!< the equivalent 3 dimension vector type */ typedef Quaternion<Scalar> QuaternionType; /*!< the equivalent quaternion type */ typedef AngleAxis<Scalar> AngleAxisType; /*!< the equivalent angle-axis type */ /** \returns the axis vector of the first (alpha) rotation */ static Vector3 AlphaAxisVector() { const Vector3& u = Vector3::Unit(System::AlphaAxisAbs - 1); return System::IsAlphaOpposite ? -u : u; } /** \returns the axis vector of the second (beta) rotation */ static Vector3 BetaAxisVector() { const Vector3& u = Vector3::Unit(System::BetaAxisAbs - 1); return System::IsBetaOpposite ? -u : u; } /** \returns the axis vector of the third (gamma) rotation */ static Vector3 GammaAxisVector() { const Vector3& u = Vector3::Unit(System::GammaAxisAbs - 1); return System::IsGammaOpposite ? -u : u; } private: Vector3 m_angles; public: /** Default constructor without initialization. */ EulerAngles() {} /** Constructs and initialize Euler angles(\p alpha, \p beta, \p gamma). */ EulerAngles(const Scalar& alpha, const Scalar& beta, const Scalar& gamma) : m_angles(alpha, beta, gamma) {} /** Constructs and initialize Euler angles from a 3x3 rotation matrix \p m. * * \note All angles will be in the range [-PI, PI]. */ template<typename Derived> EulerAngles(const MatrixBase<Derived>& m) { *this = m; } /** Constructs and initialize Euler angles from a 3x3 rotation matrix \p m, * with options to choose for each angle the requested range. * * If positive range is true, then the specified angle will be in the range [0, +2*PI]. * Otherwise, the specified angle will be in the range [-PI, +PI]. * * \param m The 3x3 rotation matrix to convert * \param positiveRangeAlpha If true, alpha will be in [0, 2*PI]. Otherwise, in [-PI, +PI]. * \param positiveRangeBeta If true, beta will be in [0, 2*PI]. Otherwise, in [-PI, +PI]. * \param positiveRangeGamma If true, gamma will be in [0, 2*PI]. Otherwise, in [-PI, +PI]. */ template<typename Derived> EulerAngles( const MatrixBase<Derived>& m, bool positiveRangeAlpha, bool positiveRangeBeta, bool positiveRangeGamma) { System::CalcEulerAngles(*this, m, positiveRangeAlpha, positiveRangeBeta, positiveRangeGamma); } /** Constructs and initialize Euler angles from a rotation \p rot. * * \note All angles will be in the range [-PI, PI], unless \p rot is an EulerAngles. * If rot is an EulerAngles, expected EulerAngles range is __undefined__. * (Use other functions here for enforcing range if this effect is desired) */ template<typename Derived> EulerAngles(const RotationBase<Derived, 3>& rot) { *this = rot; } /** Constructs and initialize Euler angles from a rotation \p rot, * with options to choose for each angle the requested range. * * If positive range is true, then the specified angle will be in the range [0, +2*PI]. * Otherwise, the specified angle will be in the range [-PI, +PI]. * * \param rot The 3x3 rotation matrix to convert * \param positiveRangeAlpha If true, alpha will be in [0, 2*PI]. Otherwise, in [-PI, +PI]. * \param positiveRangeBeta If true, beta will be in [0, 2*PI]. Otherwise, in [-PI, +PI]. * \param positiveRangeGamma If true, gamma will be in [0, 2*PI]. Otherwise, in [-PI, +PI]. */ template<typename Derived> EulerAngles( const RotationBase<Derived, 3>& rot, bool positiveRangeAlpha, bool positiveRangeBeta, bool positiveRangeGamma) { System::CalcEulerAngles(*this, rot.toRotationMatrix(), positiveRangeAlpha, positiveRangeBeta, positiveRangeGamma); } /** \returns The angle values stored in a vector (alpha, beta, gamma). */ const Vector3& angles() const { return m_angles; } /** \returns A read-write reference to the angle values stored in a vector (alpha, beta, gamma). */ Vector3& angles() { return m_angles; } /** \returns The value of the first angle. */ Scalar alpha() const { return m_angles[0]; } /** \returns A read-write reference to the angle of the first angle. */ Scalar& alpha() { return m_angles[0]; } /** \returns The value of the second angle. */ Scalar beta() const { return m_angles[1]; } /** \returns A read-write reference to the angle of the second angle. */ Scalar& beta() { return m_angles[1]; } /** \returns The value of the third angle. */ Scalar gamma() const { return m_angles[2]; } /** \returns A read-write reference to the angle of the third angle. */ Scalar& gamma() { return m_angles[2]; } /** \returns The Euler angles rotation inverse (which is as same as the negative), * (-alpha, -beta, -gamma). */ EulerAngles inverse() const { EulerAngles res; res.m_angles = -m_angles; return res; } /** \returns The Euler angles rotation negative (which is as same as the inverse), * (-alpha, -beta, -gamma). */ EulerAngles operator -() const { return inverse(); } /** Constructs and initialize Euler angles from a 3x3 rotation matrix \p m, * with options to choose for each angle the requested range (__only in compile time__). * * If positive range is true, then the specified angle will be in the range [0, +2*PI]. * Otherwise, the specified angle will be in the range [-PI, +PI]. * * \param