// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2009 Gael Guennebaud <g.gael@free.fr> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_ALIGNED_VECTOR3 #define EIGEN_ALIGNED_VECTOR3 #include <Eigen/Geometry> namespace Eigen { /** * \defgroup AlignedVector3_Module Aligned vector3 module * * \code * #include <unsupported/Eigen/AlignedVector3> * \endcode */ //@{ /** \class AlignedVector3 * * \brief A vectorization friendly 3D vector * * This class represents a 3D vector internally using a 4D vector * such that vectorization can be seamlessly enabled. Of course, * the same result can be achieved by directly using a 4D vector. * This class makes this process simpler. * */ // TODO specialize Cwise template<typename _Scalar> class AlignedVector3; namespace internal { template<typename _Scalar> struct traits<AlignedVector3<_Scalar> > : traits<Matrix<_Scalar,3,1,0,4,1> > { }; } template<typename _Scalar> class AlignedVector3 : public MatrixBase<AlignedVector3<_Scalar> > { typedef Matrix<_Scalar,4,1> CoeffType; CoeffType m_coeffs; public: typedef MatrixBase<AlignedVector3<_Scalar> > Base; EIGEN_DENSE_PUBLIC_INTERFACE(AlignedVector3) using Base::operator*; inline Index rows() const { return 3; } inline Index cols() const { return 1; } Scalar* data() { return m_coeffs.data(); } const Scalar* data() const { return m_coeffs.data(); } Index innerStride() const { return 1; } Index outerStride() const { return 3; } inline const Scalar& coeff(Index row, Index col) const { return m_coeffs.coeff(row, col); } inline Scalar& coeffRef(Index row, Index col) { return m_coeffs.coeffRef(row, col); } inline const Scalar& coeff(Index index) const { return m_coeffs.coeff(index); } inline Scalar& coeffRef(Index index) { return m_coeffs.coeffRef(index);} inline AlignedVector3(const Scalar& x, const Scalar& y, const Scalar& z) : m_coeffs(x, y, z, Scalar(0)) {} inline AlignedVector3(const AlignedVector3& other) : Base(), m_coeffs(other.m_coeffs) {} template<typename XprType, int Size=XprType::SizeAtCompileTime> struct generic_assign_selector {}; template<typename XprType> struct generic_assign_selector<XprType,4> { inline static void run(AlignedVector3& dest, const XprType& src) { dest.m_coeffs = src; } }; template<typename XprType> struct generic_assign_selector<XprType,3> { inline static void run(AlignedVector3& dest, const XprType& src) { dest.m_coeffs.template head<3>() = src; dest.m_coeffs.w() = Scalar(0); } }; template<typename Derived> inline AlignedVector3(const MatrixBase<Derived>& other) { generic_assign_selector<Derived>::run(*this,other.derived()); } inline AlignedVector3& operator=(const AlignedVector3& other) { m_coeffs = other.m_coeffs; return *this; } template <typename Derived> inline AlignedVector3& operator=(const MatrixBase<Derived>& other) { generic_assign_selector<Derived>::run(*this,other.derived()); return *this; } inline AlignedVector3 operator+(const AlignedVector3& other) const { return AlignedVector3(m_coeffs + other.m_coeffs); } inline AlignedVector3& operator+=(const AlignedVector3& other) { m_coeffs += other.m_coeffs; return *this; } inline AlignedVector3 operator-(const AlignedVector3& other) const { return AlignedVector3(m_coeffs - other.m_coeffs); } inline AlignedVector3 operator-=(const AlignedVector3& other) { m_coeffs -= other.m_coeffs; return *this; } inline AlignedVector3 operator*(const Scalar& s) const { return AlignedVector3(m_coeffs * s); } inline friend AlignedVector3 operator*(const Scalar& s,const AlignedVector3& vec) { return AlignedVector3(s * vec.m_coeffs); } inline AlignedVector3& operator*=(const Scalar& s) { m_coeffs *= s; return *this; } inline AlignedVector3 operator/(const Scalar& s) const { return AlignedVector3(m_coeffs / s); } inline AlignedVector3& operator/=(const Scalar& s) { m_coeffs /= s; return *this; } inline Scalar dot(const AlignedVector3& other) const { eigen_assert(m_coeffs.w()==Scalar(0)); eigen_assert(other.m_coeffs.w()==Scalar(0)); return m_coeffs.dot(other.m_coeffs); } inline void normalize() { m_coeffs /= norm(); } inline AlignedVector3 normalized() const { return AlignedVector3(m_coeffs / norm()); } inline Scalar sum() const { eigen_assert(m_coeffs.w()==Scalar(0)); return m_coeffs.sum(); } inline Scalar squaredNorm() const { eigen_assert(m_coeffs.w()==Scalar(0)); return m_coeffs.squaredNorm(); } inline Scalar norm() const { using std::sqrt; return sqrt(squaredNorm()); } inline AlignedVector3 cross(const AlignedVector3& other) const { return AlignedVector3(m_coeffs.cross3(other.m_coeffs)); } template<typename Derived> inline bool isApprox(const MatrixBase<Derived>& other, const RealScalar& eps=NumTraits<Scalar>::dummy_precision()) const { return m_coeffs.template head<3>().isApprox(other,eps); } CoeffType& coeffs() { return m_coeffs; } const CoeffType& coeffs() const { return m_coeffs; } }; namespace internal { template<typename _Scalar> struct eval<AlignedVector3<_Scalar>, Dense> { typedef const AlignedVector3<_Scalar>& type; }; template<typename Scalar> struct evaluator<AlignedVector3<Scalar> > : evaluator<Matrix<Scalar,4,1> > { typedef AlignedVector3<Scalar> XprType; typedef evaluator<Matrix<Scalar,4,1> > Base; evaluator(const XprType &m) : Base(m.coeffs()) {} }; } //@} } #endif // EIGEN_ALIGNED_VECTOR3