m The 3x3 rotation matrix to convert * \tparam positiveRangeAlpha If true, alpha will be in [0, 2*PI]. Otherwise, in [-PI, +PI]. * \tparam positiveRangeBeta If true, beta will be in [0, 2*PI]. Otherwise, in [-PI, +PI]. * \tparam positiveRangeGamma If true, gamma will be in [0, 2*PI]. Otherwise, in [-PI, +PI]. */ template< bool PositiveRangeAlpha, bool PositiveRangeBeta, bool PositiveRangeGamma, typename Derived> static EulerAngles FromRotation(const MatrixBase<Derived>& m) { EIGEN_STATIC_ASSERT_MATRIX_SPECIFIC_SIZE(Derived, 3, 3) EulerAngles e; System::template CalcEulerAngles< PositiveRangeAlpha, PositiveRangeBeta, PositiveRangeGamma, _Scalar>(e, m); return e; } /** Constructs and initialize Euler angles from a rotation \p rot, * with options to choose for each angle the requested range (__only in compile time__). * * If positive range is true, then the specified angle will be in the range [0, +2*PI]. * Otherwise, the specified angle will be in the range [-PI, +PI]. * * \param rot The 3x3 rotation matrix to convert * \tparam positiveRangeAlpha If true, alpha will be in [0, 2*PI]. Otherwise, in [-PI, +PI]. * \tparam positiveRangeBeta If true, beta will be in [0, 2*PI]. Otherwise, in [-PI, +PI]. * \tparam positiveRangeGamma If true, gamma will be in [0, 2*PI]. Otherwise, in [-PI, +PI]. */ template< bool PositiveRangeAlpha, bool PositiveRangeBeta, bool PositiveRangeGamma, typename Derived> static EulerAngles FromRotation(const RotationBase<Derived, 3>& rot) { return FromRotation<PositiveRangeAlpha, PositiveRangeBeta, PositiveRangeGamma>(rot.toRotationMatrix()); } /*EulerAngles& fromQuaternion(const QuaternionType& q) { // TODO: Implement it in a faster way for quaternions // According to http://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToEuler/ // we can compute only the needed matrix cells and then convert to euler angles. (see ZYX example below) // Currently we compute all matrix cells from quaternion. // Special case only for ZYX //Scalar y2 = q.y() * q.y(); //m_angles[0] = std::atan2(2*(q.w()*q.z() + q.x()*q.y()), (1 - 2*(y2 + q.z()*q.z()))); //m_angles[1] = std::asin( 2*(q.w()*q.y() - q.z()*q.x())); //m_angles[2] = std::atan2(2*(q.w()*q.x() + q.y()*q.z()), (1 - 2*(q.x()*q.x() + y2))); }*/ /** Set \c *this from a rotation matrix(i.e. pure orthogonal matrix with determinant of +1). */ template<typename Derived> EulerAngles& operator=(const MatrixBase<Derived>& m) { EIGEN_STATIC_ASSERT_MATRIX_SPECIFIC_SIZE(Derived, 3, 3) System::CalcEulerAngles(*this, m); return *this; } // TODO: Assign and construct from another EulerAngles (with different system) /** Set \c *this from a rotation. */ template<typename Derived> EulerAngles& operator=(const RotationBase<Derived, 3>& rot) { System::CalcEulerAngles(*this, rot.toRotationMatrix()); return *this; } // TODO: Support isApprox function /** \returns an equivalent 3x3 rotation matrix. */ Matrix3 toRotationMatrix() const { return static_cast<QuaternionType>(*this).toRotationMatrix(); } /** Convert the Euler angles to quaternion. */ operator QuaternionType() const { return AngleAxisType(alpha(), AlphaAxisVector()) * AngleAxisType(beta(), BetaAxisVector()) * AngleAxisType(gamma(), GammaAxisVector()); } friend std::ostream& operator<<(std::ostream& s, const EulerAngles<Scalar, System>& eulerAngles) { s << eulerAngles.angles().transpose(); return s; } }; #define EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(AXES, SCALAR_TYPE, SCALAR_POSTFIX) \ /** \ingroup EulerAngles_Module */ \ typedef EulerAngles<SCALAR_TYPE, EulerSystem##AXES> EulerAngles##AXES##SCALAR_POSTFIX; #define EIGEN_EULER_ANGLES_TYPEDEFS(SCALAR_TYPE, SCALAR_POSTFIX) \ EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(XYZ, SCALAR_TYPE, SCALAR_POSTFIX) \ EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(XYX, SCALAR_TYPE, SCALAR_POSTFIX) \ EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(XZY, SCALAR_TYPE, SCALAR_POSTFIX) \ EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(XZX, SCALAR_TYPE, SCALAR_POSTFIX) \ \ EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(YZX, SCALAR_TYPE, SCALAR_POSTFIX) \ EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(YZY, SCALAR_TYPE, SCALAR_POSTFIX) \ EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(YXZ, SCALAR_TYPE, SCALAR_POSTFIX) \ EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(YXY, SCALAR_TYPE, SCALAR_POSTFIX) \ \ EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(ZXY, SCALAR_TYPE, SCALAR_POSTFIX) \ EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(ZXZ, SCALAR_TYPE, SCALAR_POSTFIX) \ EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(ZYX, SCALAR_TYPE, SCALAR_POSTFIX) \ EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(ZYZ, SCALAR_TYPE, SCALAR_POSTFIX) EIGEN_EULER_ANGLES_TYPEDEFS(float, f) EIGEN_EULER_ANGLES_TYPEDEFS(double, d) namespace internal { template<typename _Scalar, class _System> struct traits<EulerAngles<_Scalar, _System> > { typedef _Scalar Scalar; }; } } #endif // EIGEN_EULERANGLESCLASS_H